To an outsider, physics and mathematics might appear to be almost identical disciplines. Particularly at the frontiers of theoretical physics, where a very deep knowledge of extraordinarily advanced mathematics is required to grasp even cutting-edge physics from a century ago curved four-dimensional spacetimes and probabilistic wavefunctions among them its clear that predictive mathematical models are at the core of science. Since physics is at the fundamental core of the entire scientific endeavor, its very clear that theres a close relationship between mathematics and all of science.
Yes, mathematics has been incredibly successful at describing the Universe that we inhabit. And yes, many mathematical advances have led to the exploration of new physical possibilities that have relied on those very advances to provide a mathematical foundation. But theres an extraordinary difference between physics and mathematics that one of the simplest questions we can ask will illustrate:
I bet you think you know the answer, and in all honesty, you probably do: its 2, right?
I cant blame you for that answer, and its not exactly wrong. But theres much more to the story, as youre about to find out.
A ball in mid-bounce has its past and future trajectories determined by the laws of physics, but time will only flow into the future for us. While Newtons laws of motion are the same whether you run the clock forward or backward in time, not all of the rules of physics behave identically if you run the clock forward or backward, indicating a violation of time-reversal (T) symmetry where it occurs.
Take a look at the above time-lapse image of a bouncing ball. One look at this tells you a simple, straightforward story.
Travel the Universe with astrophysicist Ethan Siegel. Subscribers will get the newsletter every Saturday. All aboard!
This is, quite reasonably, the story youd tell yourself of whats going on.
But why, may I ask, would you tell yourself that story rather than the opposite: that the ball begins on the right side, moving leftward, and that it gains energy, height, and speed after each successive bounce on the floor?
In Newtonian (or Einsteinian) mechanics, a system will evolve over time according to completely deterministic equations, which should mean that if you can know the initial conditions (like positions and momenta) for everything in your system, you should be able to evolve it, with no errors, arbitrarily forward in time. In practice, due to the inability to know the initial conditions to truly arbitrary precisions, this is not true.
The only answer youd likely be able to give, and you may find it dissatisfying even as you give it, is your experience with the actual world. Basketballs, when they bounce, lose a percentage of their initial (kinetic) energy upon striking the floor; youd have to have a specially prepared system designed to kick the ball to higher (kinetic) energies to successfully engineer the alternate possibility. Its your knowledge of physical reality, and your assumption that what youre observing is aligned with your experiences, that lead you to that conclusion.
Similarly, look at the diagram, above, that shows three stars all orbiting around a central mass: a supermassive black hole. If this were a movie, instead of a diagram, you could imagine that all three stars are moving clockwise, that two move clockwise while one moves counterclockwise, that one moves clockwise and two move counterclockwise, or that all three move counterclockwise.
But now, ask yourself this: how would you know whether the movie were running forward in time or backward in time? In the case of gravity just as in the case of electromagnetism or the strong nuclear force youd have no way of knowing. For these forces, the laws of physics are time symmetric: the same forward in time as they are backward in time.
Individual protons and neutrons may be colorless entities, but the quarks within them are colored. Gluons can not only be exchanged between the individual gluons within a proton or neutron, but in combinations between protons and neutrons, leading to nuclear binding. However, every single exchange must obey the full suite of quantum rules, and these strong force interaction are time-reversal symmetric: you cannot tell whether the animated movie here is shown moving forward or backward in time.
Time is an interesting consideration in physics, because while the mathematics offers a set of possible solutions for how a system will evolve, the physical constraint that we have time possesses an arrow, and always progresses forward, never backward ensures that only one solution describes our physical reality: the solution that evolves the system forward in time. Similarly, if we ask the opposite question of What was the system doing in the lead-up until the present moment? the same constraint, that time only moves forward, enables us to choose the mathematical solution that describes how the system was behaving at some prior time.
Consider what this means, then: even given the laws that describe a system, and the conditions that the system possesses at any particular moment, the mathematics is capable of offering multiple different solutions to any problem that we can pose. If we look at a runner, and ask, When will the runners left foot strike the ground? were going to find multiple mathematical solutions, corresponding to the many times their left foot struck the ground in the past, as well as many times their left foot will strike the ground in the future. Mathematics gives you the set of possible solutions, but it doesnt tell you which one is the right one.
Having your camera anticipate the motion of objects through time is just one practical application of the idea of time-as-a-dimension. For any set of conditions that will be recorded throughout time, its plausible to predict when a certain set of conditions will arise, and find multiple possible solutions in the past and future.
But physics does. Physics can allow you to find the correct, physically relevant solution, whereas mathematics can only give you the set of possible outcomes. When you find a ball in mid-flight and know its trajectory perfectly well, you have to turn to the mathematical formulation of the physical laws that govern the system to determine what happens next.
You write down the set of equations that describe the balls motion, you manipulate and solve them, and then you plug in the specific values that describe the conditions of your particular system. When you work the mathematics that describe that system to its logical conclusion, that exercise will give you (at least) two possible solutions as to precisely when-and-where it will hit the ground in the future.
One of those solutions does, indeed, correspond to the solution youre looking for. It will tell you, at a particular point in the future, when the projectile will first strike the ground, and what its positions will be in all three spatial dimensions when that occurs.
But there will be another solution that corresponds to a negative time: a time in the past where the projectile would also have struck the ground. (You can also find the 3D spatial position of where that projectile would be at that time, if you like.) Both solutions have equal mathematical validity, but only one is physically relevant.
This image shows the parabolic trail left by a rocket after launch. If you would simply calculate the trajectory of this object, assuming no further engine firings after launch, youd get multiple solutions for where/when it would land. One solution is correct, corresponding to the future; the other solution is mathematically correct but physically incorrect, corresponding to a time in the past.
Thats not a deficiency in mathematics; thats a feature of physics, and of science in general. Mathematics tells you the set of possible outcomes. But the scientific fact that we live in a physical reality and in that reality, wherever and whenever we make a measurement, we observe only one outcome teaches us that there are additional constraints beyond what mere mathematics provides. Mathematics tells you what outcomes are possible; physics (and science in general) is what you use to pick out which outcome is (or was, or will be) relevant for the specific problem youre trying to address.
In biology, we can know the genetic makeup of two parent organisms, and can predict the probability with which their offspring will inherent a certain combination of genes. But if these two organisms combine their genetic material to actually make an offspring organism, only one set of combinations will be realized. Furthermore, the only way to determine which genes actually were inherited by the child of the two parents would be to make the critical observations and measurements: you have to gather the data and determine the outcome. Despite the myriad of mathematical possibilities, only one outcome actually occurs.
An Irish immigrant (center) waiting next to an Italian immigrant and her children at Ellis Island, circa 1920. The womans children each possess 50% of her DNA, but specifically which 50% is present in each childs genetic makeup varies not only from child-to-child, but must be observed and measured, explicitly, to correctly determine which of all the possible outcomes actually occurred.
The more complicated your system, the more difficult it becomes to predict the outcome. For a room filled with large numbers of molecules, asking What fate will befall any one of these molecules? becomes a practically impossible task, as the number of possible outcomes after only a small amount of time passes becomes greater than the number of atoms in the entire Universe.
Some systems are inherently chaotic, where minuscule, practically immeasurable differences in the initial conditions of a system lead to vastly different potential outcomes.
Other systems are inherently indeterminate until theyre measured, which is one of the most counterintuitive aspects of quantum mechanics. Sometimes, the act of performing a measurement to literally determine the quantum state of your system winds up changing the state of the system itself.
In all of these cases, mathematics offers a set of possible outcomes whose probabilities can be determined and calculated in advance, but only by performing the critical measurement can you actually determine which one outcome has actually occurred.
Trajectories of a particle in a box (also called an infinite square well) in classical mechanics (A) and quantum mechanics (B-F). In (A), the particle moves at constant velocity, bouncing back and forth. In (B-F), wavefunction solutions to the Time-Dependent Schrodinger Equation are shown for the same geometry and potential. The horizontal axis is position, the vertical axis is the real part (blue) or imaginary part (red) of the wavefunction. These stationary (B, C, D) and non-stationary (E, F) states only yield probabilities for the particle, rather than definitive answers for where it will be at a particular time.
This takes us all the way back to the initial question: what is the square root of 4?
Chances are, you read that question, and the number 2 immediately popped into your head. But thats not the only possible answer; it could have been -2 just as easily. After all, (-2) equals 4 just as surely as (2) equals 4; theyre both admissible solutions.
If I had gone further and asked, What is the fourth root (the square root of the square root) of 16? you could have then gone and given me four possible solutions. Each of these following numbers,
when raised to the fourth power, will yield the number 16 as the mathematical answer.
This graph shows the function y = x. Note that there are two possible solutions on the y-axis for every value of x. Two of those solutions correspond to x = 4: y = 2 and y = -2. Both solutions are, mathematically, equally valid. But theres only one physical Universe that we inhabit, and each physical problem must be considered individually to determine which of these solutions is physically relevant.
But in the context of a physical problem, there will only be one of these many possible solutions that actually reflects the reality we inhabit. The only way to determine which one is correct is either to go out and measure reality and pick out the physically relevant solution, or to know enough about your system and apply the relevant physical conditions so that youre not simply calculating the mathematical possibilities, but that youre capable of choosing the physically relevant solution and rejecting the non-physical ones.
Sometimes, that means we have multiple admissible solutions at once that are all plausible for explaining an observed phenomenon. It will only be through the obtaining of more, superior data that rules out certain possibilities while remaining consistent with others that enables us to determine which of the possible solutions actually remain viable. This approach, inherent to the process of doing science, helps us make successively better and better approximations to our inhabited reality, allowing us to tease out what is true about our Universe amidst the possibilities of what could have been true in the absence of that critical data.
NASAs Curiosity Mars Rover detected fluctuations in the methane concentration of Marss atmosphere seasonally and at specific locations on the surface. This can be explained via either geochemical or biological processes; the evidence is not sufficient to decide at present. However, future missions, such as Mars Sample Return, may enable us to determine whether fossilized, dormant, or active life exists on Mars. Right now, we can only narrow down the physical possibilities; more information is required to determine which pathway accurately reflects our physical reality.
The biggest difference between physics and mathematics is simply that mathematics is a framework that, when applied wisely, can accurately describe certain properties about a physical system in a self-consistent fashion. However, mathematics is limited in what it can achieve: it can only give you a set of possible outcomes sometimes weighted by probability and sometimes not weighted at all for what could occur or could have occurred in reality.
Physics is much more than mathematics, however, as no matter when we look at the Universe or how we look at it, there will be only one observed outcome that has actually occurred. Mathematics shows us the full set of all possible outcomes, but its the application of physical constraints that allows us to actually determine what is true, real, or what actual outcomes have occurred in our reality.
If you can remember that the square root of 4 isnt always 2, but is sometimes -2 instead, you can remember the difference between physics and mathematics. The latter can tell you all the possible outcomes that could occur, but what elevates something to the realm of science, rather than pure mathematics, is its connection to our physical reality. The answer to the square root of 4 will always be either 2 or -2, and the other solution will be rejected by a means that mathematics alone can never fully determine: on physical grounds, alone.
Read more from the original source:
The big difference between physics and mathematics - Big Think
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]