Of all the pricing games on the iconic television showThe Price Is Right, perhaps the most exciting of all isPlinko. Contestants play an initial pricing game to obtain up to 5 round, flat disksknown as Plinko chipswhich they then press flat against a pegboard wherever they choose, releasing it whenever they like. One-at-a-time, the Plinko chips cascade down the board, bouncing off of the pegs and moving horizontally as well as vertically, until they emerge at the bottom of the board, landing in one of the prize (or no prize) slots.
Quite notably, contestants who drop a chip that happens to land in the maximum prize slot, always found in the direct center of the board, often try to repeat the exact same drop with whatever remaining disks they possess. Despite their best efforts, however, and the fact that the initial positioning of the disks might be virtually identical, the ultimate paths the disks wind up traversing are almost never identical. Surprisingly, this game is a perfect illustration of chaos theory and helps explain the second law of thermodynamics in understandable terms. Heres the science behind it.
Trajectories of a particle in a box (also called an infinite square well) in classical mechanics (A) and quantum mechanics (B-F). In (A), the particle moves at constant velocity, bouncing back and forth. In (B-F), wavefunction solutions to the Time-Dependent Schrodinger Equation are shown for the same geometry and potential. The horizontal axis is position, the vertical axis is the real part (blue) or imaginary part (red) of the wavefunction. These stationary (B, C, D) and non-stationary (E, F) states only yield probabilities for the particle, rather than definitive answers for where it will be at a particular time.
At a fundamental level, the Universe is quantum mechanical in nature, full of an inherent indeterminism and uncertainty. If you take a particle like an electron, you might think to ask questions like:
Theyre all reasonable questions, and wed expect that theyd all have definitive answers.
But what actually transpires is so bizarre that its enormously unsettling, even to physicists whove spent their lifetimes studying it. If you make a measurement to precisely answer Where is this electron? you become more uncertain about its momentum: how fast and in what direction it moves. If you measure the momentum instead, you become more uncertain about its position. And because you need to know both momentum and position to predict where it will arrive with any certainty in the future, you can only predict a probability distribution for its future position. Youll need a measurement at that future time to determine where it actually is.
In Newtonian (or Einsteinian) mechanics, a system will evolve over time according to completely deterministic equations, which should mean that if you can know the initial conditions (like positions and momenta) for everything in your system, you should be able to evolve it, with no errors, arbitrarily forward in time. In practice, due to the inability to know the initial conditions to truly arbitrary precisions, this is not true.
Perhaps for Plinko, however, this quantum mechanical weirdness shouldnt matter. Quantum physics might have a fundamental indeterminism and uncertainty inherent to it, but for large-scale, macroscopic systems, Newtonian physics ought to be perfectly sufficient. Unlike the quantum mechanical equations that govern reality at a fundamental level, Newtonian physics is completely deterministic.
Travel the Universe with astrophysicist Ethan Siegel. Subscribers will get the newsletter every Saturday. All aboard!
According to Newtons laws of motionwhich can all be derived fromF= ma(force equals mass times acceleration)if you know the initial conditions, like position and momentum, you should be able to know exactly where your object is and what motion it will possess at any point in the future. The equationF= matells you what happens a moment later, and once that moment has elapsed, that same equation tells you what happens after the next moment has passed.
Any object for which quantum effects can be neglected obeys these rules, and Newtonian physics tells us how that object will continuously evolve over time.
However, even with perfectly deterministic equations,theres a limit to how well we can predict a Newtonian system. If this surprises you, know that youre not alone; most of the leading physicists who worked on Newtonian systems thought that there would be no such limit at all. In 1814, mathematician Pierre Laplace wrote a treatise entitled, A philosophical essay on probabilities, where he predicted that once we gained enough information to determine the state of the Universe at any moment in time, we could successfully use the laws of physics to predict the entire future of everything absolutely: with no uncertainty at all. In Laplaces own words:
An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes.
A chaotic system is one where extraordinarily slight changes in initial conditions (blue and yellow) lead to similar behavior for a while, but that behavior then diverges after a relatively short amount of time.
And yet, the need to invoke probabilities in making predictions about the future doesnt necessarily stem from either ignorance (imperfect knowledge about the Universe) or from quantum phenomena (like Heisenbergs uncertainty principle), but rather arises as a cause of the classical phenomenon: chaos. No matter how well you know the initial conditions of your system, deterministic equationslike Newtons laws of motiondont always lead to a deterministic Universe.
This was first discovered back in the early 1960s, when Edward Lorenz, a meteorology professor at MIT, attempted to use a mainframe computer to help arrive at an accurate weather forecast. By using what he believed was a solid weather model, a complete set of measurable data (temperature, pressure, wind conditions, etc.), and an arbitrarily powerful computer, he attempted to predict weather conditions far into the future. He constructed a set of equations, programmed them into his computer, and waited for the results.
Then he re-entered the data, and ran the program for longer.
Two systems starting from an identical configuration, but with imperceptibly small differences in initial conditions (smaller than a single atom), will keep to the same behavior for a while, but over time, chaos will cause them to diverge. After enough time has gone by, their behavior will appear completely unrelated to one another.
Surprisingly, the second time he ran the program, the results diverged at one point by a very slight amount, and then diverged thereafter very quickly. The two systems, beyond that point, behaved as though they were entirely unrelated to one another, with their conditions evolving chaotically with respect to one another.
Eventually, Lorenz found the culprit: when Lorenz re-entered the data the second time,he used the computers printout from the first runfor the input parameters, which was rounded off after a finite number of decimal places. That tiny difference in initial conditions might have only corresponded to the width of an atom or less, but that was enough to dramatically alter the outcome, particularly if you time-evolved your system far enough into the future.
Small, imperceptible differences in the initial conditions led to dramatically different outcomes, a phenomenon colloquially known as the Butterfly Effect. Even in completely deterministic systems, chaos arises.
A scaled-down, casino-esque version of the game of Plinko, where instead of chips falling down a Plinko board, coins fall, with varying rewards available depending on where the coins land.
All of this brings us back to the Plinko board. Although there are many version of the game available, including at amusement parks and casinos, theyre all based on the idea of a Galton Board, where objects bounce one way or the other down an obstacle-filled ramp. The actual board used on The Price Is Right has somewhere around 1314 different vertical levels of pegs for each Plinko chip to potentially bounce off of. If youre aiming for the central spot, there are a lot of strategies you can employ, including:
Every time your chip hits a peg on the way down, it has the potential to knock you one-or-more spaces to either side, but every interaction is purely classical: governed by Newtons deterministic laws. If you could stumble upon a path that caused your chip to land exactly where you desired, then in theory, if you could recreate the initial conditions precisely enoughdown to the micron, the nanometer, or even the atomperhaps, even with 13 or 14 bounces, you might wind up with an identical-enough outcome, winning the big prize as a result.
But if you were to expand your Plinko board, the effects of chaos would become unavoidable. If the board were longer and had dozens, hundreds, thousands, or even millions of rows, youd quickly run into a situation where even two drops that were identical to within the Planck lengththefundamental quantum limit at which distances make sensein our Universeyoud start to see the behavior of two dropped Plinko chips diverging after a certain point.
In addition, widening the Plinko board allows for a greater number of possible outcomes, causing the distribution of final states to be greatly spread out. Put simply, the longer and wider the Plinko board is, the greater the odds of not only unequal outcomes, but of having unequal outcomes that display an enormous-magnitude difference between two dropped Plinko chips.
Even with down-to-the-atom initial precisions, three dropped Plinko chips with the same initial conditions (red, green, blue) will lead to vastly different outcomes by the end, so long as the variations are large enough, the number of steps to your Plinko board is great enough, and the number of possible outcomes is sufficiently large. With those conditions, chaotic outcomes are inevitable.
This doesnt just apply to Plinko, of course, but to any system with a large number of interactions: either discrete (like collisions) or continuous (such as from multiple gravitational forces acting simultaneously). If you take a system of air molecules where one side of a box is hot and the other side is cold, and you remove a divider between them, collisions between those molecules will spontaneously occur, causing the particles to exchange energy and momenta. Even in a small box, there would be more than 1020 particles; in short order, the entire box will have the same temperature, and will never separate into a hot side and a cold side again.
Even in space, justthree point masses is enough to fundamentally introduce chaos. Three massive black holes, bound within distances the scale of the planets in our Solar System, will evolve chaotically no matter how precisely their initial conditions are replicated. The fact that theres a cutoff in how small distances can get and still make senseagain, the Planck lengthensures that arbitrary accuracies on long-enough timescales can never be ensured.
By considering the evolution and details of a system with as few as three particles, scientists have been able to show that a fundamental time irreversibility arises in these systems under realistic physical conditions that the Universe is very likely to obey. If you cannot calculate distances meaningfully to arbitrary precisions, you cannot avoid chaos.
The key takeaway of chaos is this: even when your equations are perfectly deterministic, you cannot know the initial conditions to arbitrary sensitivities. Even placing a Plinko chip on the board and releasing it with down-to-the-atom precision wont be enough, with a large enough Plinko board, to guarantee that multiple chips would ever take identical paths. In fact, with a sufficiently large board, you can all but guarantee that no matter how many Plinko chips you dropped, youd never arrive at two truly identical paths. Eventually, theyd all diverge.
Minuscule variationsthe presence of air molecules moving from the hosts announcing, temperature variations arising from the contestants breath, vibrations from the studio audience propagating into the pegs, etc.introduce enough uncertainty so that, far enough down the line, these systems are effectively impossible to predict. Along with quantum randomness, this effective classical randomness prevents us from knowing the outcome of a complex system, no matter how much initial information we possess. Asphysicist Paul Halpern so eloquently put it, God plays dice in more ways thanone.
More here:
To understand chaos theory, play a game of Plinko - Big Think
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]