A multi modal approach to microstructure evolution and mechanical response of additive friction stir deposited AZ31B Mg alloy | Scientific Reports -…

Posted: August 2, 2022 at 3:35 pm

Commin, L., Dumont, M., Masse, J.-E. & Barrallier, L. Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameter. Acta Mater. 57, 326334 (2009).

ADS CAS Article Google Scholar

Joshi, S. S., Mohan, M., Seshan, S., Kumar, S. & Suwas, S. Effect of addition of Al & Ca and heat treatment on the cast Mg-6Zn alloy. Mater. Sci. Forum 765, 3337 (2013).

Article Google Scholar

Shrikant, J.S. Development of cast magnesium alloys with improved strength. Masters thesis (2014).

Kulekci, M. K. Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851865 (2008).

Article Google Scholar

Bagheri, B., Abbasi, M., Abdollahzadeh, A. & Mirsalehi, S. E. Effect of second-phase particle size and presence of vibration on az91/sic surface composite layer produced by fsp. Trans. Nonferrous Metals Soc. China 30, 905916 (2020).

CAS Article Google Scholar

Wu, T.-C. et al. Microstructure and surface texture driven improvement in in-vitro response of laser surface processed AZ31B magnesium alloy. J. Magnes. Alloys 9, 14061418 (2021).

CAS Article Google Scholar

Dahotre, N. B. & Joshi, S. Machining of Bone and Hard Tissues (Springer, Cham, Switzerland, 2016).

Book Google Scholar

Aghion, E. et al. The art of developing new magnesium alloys for high temperature applications. Mater. Sci. Forum 419, 407418 (2003).

Article Google Scholar

Aghion, E. & Bronfin, B. Magnesium alloys development towards the 21(^{st}) century. Mater. Sci. Forum 350, 1930 (2000).

Article Google Scholar

Karunakaran, R., Ortgies, S., Tamayol, A., Bobaru, F. & Sealy, M. P. Additive manufacturing of magnesium alloys. Bioact. Mater. 5, 4454 (2020).

Article Google Scholar

Br, F. et al. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis. Acta Biomater. 98, 3649 (2019).

Article Google Scholar

Holguin, D. A. M., Han, S. & Kim, N. P. Magnesium alloy 3D printing by wire and arc additive manufacturing (WAAM). MRS Adv. 3, 29592964 (2018).

Article Google Scholar

Yu, H. Z. & Mishra, R. S. Additive friction stir deposition: A deformation processing route to metal additive manufacturing. Mater. Res. Lett. 9, 7183 (2021).

CAS Article Google Scholar

Angelo, P. & Subramanian, R. Powder Metallurgy: Science, Technology and Applications (PHI Learning Pvt. Ltd., New Delhi, 2008).

Google Scholar

Gradl, P., Mireles, O. & Andrews, N. Intro to additive manufacturing for propulsion systems. In AIAA Joint Propulsion Conference (2018).

Singh, U., Lohumi, M. & Kumar, H. Additive manufacturing in wind energy systems: A review. In Proceedings of International Conference in Mechanical and Energy Technology 757766 (Springer, 2020).

Asiatico, P.M. The applicability of additive friction stir deposition for bridge repair. Masters thesis, Virginia Tech (2021).

Garcia, D. et al. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al-Mg-Si. Addit. Manuf. 34, 101386 (2020).

CAS Google Scholar

Perry, M. E. et al. Tracing plastic deformation path and concurrent grain refinement during additive friction stir deposition. Materialia 18, 101159 (2021).

CAS Article Google Scholar

Griffiths, R. J. et al. A perspective on solid-state additive manufacturing of aluminum matrix composites using MELD. J. Mater. Eng. Perform. 28, 648656 (2019).

CAS Article Google Scholar

Calvert, J.R. Microstructure and mechanical properties of WE43 alloy produced via additive friction stir technology. Masters thesis, Virginia Tech (2015).

Robinson, T.W. etal. Microstructural and mechanical properties of a solid-state additive manufactured magnesium alloy. J. Manuf. Sci. Eng. 144 (2022).

Williams, M. et al. Elucidating the effect of additive friction stir deposition on the resulting microstructure and mechanical properties of magnesium alloy we43. Metals 11, 1739 (2021).

CAS Article Google Scholar

Schmidt, H. B. & Hattel, J. H. Thermal modelling of friction stir welding. Scr. Mater. 58, 332337. https://doi.org/10.1016/j.scriptamat.2007.10.008 (2008).

CAS Article Google Scholar

Schmidt, H. & Hattel, J. Modelling heat flow around tool probe in friction stir welding. Sci. Technol. Weld. Join. 10, 176186. https://doi.org/10.1179/174329305X36070 (2005).

Article Google Scholar

Zhai, M., Wu, C. S. & Su, H. Influence of tool tilt angle on heat transfer and material flow in friction stir welding. J. Manuf. Process. 59, 98112. https://doi.org/10.1016/j.jmapro.2020.09.038 (2020).

Article Google Scholar

Liu, Q., Han, R., Gao, Y. & Ke, L. Numerical investigation on thermo-mechanical and material flow characteristics in friction stir welding for aluminum profile joint. Int. J. Adv. Manuf. Technol. 114, 24572469. https://doi.org/10.1007/s00170-021-06978-8 (2021).

Article Google Scholar

Stubblefield, G. G., Fraser, K., Phillips, B. J., Jordon, J. B. & Allison, P. G. A meshfree computational framework for the numerical simulation of the solid-state additive manufacturing process, additive friction stir-deposition (AFS-D). Mater. Des.https://doi.org/10.1016/j.matdes.2021.109514 (2021).

Article Google Scholar

Samant, A. N., Du, B., Paital, S. R., Kumar, S. & Dahotre, N. B. Pulsed laser surface treatment of magnesium alloy: Correlation between thermal model and experimental observations. J. Mater. Process. Technol. 209, 50605067 (2009).

CAS Article Google Scholar

Santhanakrishnan, S. et al. Macro-and microstructural studies of laser-processed WE43 (Mg-Y-Nd) magnesium alloy. Metall. Mater. Trans. B 44, 11901200 (2013).

CAS Article Google Scholar

Ho, Y.-H., Vora, H. D. & Dahotre, N. B. Laser surface modification of AZ31B Mg alloy for bio-wettability. J. Biomater. Appl. 29, 915928 (2015).

Article Google Scholar

Wu, T.-C., Ho, Y.-H., Joshi, S. S., Rajamure, R. S. & Dahotre, N. B. Microstructure and corrosion behavior of laser surface-treated AZ31B Mg bio-implant material. Lasers Med. Sci. 32, 797803 (2017).

Article Google Scholar

Lu, J. Z. et al. Optimization of biocompatibility in a laser surface treated Mg-AZ31B alloy. Mater. Sci. Eng. C 105, 110028 (2019).

CAS Article Google Scholar

Kalakuntla, N. et al. Laser patterned hydroxyapatite surfaces on AZ31b magnesium alloy for consumable implant applications. Materialia 11, 100693 (2020).

CAS Article Google Scholar

Ho, Y.-H. et al. In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Mater. Sci. Eng. C 109, 110632 (2020).

CAS Article Google Scholar

Ho, Y.-H. et al. In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Bioact. Mater. 5, 891901 (2020).

Article Google Scholar

Joshi, S. S. et al. Additive Friction stir deposition of AZ31B magnesium alloy. J. Magnes. Alloyshttps://doi.org/10.1016/j.jma.2022.03.011 (2022).

Article Google Scholar

Avedesian, M. M. et al. ASM Specialty Handbook: Magnesium and Magnesium Alloys (ASM International, Materials Park, OH, 1999).

Google Scholar

Riahi, M. & Nazari, H. Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061T6 via numerical simulation. Int. J. Adv. Manuf. Technol. 55, 143152 (2011).

Article Google Scholar

Zhang, Z. et al. Experimental and numerical studies of re-stirring and re-heating effects on mechanical properties in friction stir additive manufacturing. Int. J. Adv. Manuf. Technol. 104, 767784 (2019).

Article Google Scholar

Singh, A. K., Sahlot, P., Paliwal, M. & Arora, A. Heat transfer modeling of dissimilar FSW of Al 6061/AZ31 using experimentally measured thermo-physical properties. Int. J. Adv. Manuf. Technol. 105, 771783 (2019).

Article Google Scholar

B962, A. Standard test methods for density of compacted or sintered powder metallurgy (pm) products using archimedes principle. Annual Book of ASTM Standards. ASTM (2001).

Pantawane, M. V. et al. Thermomechanically influenced dynamic elastic constants of laser powder bed fusion additively manufactured Ti6Al4V. Mater. Sci. Eng. A 811, 140990. https://doi.org/10.1016/J.MSEA.2021.140990 (2021).

CAS Article Google Scholar

Pantawane, M. V. et al. Crystallographic texture dependent bulk anisotropic elastic response of additively manufactured Ti6Al4V. Sci. Rep. 11, 110. https://doi.org/10.1038/s41598-020-80710-6 (2021).

CAS Article Google Scholar

ASTM, E. etal. Standard test methods for tension testing of metallic materials. Annual Book of ASTM Standards. ASTM (2001).

Meyghani, B. & Wu, C. Progress in thermomechanical analysis of friction stir welding. Chin. J. Mech. Eng. (English Edition)https://doi.org/10.1186/s10033-020-0434-7 (2020).

Article Google Scholar

Colegrove, P. A., Shercliff, H. R. & Zettler, R. Model for predicting heat generation and temperature in friction stir welding from the material properties. Sci. Technol. Weld. Join. 12, 284297. https://doi.org/10.1179/174329307X197539 (2007).

CAS Article Google Scholar

Schmidt, H., Hattel, J. & Wert, J. An analytical model for the heat generation in friction stir welding. Modell. Simul. Mater. Sci. Eng. 12, 143157. https://doi.org/10.1088/0965-0393/12/1/013 (2004).

ADS Article Google Scholar

Nandan, R., Roy, G. G. & Debroy, T. Numerical simulation of three dimensional heat transfer and plastic flow during friction stir welding. Metall. Mater. Trans. A 37, 12471259. https://doi.org/10.1007/s11661-006-1076-9 (2006).

Article Google Scholar

Nartu, M. et al. Omega versus alpha precipitation mediated by process parameters in additively manufactured high strength Ti-1Al-8V-5Fe alloy and its impact on mechanical properties. Mater. Sci. Eng. A 821, 141627. https://doi.org/10.1016/J.MSEA.2021.141627 (2021).

CAS Article Google Scholar

Joshi, S. S., Sharma, S., Mazumder, S., Pantawane, M. V. & Dahotre, N. B. Solidification and microstructure evolution in additively manufactured H13 steel via directed energy deposition: Integrated experimental and computational approach. J. Manuf. Process. 68, 852866. https://doi.org/10.1016/J.JMAPRO.2021.06.009 (2021).

Article Google Scholar

Antoniswamy, A.R., Carter, J.T., Hector, L.G. & Taleff, E.M. Static recrystallization and grain growth in az31b-h24 magnesium alloy sheet. In Magnesium Technology 2014 139142 (Springer, 2014).

Okamoto, H. & Okamoto, H. Phase Diagrams for Binary Alloys Vol. 44 (ASM International, Materials Park, OH, 2000).

MATH Google Scholar

Sepehrband, P., Lee, M. & Burns, A. Pre-straining effect on precipitation behaviour of AZ31B. In Magnesium Technology 2016 8992 (Springer, 2016).

Wong, T. W., Hadadzadeh, A., Benoit, M. J. & Wells, M. A. Impact of homogenization heat treatment on the high temperature deformation behavior of cast az31b magnesium alloy. J. Mater. Process. Technol. 254, 238247 (2018).

CAS Article Google Scholar

The rest is here:

A multi modal approach to microstructure evolution and mechanical response of additive friction stir deposited AZ31B Mg alloy | Scientific Reports -...

Related Posts