Unconscious mind activates central cardiovascular network and promotes adaptation to microgravity possibly anti-aging during 1-year-long spaceflight |…

Posted: July 14, 2022 at 10:49 pm

Zhang, L. F. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment. Eur. J. Appl. Physiol. 113, 28732895 (2013).

PubMed Article ADS Google Scholar

Lawley, J. S. et al. Effect of gravity and microgravity on intracranial pressure. J. Physiol. 595, 21152127 (2017).

MathSciNet CAS PubMed PubMed Central Article Google Scholar

Chen, L. et al. BMAL1 Disrupted intrinsic diurnal oscillation in rat cerebrovascular contractility of simulated microgravity rats by altering circadian regulation of miR-103/CaV1.2 Signal Pathway. Int. J. Mol. Sci. 20, 3947; https://doi.org/10.3390/ijms20163947 (2019).

Otsuka, K. et al. Intrinsic cardiovascular autonomic regulatory system of astronauts exposed long-term to microgravity in space: observational study. NPJ Microgravity 1, 15018; https://doi.org/10.1038/npjmgrav (2015).

Otsuka, K. et al. Long-term exposure to spaces microgravity alters the time structure of heart rate variability of astronauts. Heliyon 2, e00211; https://doi.org/10.1016/j.heliyon.2016.e00211 (2016).

Aoyagi, N., Ohashi, K., Tomono, S. & Yamamoto, Y. Temporal contribution of body movement to very long-term heart rate variability in humans. Am. J. Physiol. Heart Circ. Physiol. 278, H1035H1041 (2000).

CAS PubMed Article Google Scholar

Aoyagi, N., Ohashi, K. & Yamamoto, Y. Frequency characteristics of long-term heart rate variability during constant-routine protocol. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R171R176 (2003).

CAS PubMed Article Google Scholar

Le Bourg, E. A review of the effects of microgravity and of hypergravity on aging and longevity. Exp. Gerontol. 34, 319336 (1999).

PubMed Article Google Scholar

Vernikos, J. & Schneider, V. S. Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review. Gerontology 56, 157166 (2010).

PubMed Article Google Scholar

Honda, Y. et al. Genes down-regulated in spaceflight are involved in the control of longevity in Caenorhabditis elegans. Sci. Rep. 2, 487; https://doi.org/10.1038/srep00487 (2012).

Ma. L., Ma, J., & Xu, K. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster. PLoS. One 23, 10: e0121600; https://doi.org/10.1371/journal.pone.0121600 (2015).

Garrett-Bakelman, F.E. et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650; https://doi.org/10.1126/science.aau8650 (2019).

Charles, J. B. & Pietrzyk, R. A. A year on the International Space Station: implementing a long-duration biomedical research mission. Aerosp. Med. Hum. Perform. 90, 411 (2019).

PubMed Article Google Scholar

Turner, K.J., Vasu, V. & Griffin, D.K. Telomere biology and human phenotype. Cells. 8, 73; https://doi.org/10.3390/cells8010073 (2019).

Lulkiewicz, M., Bajsert, J., Kopczynski, P., Barczak, W. & Rubis, B. Telomere length: how the length makes a difference. Mol. Biol. Rep. 47, 71817188 (2020).

CAS PubMed PubMed Central Article Google Scholar

Nwanaji-Enwerem, J.C. et al. A longitudinal epigenetic aging and leukocyte analysis of simulated space travel: The Mars-500 mission. Cell Rep. 33, 108406; https://doi.org/10.1016/j.celrep.2020.108406 (2020).

Otsuka. K. et al. Anti-aging effects of long-term space missions, estimated by heart rate variability. Sci. Rep. 9, 8995; https://doi.org/10.1038/s41598-019-45387-6 (2019).

Otsuka. K. et al. Astronauts well-being and possibly anti-aging improved during long-duration spaceflight. Sci Rep. 11, 14907; https://doi.org/10.1038/s41598-021-94478-w (2021).

Otsuka. K. et al. Circadian challenge of astronauts unconscious mind adapting to microgravity in space, estimated by heart rate variability. Sci Rep. 8, 10381; org/https://doi.org/10.1038/s41598-018-28740-z (2018).

Fernandez, L.M.J. et al. Quantifying infra-slow dynamics of spectral power and heart rate in sleeping mice.J. Vis. Exp. 126, 55863; https://doi.org/10.3791/55863 (2017).

Lecci, S. et al. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep.Sci. Adv.3, e1602026; https://doi.org/10.1126/sciadv.1602026 (2017).

Watson, B.O. Cognitive and physiologic impacts of the infraslow oscillation.Front. Syst. Neurosci. 12, 44: https://doi.org/10.3389/fnsys.2018.00044 (2018).

Okun, M., Steinmetz, N. A., Lak, A., Dervinis, M. & Harris, K. D. Distinct structure of cortical population activity on fast and infraslow timescales. Cereb. Cortex 29, 21962210 (2019).

PubMed PubMed Central Article Google Scholar

Lau, H. C. & Passingham, R. E. Unconscious activation of the cognitive control system in the human prefrontal cortex. J. Neurosci. 27, 58055811 (2007).

CAS PubMed PubMed Central Article Google Scholar

Elman, I. et al. Mechanisms Underlying unconscious processing and their alterations in post-traumatic stress disorder: neuroimaging of zero monetary outcomes contextually framed as "no losses" vs. "no gains". Front. Neurosci. 14, 604867; https://doi.org/10.3389/fnins.2020.604867 (2020).

Banaclocha, M. A. Neuromagnetic dialogue between neuronal minicolumns and astroglial network: a new approach for memory and cerebral computation. Brain Res. Bull. 73, 2127 (2007).

PubMed Article Google Scholar

Brancaccio, M., Patton, A. P., Chesham, J. E., Maywood, E. S. & Hastings, M. H. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93, 14201435 (2017).

CAS PubMed PubMed Central Article Google Scholar

Hastings, M.H., Maywood, E.S. & Brancaccio, M. The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biology (Basel) 8, 13; https://doi.org/10.3390/biology8010013 (2019).

Baevsky, R. M. Noninvasive methods in space cardiology. J. Cardiovasc. Diagn. Proced. 14, 161171 (1997).

CAS PubMed Google Scholar

Baevsky, R. M., Petrov, V. M. & Chernikova, A. G. Regulation of autonomic nervous system in space and magnetic storms. Adv. Space Res. 22, 227234 (1998).

CAS PubMed Article ADS Google Scholar

Ivanov, PCh. et al. Sleep-wake differences inscaling behavior of the human heartbeat: analysis of terrestrial and long-term space flight data. Europhys. Lett. 48, 594600 (1999).

CAS PubMed Article ADS Google Scholar

Gundel, A., Drescher, J., Spatenko, Y. A. & Polyakov, V. V. Changes in basal heart rate in spaceflights up to 438 days. Aviat. Space Environ. Med. 73, 1721 (2002).

PubMed Google Scholar

Baevski, R. M. Analysis of variability of cardiac rhythm in space medicine. Fiziol. Cheloveka 28, 7082 (2002).

PubMed Google Scholar

Norsk, P. et al. Vasorelaxation in space. Hypertension 47, 6973 (2006).

CAS PubMed Article Google Scholar

Baevsky, R. M. et al. Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J. Appl. Physiol. 1985(103), 156161 (2007).

Article Google Scholar

Verheyden, B., Liu, J., Beckers, F. & Aubert, A. E. Operational point of neural cardiovascular regulation in humans up to 6 months in space. J. Appl. Physiol. 1985(108), 646654 (2010).

Article Google Scholar

Hughson, R. L. et al. Cardiovascular regulation during long-duration spaceflights to the International Space Station. J. Appl. Physiol. 1985(112), 719727 (2012).

Article Google Scholar

Xu, D., Shoemaker, J.K., Blaber, A.P., Arbeille, P., Fraser, K. & Hughson RL. Reduced heart rate variability during sleep in long-duration spaceflight. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R164170 (2012).

Vandeput, S., Widjaja, D., Aubert, A. E. & Van Huffel, S. Adaptation of autonomic heart rate regulation in astronauts after spaceflight. Med. Sci. Monit. 19, 917 (2013).

PubMed PubMed Central Article Google Scholar

Norsk, P., Asmar, A., Damgaard, M. & Christensen, N. J. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J. Physiol. 593, 573584 (2015).

CAS PubMed PubMed Central Article Google Scholar

Aubert, A. E. et al. Towards human exploration of space: the THESEUS review series on cardiovascular, respiratory, and renal research priorities. NPJ. Microgravity 2, 16031. https://doi.org/10.1038/npjmgrav.2016.31 (2016).

Article PubMed PubMed Central Google Scholar

Vernice, N. A., Meydan, C., Afshinnekoo, E. & Mason, C. E. Long-term spaceflight and the cardiovascular system Precis. Clin. Med. 3, 284291 (2020).

Google Scholar

Baevsky, R. M. et al. Adaptive responses of the cardiovascular system to prolonged spaceflight conditions: assessment with Holter monitoring. J. Cardiovasc. Diagn. Proced. 14, 5357 (1997).

CAS PubMed Google Scholar

Baevsky, R.M., Moser, M., Nikulina, G.A., Polyakov, V.V., Funtova, II & Chernikova, A.G. Autonomic regulation of circulation and cardiac contractility during a 14-month space flight. Acta. Astronaut. 42, 159173 (1998).

Baevsky, R. M., Nikulina, G. A., Funtova, I. I. & Chernikova, A. G. Vegetative regulation of blood circulation. Orbital Station MIR 2, 3668 (2001).

Google Scholar

Monk, T. H., Buysse, D. J. & Rose, L. R. Wrist actigraphic measures of sleep in space. Sleep 22, 948954 (1999).

CAS PubMed Google Scholar

Dijk, D. J. et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1647R1664 (2001).

CAS PubMed Article Google Scholar

Barger, L. K. et al. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol. 13, 904912 (2014).

PubMed PubMed Central Article Google Scholar

Yamamoto, N. et al. Effects of long-term microgravity exposure in space on circadian rhythms of heart rate variability. Chronobiol. Int. 32, 327340 (2015).

CAS PubMed Article Google Scholar

Task, F. of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 93, 10431065 (1996).

Saito K, Koyama A, Yoneyama K, Sawada Y, Ohtomo, N. A recent advances in time series analysis by maximum entropy method. Hokkaido University Press (Sapporo, 1994)

Baria, A. T., Baliki, M. N., Parrish, T. & Apkarian, A. V. Anatomical and functional assemblies of brain BOLD oscillations. J. Neurosci. 31, 79107919 (2011).

CAS PubMed PubMed Central Article Google Scholar

Bingham, C., Arbogast, B., Cornelissen, G. G., Lee, J. K. & Halberg, F. Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia 9, 397439 (1982).

CAS PubMed Google Scholar

Cornelissen, G. Cosinor-based rhythmometry. Theor. Biol. Med. Model 11, 16; https://doi.org/10.1186/1742-4682-11-16 (2014).

Otsuka, K., Cornelissen, G. & Halberg, F. Chronomics and continuous ambulatory blood pressure monitoring Vascular chronomics: From 7-day/24-hour to lifelong monitoring. (Tokyo: Springer Japan), pp 870 + lxxv ; https://doi.org/10.1007/978-4-431-54631-3 (2016).

Kamide, Y., Richmond, A. D. & Matsushita, S. Estimation of ionospheric electric field, ionospheric currents and field-aligned currents from ground magnetic records. J. Geophys. Res. 86, 801813 (1981).

Article ADS Google Scholar

Kamide, Y. Estimate of electromagnetic quantities in space from ground magnetic records. Science 241(4863), 328330 (1988).

CAS PubMed Article ADS Google Scholar

Kamide, Y. et al. Combining electric field and aurora observations from DE 1 and 2 with ground magnetometer records to estimate ionospheric electromagnetic quantities. J. Geophys. Res. 94, 67236738 (1989).

Article ADS Google Scholar

Kamide, Y., Shue, J.-H., Hausman, B. A. & Freeman, J. W. Toward real-time mapping of ionospheric electric fields and currents. Adv. Space Res. 26, 213222 (2000).

Article ADS Google Scholar

Kamide, Y. Our life is protected by the Earths atmosphere and magnetic field: what aurora research tells us. Biomed. Pharmacother. 55, 2124 (2001).

Article Google Scholar

Kamide, Y. & Balan, N. The importance of ground magnetic data in specifying the state of magnetosphereionosphere coupling: a personal view. Geosci. Lett. 3, 10; https://doi.org/10.1186/s40562-016-0042-7 (2016).

Hughes, M.E. et al. Harmonics of circadian gene transcription in mammals. PLoS Genet. 5, e1000442; https://doi.org/10.1371/journal.pgen.1000442 (2009).

See the rest here:

Unconscious mind activates central cardiovascular network and promotes adaptation to microgravity possibly anti-aging during 1-year-long spaceflight |...

Related Posts