Strain-specific predation of Bdellovibrio bacteriovorus on Pseudomonas aeruginosa with a higher range for cystic fibrosis than for bacteremia isolates…

Posted: June 22, 2022 at 11:47 am

Baquero, F. Threats of antibiotic resistance: An obliged reappraisal. Int. Microbiol. 24(4), 499506 (2021).

MathSciNet CAS PubMed PubMed Central Article Google Scholar

Cavallo, F. M., Jordana, L., Friedrich, A. W., Glasner, C. & van Dijl, J. M. Bdellovibrio bacteriovorus: A potential living antibiotic to control bacterial pathogens. Crit. Rev. Microbiol. 47(5), 630646 (2021).

CAS PubMed Article Google Scholar

Celis, A. I. & Relman, D. A. Competitors versus collaborators: Micronutrient processing by pathogenic and commensal human-associated gut bacteria. Mol. Cell 78, 570576 (2020).

CAS PubMed Article Google Scholar

Legein, M. et al. Modes of action of microbial biocontrol in the phyllosphere. Front. Microbiol. 11, 1619 (2020).

PubMed PubMed Central Article Google Scholar

Madhav, M., Baker, D., Morgan, J. A., Asgari, S. & James, P. Wolbachia: A tool for livestock ectoparasite control. Vet. Parasitol. 288, 109297 (2020).

PubMed Article Google Scholar

Shen, Y. & Loessner, M. J. Beyond antibacterialsexploring bacteriophages as antivirulence agents. Curr. Opin. Biotechnol. 68, 166173 (2021).

CAS PubMed Article Google Scholar

Fuhrman, J. A. & Caron, D. A. Heterotrophic planktonic microbes: Virus, bacteria, archaea, and protozoa. https://doi.org/10.1128/9781555818821.ch4.2.2. (2016).

Thompson, J. N. The evolution of species interactions. Science (Washingt. D C) 284, 21162118 (1999).

ADS CAS Article Google Scholar

Gallet, R., Tully, T. & Evans, M. E. K. Ecological conditions affect evolutionary trajectory in a predatorprey system. Evolution (N. Y.) 63, 641651 (2009).

Google Scholar

Lambert, C. et al. Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts. Sci. Rep. 6, 26010 (2016).

ADS CAS PubMed PubMed Central Article Google Scholar

Jurkevitch, E. & Davidov, Y. Phylogenetic diversity and evolution of predatory prokaryotes. In ACS Division of Fuel Chemistry, Preprints (2006).https://doi.org/10.1007/7171.

Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3, 537546 (2005).

CAS PubMed Article Google Scholar

Li, N. et al. Analysis of gene gain and loss in the evolution of predatory bacteria. Gene 598, 6370 (2017).

CAS PubMed Article Google Scholar

Duncan, M. C. et al. High-throughput analysis of gene function in the bacterial predator Bdellovibrio bacteriovorus. MBio 10, e01040-19 (2019).

PubMed PubMed Central Article Google Scholar

Waite, D. W. et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int. J. Syst. Evol. Microbiol. 70, 59726016 (2020).

CAS PubMed Article Google Scholar

Pieiro, S. A., Williams, H. N. & Stine, O. C. Phylogenetic relationships amongst the saltwater members of the genus Bacteriovorax using rpoB sequences and reclassification of Bacteriovorax stolpii as Bacteriolyticum stolpii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 58, 12031209 (2008).

PubMed Article CAS Google Scholar

Kadouri, D. & OToole, G. A. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl. Environ. Microbiol. 71, 40444051 (2005).

ADS CAS PubMed PubMed Central Article Google Scholar

Hobley, L. et al. Genome analysis of a simultaneously predatory and prey-independent, novel Bdellovibrio bacteriovorus from the River Tiber, supports in silico predictions of both ancient and recent lateral gene transfer from diverse bacteria. BMC Genom. 13, 670 (2012).

CAS Article Google Scholar

Schwudke, D., Strauch, E., Krueger, M. & Appel, B. Taxonomic studies of predatory Bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst. Appl. Microbiol. 24, 385394 (2001).

CAS PubMed Article Google Scholar

Iebba, V. et al. Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS ONE 8, e61608 (2013).

ADS CAS PubMed PubMed Central Article Google Scholar

Caballero, J. D. D. et al. Individual patterns of complexity in including predator bacteria, over a 1-year period. mBio 8, e00959-17 (2017).

Article Google Scholar

Shatzkes, K. et al. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. MBio 7, 19 (2016).

Article Google Scholar

Shanks, R. M. Q. et al. An eye to a kill: Using predatory bacteria to control gram-negative pathogens associated with ocular infections. PLoS ONE 8, e66723 (2013).

ADS CAS PubMed PubMed Central Article Google Scholar

Romanowski, E. G. et al. Predatory bacteria are nontoxic to the rabbit ocular surface. Sci. Rep. 6, 30987 (2016).

ADS CAS PubMed PubMed Central Article Google Scholar

Silva, P. H. F. et al. The impact of predatory bacteria on experimental periodontitis. J. Periodontol. https://doi.org/10.1002/JPER.18-0485 (2019).

Article PubMed Google Scholar

De Oliveira, D. M. P. et al. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 33, 149 (2020).

Article Google Scholar

Lpez-Causap, C. et al. Antibiotic resistance and population structure of cystic fibrosis Pseudomonas aeruginosa isolates from a Spanish multi-centre study. Int. J. Antimicrob. Agents 50, 334341 (2017).

PubMed Article CAS Google Scholar

Garca-Castillo, M. et al. Wide dispersion of ST175 clone despite high genetic diversity of carbapenem-nonsusceptible Pseudomonas aeruginosa clinical strains in 16 Spanish hospitals. J. Clin. Microbiol. 49, 29052910 (2011).

PubMed PubMed Central Article CAS Google Scholar

Fernndez-Olmos, A. et al. Population structure and antimicrobial susceptibility of both nonpersistent and persistent Pseudomonas aeruginosa isolates recovered from cystic fibrosis patients. J. Clin. Microbiol. 51, 27612765 (2013).

PubMed PubMed Central Article CAS Google Scholar

Martnez, V., Herencias, C., Jurkevitch, E. & Prieto, M. A. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: The case of the polyhydroxyalkanoates. Sci. Rep. 6, 24381 (2016).

ADS PubMed PubMed Central Article CAS Google Scholar

Westergaard, J. M. & Kramer, T. T. Bdellovibrio and the intestinal flora of vertebrates. Appl. Environ. Microbiol. 34, 506511 (1977).

ADS CAS PubMed PubMed Central Article Google Scholar

Bonfiglio, G. et al. Insight into the possible use of the predator Bdellovibrio bacteriovorus as a probiotic. Nutrients 12, 2252 (2020).

CAS PubMed Central Article Google Scholar

Gupta, S., Tang, C., Tran, M. & Kadouri, D. E. Effect of predatory bacteria on human cell lines. PLoS ONE 11, 115 (2016).

Google Scholar

Monnappa, A. K., Bari, W., Choi, S. Y. & Mitchell, R. J. Investigating the responses of human epithelial cells to predatory bacteria. Sci. Rep. 6, 114 (2016).

Article CAS Google Scholar

Markelova, N. Y. Predacious bacteria, Bdellovibrio with potential for biocontrol. Int. J. Hyg. Environ. Health 213, 428431 (2010).

PubMed Article Google Scholar

Koval, S. F. & Bayer, M. E. Bacterial capsules: No barrier against Bdellovibrio. Microbiology 143, 749753 (1997).

CAS PubMed Article Google Scholar

Rogosky, A. M., Moak, P. L. & Emmert, E. A. B. Differential predation by Bdellovibrio bacteriovorus 109J. Curr. Microbiol. 52, 8185 (2006).

CAS PubMed Article Google Scholar

Akhova, A. V. & Tkachenko, A. G. ATP/ADP alteration as a sign of the oxidative stress development in Escherichia coli cells under antibiotic treatment. FEMS Microbiol. Lett. 353, 6976 (2014).

CAS PubMed Article Google Scholar

Martnez, V., Jurkevitch, E., Garca, J. L. & Prieto, M. A. Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer. Environ. Microbiol. https://doi.org/10.1111/1462-2920.12047 (2013).

Article PubMed Google Scholar

Szenk, M., Dill, K. A. & de Graff, A. M. R. Why do fast-growing bacteria enter overflow metabolism? testing the membrane real estate hypothesis. Cell Syst. 5, 95104 (2017).

CAS PubMed Article Google Scholar

Lobritz, M. A. et al. Increased energy demand from anabolic-catabolic processes drives -lactam antibiotic lethality. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2021.12.010 (2022).

Article PubMed Google Scholar

Sutton, D., Livingstone, P. G., Furness, E., Swain, M. T. & Whitworth, D. E. Genome-wide identification of myxobacterial predation genes and demonstration of formaldehyde secretion as a potentially predation-resistant trait of Pseudomonas aeruginosa. Front. Microbiol. 10, 19 (2019).

Article Google Scholar

Knoll, M., Hamm, T. M., Wagner, F., Martinez, V. & Pleiss, J. The PHA depolymerase engineering database: A systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinform 10, 89 (2009).

Article CAS Google Scholar

Dori-Bachash, M., Dassa, B., Pietrokovski, S. & Jurkevitch, E. Proteome-based comparative analyses of growth stages reveal new cell cycle-dependent functions in the predatory bacterium Bdellovibrio bacteriovorus. Appl. Environ. Microbiol. 74, 71527162 (2008).

ADS CAS PubMed PubMed Central Article Google Scholar

Potter, S. C. et al. HMMER web server: 2018 update. Web Serv. issue Publ. online 46 (2018).

Manoli, M.-T., Nogales, J. & Prieto, A. Synthetic control of metabolic states in Pseudomonas putida by tuning polyhydroxyalkanoate Cycle. MBio https://doi.org/10.1128/mbio.01794-21 (2022).

Article PubMed PubMed Central Google Scholar

Sydney, N. et al. The genetics of prey susceptibility to myxobacterial predation: A review, including an investigation into Pseudomonas aeruginosa mutations affecting predation by Myxococcus xanthus. Microb. Physiol. https://doi.org/10.1159/000515546 (2021).

Article PubMed Google Scholar

Mitchell, R. J., Mun, W., Mabekou, S. S., Jang, H. & Choi, S. Y. Compounds affecting predation by and viability of predatory bacteria. Appl. Microbiol. Biotechnol. 104, 37053713 (2020).

CAS PubMed Article Google Scholar

Nair, R. R. et al. Bacterial predator-prey coevolution accelerates genome evolution and selects on virulence-associated prey defences. Nat. Commun. 10, 4301 (2019).

ADS PubMed PubMed Central Article CAS Google Scholar

Rendulic, S. et al. A predator unmasked: Life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303, 689692 (2004).

ADS CAS PubMed Article Google Scholar

Jurkevitch, E., Minz, D., Ramati, B. & Barel, G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl. Environ. Microbiol. 66, 23652371 (2000).

ADS CAS PubMed PubMed Central Article Google Scholar

Starr, M. P. & Seidler, R. J. The Bdellovibrios. Annu. Rev. Microbiol. 25, 649678 (1971).

Here is the original post:
Strain-specific predation of Bdellovibrio bacteriovorus on Pseudomonas aeruginosa with a higher range for cystic fibrosis than for bacteremia isolates...

Related Posts