Genetic and morphological variation of Vespa velutina nigrithorax which is an invasive species in a mountainous area | Scientific Reports – Nature.com

Posted: March 21, 2022 at 9:06 am

Kim, J. K., Choi, M. B. & Moon, T. Y. Occurrence of Vespa velutina Lepeletier from Korea, and a revised key for Korean Vespa species (Hymenoptera: Vespidae). Entomol. Res. 36, 112115 (2006).

Article Google Scholar

Choi, M. B., Martin, S. J. & Lee, J. W. Distribution, spread, and impact of the invasive hornet Vespa velutina in South Korea. J. Asia-Pac. Entomol. 15, 473477 (2012).

Article Google Scholar

Do, Y. et al. Quantitative analysis of research topics and public concern on V. velutina as invasive species in Asian and European countries. Entomol. Res. 49, 456461 (2019).

Article Google Scholar

Kwon, O. & Choi, M. B. Interspecific hierarchies from aggressiveness and body size among the invasive alien hornet, Vespa velutina nigrithorax, and five native hornets in South Korea. PLoS ONE 15, e0226934 (2020).

CAS PubMed PubMed Central Article Google Scholar

Choi, M. B. Foraging behavior of an invasive alien hornet (Vespa velutina) at Apis mellifera hives in Korea: Foraging duration and success. Entomol. Res. 51, 143148 (2021).

Article Google Scholar

Turchi, L. & Derijard, B. Options for the biological and physical control of Vespa velutina nigrithorax (Hym.: Vespidae) in Europe: A review. J. Appl. Entomol. 142, 553562 (2018).

CAS Article Google Scholar

Bessa, A. S., Carvalho, J., Gomes, A. & Santarm, F. Climate and land-use drivers of invasion: Predicting the expansion of Vespa velutina nigrithorax into the Iberian Peninsula. Insect Conserv. Divers. 9, 2737 (2016).

Article Google Scholar

Rodrguez-Flores, M. S., Seijo-Rodrguez, A., Escuredo, O. & del Carmen Seijo-Coello, M. Spreading of Vespa velutina in northwestern Spain: Influence of elevation and meteorological factors and effect of bait trapping on target and non-target living organisms. J. Pest Sci. 92, 557565 (2019).

Article Google Scholar

Robinet, C., Darrouzet, E. & Suppo, C. Spread modelling: A suitable tool to explore the role of human-mediated dispersal in the range expansion of the yellow-legged hornet in Europe. Int. J. Pest Manag. 65, 258267 (2019).

Article Google Scholar

Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 1832 (1991).

Article Google Scholar

Ellstrand, N. C. & Elam, D. R. Population genetic consequences of small population size: Implications for plant conservation. Annu. Rev. Ecol. Evol. Syst. 24, 217242 (1993).

Article Google Scholar

Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413418 (1996).

CAS PubMed Article Google Scholar

Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. 101, 89989002 (2004).

ADS CAS PubMed PubMed Central Article Google Scholar

Dudley, R. The Biomechanics of Insect Flight: Form, Function, Evolution (Princeton University Press, 2002).

Google Scholar

Porporato, M., Manino, A., Laurino, D. & Demichelis, D. Vespa velutina Lepeletier (Hymenoptera Vespidae): A first assessment 2 years after its arrival in Italy. Redia 97, 189194 (2014).

Google Scholar

Sauvard, D., Imbault, V. & Darrouzet, . Flight capacities of yellow-legged hornet (Vespa velutina nigrithorax, Hymenoptera: Vespidae) workers from an invasive population in Europe. PLoS ONE 13, e0198597 (2018).

PubMed PubMed Central Article Google Scholar

Monceau, K., Bonnard, O., Moreau, J. & Thiry, D. Spatial distribution of Vespa velutina individuals hunting at domestic honeybee hives: Heterogeneity at a local scale. Insect Sci. 21, 765774 (2014).

PubMed Article Google Scholar

Choi, M. B., Lee, S. A., Suk, H. Y. & Lee, J. W. Microsatellite variation in colonizing populations of yellow-legged Asian hornet, Vespa velutina nigrithorax, South Korea. Entomol. Res. 43, 208214 (2013).

Article Google Scholar

Jeong, J. S. et al. Tracing the invasion characteristics of the yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Korea using newly detected variable mitochondrial DNA sequences. J. Asia-Pac. Entomol. 24(2), 135147 (2021).

MathSciNet Article Google Scholar

Villemant, C. et al. Predicting the invasion risk by the alien bee-hawking Yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biol. Conserv. 144, 21422150 (2011).

Article Google Scholar

Kishi, S. & Goka, K. Review of the invasive yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Japan and its possible chemical control. Appl. Entomol. Zool. 52, 361368 (2017).

Article Google Scholar

Arca, M. et al. Development of microsatellite markers for the yellow-legged Asian hornet, Vespa velutina, a major threat for European bees. Conserv. Genet. Resour. 4, 283286 (2012).

Article Google Scholar

Rousset, F. genepop007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Res. 8, 103106 (2008).

Article Google Scholar

Peakall, P. & Smouse, R. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and researchAn update. Bioinformatics 28, 2537 (2012).

CAS PubMed PubMed Central Article Google Scholar

Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564567 (2010).

PubMed PubMed Central Article Google Scholar

Hammer, ., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

Google Scholar

Oksanen, J. et al. The vegan package. 10, 719 (2007).

Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945959 (2000).

CAS PubMed PubMed Central Article Google Scholar

Evanno, G., Regnaut, S. & Goudet, S. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. Resour. 14, 26112620 (2005).

CAS Article Google Scholar

Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359361 (2012).

Article Google Scholar

Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

PubMed PubMed Central Article Google Scholar

Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 14031405 (2008).

CAS PubMed PubMed Central Article Google Scholar

Waraniak, J. M., Fisher, J. D., Purcell, K., Mushet, D. M. & Stockwell, C. A. Landscape genetics reveal broad and fine-scale population structure due to landscape features and climate history in the northern leopard frog (Rana pipiens) in North Dakota. Ecol. Evol. 9, 10411060 (2019).

PubMed PubMed Central Article Google Scholar

Rohlf, F. J. tpsDig, version 2.10. http://life.bio.sunysb.edu/morph/index.html (2006).

Zimmermann, G. et al. Geometric morphometrics of carapace of Macrobrachium australe (Crustacea: Palaemonidae) from Reunion Island. Acta Zool. 93, 492500 (2012).

Article Google Scholar

Read more here:
Genetic and morphological variation of Vespa velutina nigrithorax which is an invasive species in a mountainous area | Scientific Reports - Nature.com

Related Posts