Vistra, a major U.S. power producer, had a problem. For its plants to operate efficiently, workers had to continuously monitor hundreds of different indicators, tracking temperatures, pressures, oxygen levels, and pump and fan speeds and they had to make adjustments in real time. The process involved a huge amount of complexity, and it was too much for even the most skilled operator to get right all the time. To address this challenge, the plant installed an AI-powered tool a heat-rate optimizer that analyzed hundreds of inputs and generated recommendations every 30 minutes. Result: a 1% increase in efficiency. That may not sound like much, but it translates into millions in savings as well as lower greenhouse gas emissions.
Companies in a wide range of industries are trying to integrate analytics and data to improve their operations. Wayfair, the e-commerce company, was an early mover in shifting its data to the cloud and investing in machine learning. When Covid-19 hit, and rapid changes to consumer demand followed, it was able to optimize container ship logistics, continually adjusting what goods were sent to which ports. Result: an astonishing 7.5% reduction in inbound logistics costs.
Not all companies have been as successful as Wayfair, however. In fact, top performers can have more than twice the impact in half the time compared to the average company implementing machine intelligence. Why do some companies do so much better than others?
Technology & Innovation
Must-reads from our most recent articles on technology and innovation, delivered once a month.
To answer that question, McKinsey and MITs Machine Intelligence for Manufacturing and Operations (MIMO) studied 100 businesses in sectors from automotive to mining. Through interviews, research, and a survey, we sought to get a sense of how they used digital, data analytics, and machine intelligence (MI) technologies; what they wanted to achieve; and how they kept track of their progress. By looking at 21 performance indicators across nine categories strategy, opportunity focus, governance, deployment, partnerships, people, data execution, budget, and results we were able to divide the 100 companies into four categories: leaders, planners, executors, and emerging organizations to identify the relationships between actions taken and investments made, and tangible and sustainable outcomes.
Any company with ambitions to gain from advanced digital technologies has the opportunity learn from best practice approaches, whether it is a planner, an executor, or an emerging company today. We take a look beyond the top-level numbers to explore the underlying drivers of success.
The race to leverage data and analytics could be won with multiple coordinated actions rather than any single bold move. All four segments leaders, planners, executers, and emerging companies are operating in a dynamic space where the bar is rising and the number of machine learning use cases will continue to increase and embed themselves into business-as-usual.
Not everyone should strive to be a leader immediately; they should instead strive to move to the next better state.
Leaders are the highest performers and comprise about 15% of the sample. By investing in the right places, they have captured the largest gains from advanced digital technologies. Leaders are much more likely to have a defined process for the assessment and implementation of digital innovation. They are also more likely to follow that process regularly and to update it continually. As a result, they have achieved significantly larger improvements than the rest in 20 of the 21 key performance indicators evaluated and were in the top 25% in all nine performance categories.
Planners comprise about a quarter of the data set. Planners often have strong people skills and considerable data execution expertise; they are methodical and focused on making the right investments. In many cases, though, these havent paid off yet, though a few are on the cusp of joining the leaders. While some planners are able to point to successful implementations, several have been unable to crack the code on scaling the use cases that really count. Others are struggling to escape from the pilot purgatory McKinsey described in 2018.
Executors, approximately a third of the respondents, tap into the ever-increasing pool of expertise and work with partners to create specific solutions directed at the most promising opportunities. Then they implement these solutions as broadly as they can. Executors are results-oriented. They can and have achieved significant gains, despite building less infrastructure than the leaders or planners. On the other hand, they sometimes find it difficult to knit together disparate efforts into company-wide performance.
Emerging companies, about a quarter of the pool, have the lowest level of maturity and have seen the smallest gains; many are just getting started. Some emerging companies report moderate success with select use cases, but others are finding it difficult even to figure out where to invest. Few have the strategy, skills or infrastructure in place to go much further.
In general, we found that companies that succeeded in the deployment of advanced digital technologies did an honest assessment of where they were in terms of the nine performance indicators. On that basis, they were able to form a vision of where they wanted to be in three or four years. At the same time, they identified a few promising use cases to rack up quick wins. More specifically, the research identified five areas where the top performers stand out.
Machine intelligence is a strategic priority for leading companies. Many have built dedicated centers of excellence to support their implementation efforts, either within business units or as a centralized function to support the entire organization, ensure standards, and accelerate deployment. A dedicated and centralized support function also helps keep their digital programs on track and documents how their portfolio is progressing. Leaders are much more likely than lower-performing companies to have a defined process for the assessment of and implementation of digital innovation. For example, the pharmaceutical firm Bayer uses a well-documented governance process to deploy multiple applications at one plant, which it then rolled out across its network, resulting in a revenue lift.
However, leaders also recognize that change is inevitable in this fast-moving space. Most of the leaders in our data set continually refine and improve their processes, whereas executors and planners in our data set often get stuck, which limits the ability to scale successfully.
Leading organizations apply MI more widely and use more sophisticated approaches. For example, every single leader implemented MI in forecasting, maintenance optimization, and logistics and transportation. The leaders are also much more likely to adopt advanced approaches, such as the application of machine vision to product quality assurance. One biopharma player, Amgen, found that visual inspection system operations posed great opportunities to automate and leverage AI technologies. Amgen is developing a fully validated visual inspection system using AI that will boost particle detection 70% and cut false rejects by 60%.
While applications like these can have tremendous impact, these firms also realize that any long-term impact requires pulling multiple levers in concert, and that broad, enterprise-wide deployment is key.
Partnerships are common, often with academia, start-ups, existing technology vendors, and external consultants. Leaders, however, worked with a wider range of partners, and more intensively, in order to maximize speed and learning. For example, Colgate-Palmolive and Pepsico/Frito-lay, two consumer product companies worked with a systems vendor, Augury, deployed AI-driven machine health diagnostics on their production lines; in one case, this prevented an eight-day outage. Analog Devices, a semiconductor firm, collaborated with MIT to develop a novel MI quality-control that allowed it to identify which production runs and tools might have a fault. This meant that company engineers only had to review 5% of the process data they had to before.
Leaders, despite their higher capabilities, actually relied more on external partners to further accelerate their learning and time to impact.
Leading companies take steps to ensure that as many stakeholders as possible have the skills and resources they need to employ advanced digital approaches, rather than keeping this expertise the preserve of specialists. More than half train their front-line personnel in MI fundamentals, for example, compared to only 4% of other companies. McDonalds, a global quick-service restaurant, used MI to improve a wide range of operational tasks, from predicting customer response to forecasting real time footfall. The company adopted a hybrid approach to do this: its corporate center of excellence tests and develops new approaches before packaging them into easy-to-use tools that are made widely available. This system helps team members in the field understand the importance of good data and hone their problem identification skills.
It became clear that leaders view the use of data and analytics as deeply embedded to how they operate, rather than keeping it siloed and restricted to a few employees.
Leaders make data accessible. All of the leaders in our research give frontline staff access to data, compared to 62% of the rest. The leaders also all acquire data from customers and suppliers, and 89% share their own data back. Leading companies are almost twice as likely as others to enable remote access to data and to store a significant fraction of their data in the cloud. In short, the democratization of data is a critical aspect to the effective use of analytics. A good example comes from Cooper Standard, an automotive supplier. It requires teams to address data strategy early in the development process for new MI applications; this ensures that all uses cases are built on robust, well-managed data. This democratization of data stands in stark contrast to many firms where information is power and zealously guarded.
We found that the five areas governance, deployment, partnerships, people, and data were most effective when integrated into a playbook, often coordinated by a center of excellence. But first, companies need an honest assessment of their starting point across the nine dimensions. From there, a transition plan can start to take shape. Even if its rough, it assigns realist medium-term targets that account for the barriers to change skilled talent, investment capacity, and critical infrastructure such as the migration of data from legacy systems to the cloud. While the ambition can be boundless, the steps cannot be too small most leaders started with using data and simple tools to make decisions, then moved to more advanced techniques as they built maturity and familiarity with their data.
Despite the recent and significant advances in MI, the full scale of the opportunity is just beginning to unfold. And that brings us to one more important difference between the leaders and the rest: money. The leaders spent 30 to 60% more and they expected to increase their budgets 10 to 15%, while the others reported little or no rises. That means the gap between the leaders and the rest could actually widen.
Depending on its starting point, each companys path will be different. But in terms of what works, the leaders are showing the way.
The authors would like to thank Duane Boning, Erez Kaminski, Pete Kimball, Retsef Levi, Ingrid Millan, and Aaron Wang, along with MITs LGO program, for their contributions to this research and article.
See the article here:
What Makes a Company Successful at Using AI? - Harvard Business Review
- AI File Extension - Open . AI Files - FileInfo [Last Updated On: June 14th, 2016] [Originally Added On: June 14th, 2016]
- Ai | Define Ai at Dictionary.com [Last Updated On: June 16th, 2016] [Originally Added On: June 16th, 2016]
- ai - Wiktionary [Last Updated On: June 22nd, 2016] [Originally Added On: June 22nd, 2016]
- Adobe Illustrator Artwork - Wikipedia, the free encyclopedia [Last Updated On: June 25th, 2016] [Originally Added On: June 25th, 2016]
- AI File - What is it and how do I open it? [Last Updated On: June 29th, 2016] [Originally Added On: June 29th, 2016]
- Ai - Definition and Meaning, Bible Dictionary [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- ai - Dizionario italiano-inglese WordReference [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- Bible Map: Ai [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai dictionary definition | ai defined - YourDictionary [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai (poet) - Wikipedia, the free encyclopedia [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- AI file extension - Open, view and convert .ai files [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- History of artificial intelligence - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Artificial intelligence (video games) - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- North Carolina Chapter of the Appraisal Institute [Last Updated On: September 8th, 2016] [Originally Added On: September 8th, 2016]
- Ai Weiwei - Wikipedia, the free encyclopedia [Last Updated On: September 11th, 2016] [Originally Added On: September 11th, 2016]
- Adobe Illustrator Artwork - Wikipedia [Last Updated On: November 17th, 2016] [Originally Added On: November 17th, 2016]
- 5 everyday products and services ripe for AI domination - VentureBeat [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Realdoll builds artificially intelligent sex robots with programmable personalities - Fox News [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- ZeroStack Launches AI Suite for Self-Driving Clouds - Yahoo Finance [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI and the Ghost in the Machine - Hackaday [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Why Google, Ideo, And IBM Are Betting On AI To Make Us Better Storytellers - Fast Company [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Roses are red, violets are blue. Thanks to this AI, someone'll fuck you. - The Next Web [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Wearable AI Detects Tone Of Conversation To Make It Navigable (And Nicer) For All - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Who Leads On AI: The CIO Or The CDO? - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI For Matching Images With Spoken Word Gets A Boost From MIT - Fast Company [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Teach undergrads ethics to ensure future AI is safe compsci boffins - The Register [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- AI is here to save your career, not destroy it - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- A Heroic AI Will Let You Spy on Your Lawmakers' Every Word - WIRED [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- With a $16M Series A, Chorus.ai listens to your sales calls to help your team close deals - TechCrunch [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Microsoft AI's next leap forward: Helping you play video games - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Samsung Galaxy S8's Bixby AI could beat Google Assistant on this front - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- 3 common jobs AI will augment or displace - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Stephen Hawking and Elon Musk endorse new AI code - Irish Times [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- SumUp co-founders are back with bookkeeping AI startup Zeitgold - TechCrunch [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Five Trends Business-Oriented AI Will Inspire - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI Systems Are Learning to Communicate With Humans - Futurism [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Pinterest uses AI and your camera to recommend pins - Engadget [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Chinese Firms Racing to the Front of the AI Revolution - TOP500 News [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Real life CSI: Google's new AI system unscrambles pixelated faces - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI could transform the way governments deliver public services - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Amazon Is Humiliating Google & Apple In The AI Wars - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- What's Still Missing From The AI Revolution - Co.Design (blog) [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Legaltech 2017: Announcements, AI, And The Future Of Law - Above the Law [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Can AI make Facebook more inclusive? - Christian Science Monitor [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- How a poker-playing AI could help prevent your next bout of the flu - ExtremeTech [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Dynatrace Drives Digital Innovation With AI Virtual Assistant - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- AI and the end of truth - VentureBeat [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Taser bought two computer vision AI companies - Engadget [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Google's DeepMind pits AI against AI to see if they fight or cooperate - The Verge [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- The Coming AI Wars - Huffington Post [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Is President Trump a model for AI? - CIO [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Who will have the AI edge? - Bulletin of the Atomic Scientists [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How an AI took down four world-class poker pros - Engadget [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- We Need a Plan for When AI Becomes Smarter Than Us - Futurism [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- See how old Amazon's AI thinks you are - The Verge [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford to invest $1 billion in autonomous vehicle tech firm Argo AI - Reuters [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Zero One: Are You Ready for AI? - MSPmentor [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford bets $1B on Argo AI: Why Silicon Valley and Detroit are teaming up - Christian Science Monitor [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google Test Of AI's Killer Instinct Shows We Should Be Very Careful - Gizmodo [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google's New AI Has Learned to Become "Highly Aggressive" in Stressful Situations - ScienceAlert [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- An artificially intelligent pathologist bags India's biggest funding in healthcare AI - Tech in Asia [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford pledges $1bn for AI start-up - BBC News [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Dyson opens new Singapore tech center with focus on R&D in AI and software - TechCrunch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How to Keep Your AI From Turning Into a Racist Monster - WIRED [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How Chinese Internet Giant Baidu Uses AI And Machine Learning - Forbes [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Humans engage AI in translation competition - The Stack [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Watch Drive.ai's self-driving car handle California city streets on a ... - TechCrunch [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Cryptographers Dismiss AI, Quantum Computing Threats - Threatpost [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Is AI making credit scores better, or more confusing? - American Banker [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI and Robotics Trends: Experts Predict - Datamation [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- IoT And AI: Improving Customer Satisfaction - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI's Factions Get Feisty. But Really, They're All on the Same Team - WIRED [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Elon Musk: Humans must become cyborgs to avoid AI domination - The Independent [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Facebook Push Into Video Allows Time To Catch Up On AI Applications - Investor's Business Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Defining AI, Machine Learning, and Deep Learning - insideHPC [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI Predicts Autism From Infant Brain Scans - IEEE Spectrum [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- The Rise of AI Makes Emotional Intelligence More Important - Harvard Business Review [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Google's AI Learns Betrayal and "Aggressive" Actions Pay Off - Big Think [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI faces hype, skepticism at RSA cybersecurity show - PCWorld [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- New AI Can Write and Rewrite Its Own Code to Increase Its Intelligence - Futurism [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]