Aging 101: Biological causes of aging – Work for human …

Posted: February 5, 2022 at 5:16 am

Rfrences

[1] Alexey A. Moskalev et al., The Role of DNA Damage and Repair in Aging through the Prism of Koch-like Criteria, Ageing Research Reviews 12, no. 2 (March 2013): 66184, doi:10.1016/j.arr.2012.02.001.

[2] Pter Bai and Carles Cant, The Role of PARP-1 and PARP-2 Enzymes in Metabolic Regulation and Disease, Cell Metabolism 16, no. 3 (September 5, 2012): 29095, doi:10.1016/j.cmet.2012.06.016.

[2] Nady Braidy et al., Age Related Changes in NAD+ Metabolism Oxidative Stress and Sirt1 Activity in Wistar Rats, PLOS ONE 6, no. 4 (avr 2011): e19194, doi:10.1371/journal.pone.0019194.

[3] Weihai Ying et al., NAD+ as a Metabolic Link between DNA Damage and Cell Death, Journal of Neuroscience Research 79, no. 12 (January 1, 2005): 21623, doi:10.1002/jnr.20289.

[4] Judith Campisi, Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors, Cell 120, no. 4 (February 25, 2005): 51322, doi:10.1016/j.cell.2005.02.003.

[5] Braidy et al., Age Related Changes in NAD+ Metabolism Oxidative Stress and Sirt1 Activity in Wistar Rats.

[6] Elizabeth H. Blackburn, Carol W. Greider, and Jack W. Szostak, Telomeres and Telomerase: The Path from Maize, Tetrahymena and Yeast to Human Cancer and Aging, Nature Medicine 12, no. 10 (October 2006): 113338, doi:10.1038/nm1006-1133.

[7] Jerry W. Shay and Woodring E. Wright, Senescence and Immortalization: Role of Telomeres and Telomerase, Carcinogenesis 26, no. 5 (May 1, 2005): 86774, doi:10.1093/carcin/bgh296.

[8] Mary Armanios and Elizabeth H. Blackburn, The Telomere Syndromes, Nature Reviews. Genetics 13, no. 10 (October 2012): 693704, doi:10.1038/nrg3246.

[9] Partial Reversal of Aging Achieved in Mice, Harvard Gazette, accessed September 2, 2016, http://news.harvard.edu/gazette/story/2010/11/partial-reversal-of-aging-achieved-in-mice/.

[9] S. Sayols-Baixeras et al., Identification and Validation of Seven New Loci Showing Differential DNA Methylation Related to Serum Lipid Profile: An Epigenome-Wide Approach. The REGICOR Study, Human Molecular Genetics, September 15, 2016, doi:10.1093/hmg/ddw285.

[10] Gianluca Pegoraro et al., Aging-Related Chromatin Defects via Loss of the NURD Complex, Nature Cell Biology 11, no. 10 (October 2009): 126167, doi:10.1038/ncb1971.

[11] Chunyu Jin et al., Histone Demethylase UTX-1 Regulates C. Elegans Life Span by Targeting the insulin/IGF-1 Signaling Pathway, Cell Metabolism 14, no. 2 (August 3, 2011): 16172, doi:10.1016/j.cmet.2011.07.001.

[12] Ibid.

[13] Susmita Kaushik and Ana Maria Cuervo, Proteostasis and Aging, Nature Medicine 21, no. 12 (December 2015): 140615, doi:10.1038/nm.4001.

[14] D. E. Feldman and J. Frydman, Protein Folding in Vivo: The Importance of Molecular Chaperones, Current Opinion in Structural Biology 10, no. 1 (February 2000): 2633.

[15] Stuart K. Calderwood, Ayesha Murshid, and Thomas Prince, The Shock of Aging: Molecular Chaperones and the Heat Shock Response in Longevity and Aging A Mini-Review, Gerontology 55, no. 5 (September 2009): 55058, doi:10.1159/000225957.

[16] Protein Modification and Maintenance Systems as Biomarkers of Ageing, n.d.

[17] Ryan Doonan et al., Against the Oxidative Damage Theory of Aging: Superoxide Dismutases Protect against Oxidative Stress but Have Little or No Effect on Life Span in Caenorhabditis Elegans, Genes & Development 22, no. 23 (December 1, 2008): 323641, doi:10.1101/gad.504808.

[18] Ana Mesquita et al., Caloric Restriction or Catalase Inactivation Extends Yeast Chronological Lifespan by Inducing H2O2 and Superoxide Dismutase Activity, Proceedings of the National Academy of Sciences of the United States of America 107, no. 34 (August 24, 2010): 1512328, doi:10.1073/pnas.1004432107.

[19] Michael T. Ryan and Nicholas J. Hoogenraad, Mitochondrial-Nuclear Communications, Annual Review of Biochemistry 76 (2007): 70122, doi:10.1146/annurev.biochem.76.052305.091720.

[20] Tamara Tchkonia et al., Cellular Senescence and the Senescent Secretory Phenotype: Therapeutic Opportunities, Journal of Clinical Investigation 123, no. 3 (March 1, 2013): 96672, doi:10.1172/JCI64098.

[21] Chunfang Wang et al., DNA Damage Response and Cellular Senescence in Tissues of Aging Mice, Aging Cell 8, no. 3 (June 2009): 31123, doi:10.1111/j.1474-9726.2009.00481.x.

[22] Isabel Beerman et al., Proliferation-Dependent Alterations of the DNA Methylation Landscape Underlie Hematopoietic Stem Cell Aging, Cell Stem Cell 12, no. 4 (April 4, 2013): 41325, doi:10.1016/j.stem.2013.01.017.

[23] Claudia E. Rbe et al., Accumulation of DNA Damage in Hematopoietic Stem and Progenitor Cells during Human Aging, PLoS ONE 6, no. 3 (March 7, 2011), doi:10.1371/journal.pone.0017487.

Read more here:
Aging 101: Biological causes of aging - Work for human ...

Related Posts