Buxus and Tetracentron genomes help resolve eudicot genome history – Nature.com

Posted: February 3, 2022 at 4:16 pm

Govaerts, R. How many species of seed plants are there? TAXON 50, 10851090 (2001).

Google Scholar

Friis, E. M., Pedersen, K. R. & Crane, P. R. Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Palaeogeogr., Palaeoclimatol., Palaeoecol. 232, 251293 (2006).

Google Scholar

Magalln, S., Gmez-Acevedo, S., Snchez-Reyes, L. L. & Hernndez-Hernndez, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 207, 437453 (2015).

Google Scholar

Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97100 (2011).

ADS CAS PubMed Google Scholar

Amborella Genome Project. The Amborella genome and the evolution of flowering plants. Science 342, 1241089 (2013).

Google Scholar

Schranz, M. E., Mohammadin, S. & Edger, P. P. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr. Opin. Plant Biol. 15, 147153 (2012).

PubMed Google Scholar

Vanneste, K., Maere, S. & Peer, deY. V. Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philos. Trans. R. Soc. B 369, 20130353 (2014).

Google Scholar

Tank, D. C. et al. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. N. Phytologist 207, 454467 (2015).

Google Scholar

Soltis, P. S. & Soltis, D. E. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30, 159165 (2016).

PubMed Google Scholar

Landis, J. B. et al. Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 105, 348363 (2018).

PubMed Google Scholar

Cantino, P. D. et al. Towards a phylogenetic nomenclature of Tracheophyta. Taxon 56, 1E44E (2007).

Google Scholar

Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463467 (2007).

ADS CAS PubMed Google Scholar

Jiao, Y. et al. A genome triplication associated with early diversification of the core eudicots. Genome Biol. 13, R3 (2012).

PubMed PubMed Central Google Scholar

Vekemans, D. et al. Gamma paleohexaploidy in the stem-lineage of core eudicots: significance for MADS-box gene and species diversification. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mss183 (2012).

Chanderbali, A. S., Berger, B. A., Howarth, D. G., Soltis, D. E. & Soltis, P. S. Evolution of floral diversity: genomics, genes and gamma. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372, 20150509 (2017).

Soltis, D. E. et al. Gunnerales are sister to other core eudicots: implications for the evolution of pentamery. Am. J. Bot. 90, 461470 (2003).

PubMed Google Scholar

Endress, P. K. In Advances in Botanical Research 44: Developmental Genetics of the Flower (eds. Soltis, D. E., Leebens-Mack, J. H. & Soltis, P. S.) 161 (Elsevier, 2006).

Endress, P. K. Flower structure and trends of evolution in eudicots and their major subclades. Ann. Mo. Botanical Gard. 97, 541583 (2010).

Google Scholar

Soltis, D. E. et al. Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 98, 704730 (2011).

PubMed Google Scholar

Ohno, S. Evolution by Gene Duplication (Springer-Verlag, 1970).

Lyons, E., Pedersen, B., Kane, J. & Freeling, M. The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the rosids. Tropical Plant Biol. 1, 181190 (2008).

CAS Google Scholar

Ming, R. et al. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol. 14, R41 (2013).

PubMed PubMed Central Google Scholar

Tang, H. et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 18, 19441954 (2008).

CAS PubMed PubMed Central Google Scholar

Akz, G. & Nordborg, M. The Aquilegia genome reveals a hybrid origin of core eudicots. Genome Biol. 20, 256 (2019).

PubMed PubMed Central Google Scholar

Velasco, R. et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2, e1326 (2007).

ADS PubMed PubMed Central Google Scholar

Worberg, A. et al. Phylogeny of basal eudicots: insights from non-coding and rapidly evolving DNA. Org. Diversity Evolution 7, 5577 (2007).

Google Scholar

Ruhfel, B. R., Gitzendanner, M. A., Soltis, P. S., Soltis, D. E. & Burleigh, J. G. From algae to angiospermsinferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolut. Biol. 14, 23 (2014).

Google Scholar

Moore, M. J., Soltis, P. S., Bell, C. D., Burleigh, J. G. & Soltis, D. E. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc. Natl Acad. Sci. USA 107, 46234628 (2010).

ADS CAS PubMed PubMed Central Google Scholar

Sun, Y. et al. Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution. Mol. Phylogenet. Evol. 96, 93101 (2016).

PubMed Google Scholar

Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679685 (2019).

Google Scholar

Filiault, D. L. et al. The Aquilegia genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history. Elife 7, e36426 (2018).

Strijk, J. S., Hinsinger, D. D., Zhang, F. & Cao, K. Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research. Gigascience 8, giz136 (2019).

Liu, P.-L. et al. The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements. Genome Biol. 21, 291 (2020).

CAS PubMed PubMed Central Google Scholar

Xu, Q., Jin, L., Zheng, C., Leebens-Mack, J. & Sankoff, D. in Lecture Notes in Bioinformatics Vol. 12686 (2021).

Chin, C.-S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 10501054 (2016).

CAS PubMed PubMed Central Google Scholar

Ghurye, J. et al. Integrating Hi-C links with assembly graphs for chromosome-scale assembly. PLoS Comput. Biol. 15, e1007273 (2019).

Yang, X., Lu, S. & Peng, H. Cytological studies on the eastern Asian family Trochodendraceae. Bot. J. Linn. Soc. 158, 332335 (2008).

Google Scholar

Van Laere, K., Hermans, D., Leus, L. & Van Huylenbroeck, J. Genetic relationships in European and Asiatic Buxus species based on AFLP markers, genome sizes and chromosome numbers. Plant Syst. Evolution 293, 111 (2011).

Google Scholar

Simo, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 32103212 (2015).

PubMed Google Scholar

Seppey, M., Manni, M. & Zdobnov, E. M. in Gene Prediction: Methods and Protocols (ed. Kollmar, M.) 227245 (Springer, 2019).

Ratter, J. A. & Milne, C. in Notes from the Royal Botanic Garden Edinburgh (UK) (1976).

Dodsworth, S., Chase, M. W. & Leitch, A. R. Is post-polyploidization diploidization the key to the evolutionary success of angiosperms?. Botanical J. Linn. Soc. 180, 15 (2016).

Google Scholar

Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543548 (2018).

CAS PubMed Google Scholar

Johnson, M. G. et al. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Syst. Biol. 68, 594606 (2019).

CAS PubMed Google Scholar

Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

PubMed PubMed Central Google Scholar

Mirarab, S. & Warnow, T. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31, i44i52 (2015).

CAS PubMed PubMed Central Google Scholar

Sankoff, D., Zheng, C., Lyons, E. & Tang, H. in Algorithms for Computational Biology (eds. Botn-Fernndez, M., Martn-Vide, C., Santander-Jimnez, S. & Vega-Rodrguez, M. A.) 314 (Springer International Publishing, 2016).

Sankoff, D. & Zheng, C. in Comparative Genomics: Methods and Protocols (eds. Setubal, J. C., Stoye, J. & Stadler, P. F.) 291315 (Springer, 2018).

Murat, F., Armero, A., Pont, C., Klopp, C. & Salse, J. Reconstructing the genome of the most recent common ancestor of flowering plants. Nat. Genet 49, 490496 (2017).

CAS PubMed Google Scholar

Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinforma. 19, 460 (2018).

CAS Google Scholar

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 21142120 (2014).

CAS PubMed PubMed Central Google Scholar

Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644652 (2011).

CAS PubMed PubMed Central Google Scholar

Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinforma. 12, 491 (2011).

Google Scholar

Campbell, M. S. et al. MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol. 164, 513524 (2014).

CAS PubMed Google Scholar

Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinforma. 9, 18 (2008).

Google Scholar

Steinbiss, S., Willhoeft, U., Gremme, G. & Kurtz, S. Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res. 37, 70027013 (2009).

CAS PubMed PubMed Central Google Scholar

See original here:
Buxus and Tetracentron genomes help resolve eudicot genome history - Nature.com

Related Posts