By Shannon Brescher Shea, U.S. Department of EnergyJanuary 3, 2022
A computer is suspended from the ceiling. Delicate lines and loops of silvery wires and tubes connect gold-colored platforms. It seems to belong in a science-fiction movie, perhaps a steam-punk cousin of HAL in 2001: A Space Odyssey. But as the makers of that 1968 movie imagined computers the size of a spaceship, this technology would have never crossed their minds a quantum computer.
Quantum computers have the potential to solve problems that conventional computers cant. Conventional computer chips can only process so much information at one time and were coming very close to reaching their physical limits. In contrast, the unique properties of materials for quantum computing have the potential to process more information much faster.
These advances could revolutionize certain areas of scientific research. Identifying materials with specific characteristics, understanding photosynthesis, and discovering new medicines all require massive amounts of calculations. In theory, quantum computing could solve these problems faster and more efficiently. Quantum computing could also open up possibilities we never even considered. Its like a microwave oven versus a conventional oven different technologies with different purposes.
But were not there yet. So far, one company has claimed its quantum computer can complete a specific calculation faster than the worlds fastest conventional supercomputers. Scientists routinely using quantum computers to answer scientific questions is a long way off.
To use quantum computers on a large scale, we need to improve the technology at their heart qubits. Qubits are the quantum version of conventional computers most basic form of information, bits. The DOEs Office of Science is supporting research into developing the ingredients and recipes to build these challenging qubits.
DOEs Lawrence Berkeley National Laboratory is using a sophisticated cooling system to keep qubits the heart of quantum computers cold enough for scientists to study them for use in quantum computers. Credit: Image courtesy of Lawrence Berkeley National Laboratory
At the atomic scale, physics gets very weird. Electrons, atoms, and other quantum particles interact with each other differently than ordinary objects. In certain materials, we can harness these strange behaviors. Several of these properties particularly superposition and entanglement can be extremely useful in computing technology.
The principle of superposition is the idea that a qubit can be in multiple states at once. With traditional bits, you only have two options: 1 or 0. These binary numbers describe all of the information in any computer. Qubits are more complicated.
Imagine a pot with water in it. When you have water in a pot with a top on it, you dont know if its boiling or not. Real water is either boiling or not; looking at it doesnt change its state. But if the pot was in the quantum realm, the water (representing a quantum particle) could both be boiling and not boiling at the same time or any linear superposition of these two states. If you took the lid off of that quantum pot, the water would immediately be one state or the other. The measurement forces the quantum particle (or water) into a specific observable state.
Entanglement is when qubits have a relationship to each other that prevents them from acting independently. It happens when a quantum particle has a state (such as spin or electric charge) thats linked to another quantum particles state. This relationship persists even when the particles are physically far apart, even far beyond atomic distances.
These properties allow quantum computers to process more information than conventional bits that can only be in a single state and only act independently from each other.
But to get any of these great properties, you need to have fine control over a materials electrons or other quantum particles. In some ways, this isnt so different from conventional computers. Whether electrons move or not through a conventional transistor determines the bits value, making it either 1 or 0.
Rather than simply switching electron flow on or off, qubits require control over tricky things like electron spin. To create a qubit, scientists have to find a spot in a material where they can access and control these quantum properties. Once they access them, they can then use light or magnetic fields to create superposition, entanglement, and other properties.
In many materials, scientists do this by manipulating the spin of individual electrons. Electron spin is similar to the spin of a top; it has a direction, angle, and momentum. Each electrons spin is either up or down. But as a quantum mechanical property, spin can also exist in a combination of up and down. To influence electron spin, scientists apply microwaves (similar to the ones in your microwave oven) and magnets. The magnets and microwaves together allow scientists to control the qubit.
Since the 1990s, scientists have been able to gain better and better control over electron spin. Thats allowed them to access quantum states and manipulate quantum information more than ever before.
To see where thats gone today, its remarkable, said David Awschalom, a quantum physicist at DOEs Argonne National Laboratory and the University of Chicago as well as Director of the Chicago Quantum Exchange.
Whether they use electron spin or another approach, all qubits face major challenges before we can scale them up. Two of the biggest ones are coherence time and error correction.
When you run a computer, you need to be able to create and store a piece of information, leave it alone, and then come back later to retrieve it. However, if the system that holds the information changes on its own, its useless for computing. Unfortunately, qubits are sensitive to the environment around them and dont maintain their state for very long.
Right now, quantum systems are subject to a lot of noise, things that cause them to have a low coherence time (the time they can maintain their condition) or produce errors. Making sure that you get the right answer all of the time is one of the biggest hurdles in quantum computing, said Danna Freedman, an associate professor in chemistry at Northwestern University.
Even if you can reduce that noise, there will still be errors. We will have to build technology that is able to do error correction before we are able to make a big difference with quantum computing, said Giulia Galli, a quantum chemist and physicist at DOEs Argonne National Laboratory and the University of Chicago.
The more qubits you have in play, the more these problems multiply. While todays most powerful quantum computers have about 50 qubits, its likely that they will need hundreds or thousands to solve the problems that we want them to.
The jury is still out on which qubit technology will be the best. No real winner has been identified, said Galli. [Different ones] may have their place for different applications. In addition to computing, different quantum materials may be useful for quantum sensing or networked quantum communications.
To help move qubits forward, DOEs Office of Science is supporting research on a number of different technologies. To realize quantum computings enormous scientific potential, we need to reimagine quantum R&D by simultaneously exploring a range of possible solutions, said Irfan Siddiqi, a quantum physicist at the DOE Lawrence Berkeley National Laboratory and the University of California, Berkeley.
Superconducting Qubits
Superconducting qubits are currently the most advanced qubit technology. Most existing quantum computers use superconducting qubits, including the one that beat the worlds fastest supercomputer. They use metal-insulator-metal sandwiches called Josephson junctions. To turn these materials into superconductors materials that electricity can run through with no loss scientists lower them to extremely cold temperatures. Among other things, pairs of electrons coherently move through the material as if theyre single particles. This movement makes the quantum states more long-lived than in conventional materials.
To scale up superconducting qubits, Siddiqi and his colleagues are studying how to build them even better with support from the Office of Science. His team has examined how to make improvements to a Josephson junction, a thin insulating barrier between two superconductors in the qubit. By affecting how electrons flow, this barrier makes it possible to control electrons energy levels. Making this junction as consistent and small as possible can increase the qubits coherence time. In one paper on these junctions, Siddiqis team provides a recipe to build an eight-qubit quantum processor, complete with experimental ingredients and step-by-step instructions.
Qubits Using Defects
Defects are spaces where atoms are missing or misplaced in a materials structure. These spaces change how electrons move in the materials. In certain quantum materials, these spaces trap electrons, allowing researchers to access and control their spins. Unlike superconductors, these qubits dont always need to be at ultra-low temperatures. They have the potential to have long coherence times and be manufactured at scale.
While diamonds are usually valued for their lack of imperfections, their defects are actually quite useful for qubits. Adding a nitrogen atom to a place where there would normally be a carbon atom in diamonds creates whats called a nitrogen-vacancy center. Researchers using the Center for Functional Nanomaterials, a DOE Office of Science user facility, found a way to create a stencil just two nanometers long to create these defect patterns. This spacing helped increase these qubits coherence time and made it easier to entangle them.
But useful defects arent limited to diamonds. Diamonds are expensive, small, and hard to control. Aluminum nitride and silicon carbide are cheaper, easier to use, and already common in everyday electronics. Galli and her team used theory to predict how to physically strain aluminum nitride in just the right way to create electron states for qubits. As nitrogen vacancies occur naturally in aluminum nitride, scientists should be able to control electron spin in it just as they do in diamonds. Another option, silicon carbide, is already used in LED lights, high-powered electronics, and electronic displays. Awschaloms team found that certain defects in silicon carbide have coherence times comparable to or longer than those in nitrogen-vacancy centers in diamonds. In complementary work, Gallis group developed theoretical models explaining the longer coherence times.
Based on theoretical work, we began to examine these materials at the atomic scale. We found that the quantum states were always there, but no one had looked for them, said Awschalom. Their presence and robust behavior in these materials were unexpected. We imagined that their quantum properties would be short-lived due to interactions with nearby nuclear spins. Since then, his team has embedded these qubits in commercial electronic wafers and found that they do surprisingly well. This can allow them to connect the qubits with electronics.
Materials by Design
While some scientists are investigating how to use existing materials, others are taking a different tack designing materials from scratch. This approach builds custom materials molecule by molecule. By customizing metals, the molecules or ions bound to metals, and the surrounding environment, scientists can potentially control quantum states at the level of a single particle.
When youre talking about both understanding and optimizing the properties of a qubit, knowing that every atom in a quantum system is exactly where you want it is very important, said Freedman.
With this approach, scientists can limit the amount of nuclear spin (the spin of the nucleus of an atom) in the qubits environment. A lot of atoms that contain nuclear spin cause magnetic noise that makes it hard to maintain and control electron spin. That reduces the qubits coherence time. Freedman and her team developed an environment that had very little nuclear spin. By testing different combinations of solvents, temperatures, and ions/molecules attached to the metal, they achieved a 1 millisecond coherence time in a molecule that contains the metal vanadium. That was a much longer coherence time than anyone had achieved in a molecule before. While previous molecular qubits had coherence times that were five times shorter than diamond nitrogen-vacancy centers times, this matched coherence times in diamonds.
That was genuinely shocking to me because I thought molecules would necessarily be the underdogs in this game, said Freedman. [It] opens up a gigantic space for us to play in.
The surprises in quantum just keep coming. Awschalom compared our present-day situation to the 1950s when scientists were exploring the potential of transistors. At the time, transistors were less than half an inch long. Now laptops have billions of them. Quantum computing stands in a similar place.
The overall idea that we could completely transform the way that computation is done and the way nature is studied by doing quantum simulation is really very exciting, said Galli. Our fundamental way of looking at materials, based on quantum simulations, can finally be useful to develop technologically relevant devices and materials.
Excerpt from:
Creating the Heart of a Quantum Computer: Developing Qubits - SciTechDaily
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum computing utilizes 3D crystals - Johns Hopkins News-Letter [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- Quantum Computing and What All Good IT Managers Should Know - TrendinTech [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- World's First Quantum Computer Made By China 24000 Times Faster Than International Counterparts - Fossbytes [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- What is Quantum Computing? Webopedia Definition [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- China hits milestone in developing quantum computer - South China Morning Post [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Five Ways Quantum Computing Will Change the Way We Think ... - PR Newswire (press release) [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- New materials bring quantum computing closer to reality - Phys.org - Phys.Org [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- Researchers Invent Nanoscale 'Refrigerator' for Quantum ... - Sci-News.com [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- China's New Type of Quantum Computing Device, Built Inside a Diamond - TrendinTech [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Molecular magnets closer to application in quantum computing - Next Big Future [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- quantum computing - WIRED UK [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- D-Wave Closes $50M Facility to Fund Next Generation of Quantum Computers - Marketwired (press release) [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computing Could Use Graphene To Create Stable Qubits - International Business Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Bigger is better: Quantum volume expresses computer's limit - Ars Technica [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- It's time to decide how quantum computing will help your business - Techworld Australia [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- The route to high-speed quantum computing is paved with error - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes leap in quantum computing power - ITworld [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Quantum Computing Research Given a Boost by Stanford Team - News18 [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Stanford researchers push forward quantum computing research ... - The Indian Express [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- NASA Scientist Eleanor Rieffel to give a talk on quantum computing - Chapman University: Happenings (blog) [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- IBM Q Offers Quantum Computing as a Service - The Merkle [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Quantum Computing Is Going Commercial With the Potential ... [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum computing, election pledges and a thief who made science history - Nature.com [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- IBM to Sell Use of Its New 17-Qubit Quantum Computer over the Cloud - All About Circuits [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- For more advanced computing, technology needs to make a ... - CIO Dive [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Microsoft, Purdue Extend Quantum Computing Partnership To Create More Stable Qubits - Tom's Hardware [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Toward mass-producible quantum computers | MIT News - MIT News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Purdue, Microsoft Partner On Quantum Computing Research | WBAA - WBAA [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Tektronix AWG Pulls Test into Era of Quantum Computing - Electronic Design [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's how we can achieve mass-produced quantum computers ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Quantum computers to drive customer insights, says CBA CIO - CIO - CIO Australia [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 8th, 2017] [Originally Added On: June 8th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The Machine of Tomorrow Today: Quantum Computing on the Verge - Bloomberg [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Angry Birds, qubits and big ideas: Quantum computing is tantalisingly close - The Australian Financial Review [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Consortium Applies Quantum Computing to Drug Discovery for Neurological Diseases - Drug Discovery & Development [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum computing - ZDNet [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- How to get ahead in quantum machine learning AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Quantum computing, the machines of tomorrow - The Japan Times [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]