PatentNext Summary: In order to prepareapplications for filing in multiple jurisdictions, practitionersshould be cognizant of claiming styles in the various jurisdictionsthat they expect to file AI-related patent applications in, anddraft claims accordingly. For example, different jurisdictions,such as the U.S. and EPO, have different legal tests that canresult in different styles for claiming artificialintelligence(AI)-related inventions.
In this article, we will compare two applications, one in theU.S. and the other in the EPO, that have the same or similarclaims. Both applications claim priority to the same PCTApplication (PCT/AT2006/000457) (the "'427 PCTApplication"), which is published as PCT Pub. No.WO/2007/053868.
As we shall see, despite the application having the same orsimilar claims, prosecution of the applications in the twojurisdictions nonetheless resulted in different outcomes, with theU.S. application prosecuted to allowance and the EPO applicationending in rejection.
****
Pertinent to our discussion is an overview of AI. A briefdescription of AI follows before analysis of the AI-related claimsat issue.
Artificial Intelligence (AI) is fundamentally a data-driventechnology that takes unique datasets as input to train AI computermodels. Once trained, an AI computer model may take new data asinput to predict, classify, or otherwise output results for use ina variety of applications.
Machine learning, arguably the most widely used AI technique,may be described as a process that uses data and algorithms totrain (or teach) computer models, which usually involves thetraining of weights of the model. Training typically involvescalculating and updating mathematical weights (i.e., numeralvalues) of a model based on input that can comprise hundreds,thousands, millions, etc. sets of data. The trained model allowsthe computer to make decisions without the need for explicit orrule-based programming.
In particular, machine learning algorithms build a model ontraining data to identify and extract patterns from the data andtherefore acquire (or learn) unique knowledge that can be appliedto new data sets.
For more information, see Artificial Intelligence & the IntellectualProperty Landscape
AI inventions are fundamentally software-related inventions. Inthe U.S., as a practical rule, software-related patents shoulddisclose an algorithm by which the software-related invention isachieved. An algorithm provides support for a software-relatedpatent pursuant to 35 U.S.C. 112(a) including (1) byproviding sufficiency of disclosure for the patent's"written description" and (2) by "enabling" oneof ordinary skill in the art (e.g., a computer engineer or computerprogrammer) to make or use the related software-related inventionwithout "undue experimentation." Without such support, apatent claim can be held invalid. For more information regardinggeneral aspects of the sufficiency of disclosure in the U.S. forsoftware-related inventions, see Why including an "Algorithm" isImportant for Software Patents (Part 2)
U.S. Patent 8,920,327 (the "'327 Patent") issuedfrom the '457 PCT Application. The ''327 Patent is anexample of an AI patent that did not experiencesufficiency issues in the U.S. The below provides an overview ofthe '327 Patent.
The '327 Patent is titled "Method for DeterminingCardiac Output" and includes a single independent claimregarding a method for cardiac output from an arterial bloodpressure curve. The method is implemented via a cardiac device, asillustrated in Figure 1 (copied below):
Fig. 1 illustrates device 1 for implementing the invention ofthe '327 patent, where measuring device 2 measures theperipheral blood pressure curve, and where related measurement datais fed into device 1 via line 3, and stored and evaluated there.The device further comprises optical display device 4, input panel5, and keys 6 for inputting and displaying information.
The claimed method includes an AI aspect, i.e., namely the useof "an artificial neural network having weightingvalues that are determined by learning."
Claim 1 is copied below (with the AI aspectbolded):
1. A method for determiningcardiac output from an arterial blood pressure curve measured at aperipheral region, comprising the steps of:
measuring the arterial bloodpressure curve at the peripheral region; arithmeticallytransforming the measured arterial blood pressure curve to anequivalent aortic pressure; and
calculating the cardiac outputfrom the equivalent aortic pressure,
wherein the arithmetictransformation of the arterial blood pressure curve measured at theperipheral region into the equivalent aortic pressure is performedby the aid of an artificial neural networkhaving weighting values that are determined bylearning.
Figure 3 of the '327 patent (copied below) is a schematicillustration of the artificial neural network, as recited in claim1.
The specification of the '327 patent describes that"FIG. 3 illustrates the structure of the neural network...,and it is apparent that the neural network ... is comprised ofthree layers 14, 15, 16." The specification discloses that asupervised learning algorithm is used to train the weights of themodel, e.g., "[t]he weights and the bias for the latter twolayers 15 and 16 are determined by supervised learning."
The input data fed to the supervised learning algorithm to trainthe AI model includes "associated blood pressure curve pairsactually determined by measurements in the periphery or in theaorta, respectively, are used." The measurements used for theinput data may come "from patients of different ages, sexes,constitutional types, health conditions and the like."
No issues with respect to sufficiency were raised during theprosecution of the application in the U.S. that was issued as the'327 patent.
More generally, issues of sufficiency in the U.S. typicallyarise in litigation, and result in expert testimony, i.e., "abattle of the experts," where expert witnesses (e.g.,typically university professors or industry consultants) fromopposing sides opine on the knowledge of a person of ordinary skillin the art and sufficiency of disclosure in view of thatperson.
The EPO has developed its own, yet similar, stance on AI-relatedinvention when compared with the U.S. Nonetheless, outcomes ofprosecution can be different. The below provides a cursory overviewof developments in the EPO with respect to AI-related inventionsand analyzes the treatment of an EPO application as filed based onthe PCT Application '457 (which is the same PCT Application asfor the '327 patent discussed above).
Generally, artificial intelligence inventions may be patented inthe European Patent Office (EPO). For example, in its Guidelinesfor Examination, the EPO defines AI and machine learning as"based on computational models and algorithms forclassification, clustering, regression and dimensionalityreduction, such as neural networks, genetic algorithms, supportvector machines, k-means, kernel regression and discriminantanalysis." Section 3.3.1 (Artificial intelligence and machinelearning).
As such, the EPO dubs AI and machine learning as "per se ofan abstract mathematical nature," irrespective of whether suchmodels may be trained with training data. Id. Thus, simplyclaiming a machine learning model (e.g., such as a "neuralnetwork") does not, alone, necessarily imply the use of a"technical means" in accordance with EPO law.
Nonetheless, the Guidelines for Examination at the EPO recognizethat the use of an AI model, when claimed as a whole with theadditional subject matter, may demonstrate a sufficient technicalcharacter. Id. As an example, the Guidelines forExamination at the EPO states that "the use of a neuralnetwork in a heart-monitoring apparatus for the purpose ofidentifying irregular heartbeats makes a technicalcontribution." Id. As a further example, the EPOGuidelines for Examination further states that "[t]heclassification of digital images, videos, audio or speech signalsbased on low-level features (e.g. edges or pixel attributes forimages) are further typical technical applications ofclassification algorithms." Id.
In a decision in 2020, the EPO Board of Appeals rejected amachine learning-based patent application that claimed an"artificial neural network" because the patentspecification failed to sufficiently disclose how the artificialneural network was trained. See T0161/18 (Equivalent aortic pressure / ARCSEIBERSDORF). The application in question claimed priority to thePCT Application '457, which is the same parent application asthe '327 patent, as discussed above.
The claims were the same or similar as to those in the U.S.,where the claims-at-issue directed to determining cardiac outputfrom an arterial blood pressure curve measured at a periphery, andrecited, in part (with respect to AI), that the "bloodpressure curve measured on the periphery is converted into theequivalent aortic pressure with the help of anartificial neural network, the weighting values ??ofwhich are determined bylearning."
Claim 1 is reproduced below (in English based on a machinetranslation of the original opinion German):
1. A method for determining thecardiac output from an arterial blood pressure curve measured atthe periphery, in which the blood pressure curve measured at theperiphery is mathematically transformed to the equivalent aorticpressure and the cardiac output is calculated from the equivalentaortic pressure, characterized in that the transformation of theblood pressure curve measured on the periphery is converted intothe equivalent aortic pressure with the help of anartificial neural network, the weighting values ??ofwhich are determined by learning.
The Board analyzed the claim in view of the specificationpursuant to Article 83 EP (Sufficient disclosure). As described bythe Board, Article 83 EPC requires that the invention be disclosedin the European patent application so clearly and completely that aperson skilled in the art can carry it out. For this, thedisclosure of the invention in the application must enable theperson skilled in the art to reproduce the technical teachinginherent in the claimed invention on the basis of his generalspecialist knowledge.
The Board then turned to the specification to determine whetherit disclosed enough support to meet these requirements in view ofthe claimed "artificial neural network." However, thespecification was found lacking because it failed to"disclose which input data aresuitable for training the artificial neural network according tothe invention, or at least one data set suitable for solving thetechnical problem at hand."
Instead, the Board found that the specification "merelyreveals that the input data should cover a broad spectrum ofpatients of different ages, genders, constitution types, healthstatus and the like."
Therefore, the Board found that the training of the artificialneural network could therefore not be reworked by the personskilled in the art, and the person skilled in the art can thereforenot carry out the invention.
Because of these deficiencies, the Board found that thespecification failed to provide sufficient disclosure pursuant toArticle 83 EPC.
For similar reasons, the Board further found that the claimedsubject matter lacked an "inventive step" pursuant toArticle 56 EPC. Specifically, the Board found that the claimed"artificial neural network" was not adapted for thespecific, claimed application because the specification failed todisclose how the artificial neural network was trained, andspecifically failed to disclose weight values that resulted fromsuch training. For this reason, the claimed "artificial neuralnetwork" could not be distinguished from the cited prior art,which resulted in failure to demonstrate the requisite inventivestep.
As the Board described:
In the present case, the claimedneural network is therefore not adapted for the specific, claimedapplication. In the opinion of the Chamber, there is therefore onlyan unspecified adaptation of the weight values, which is in thenature of every artificial neural network. The board is thereforenot convinced that the claimed effect will be achieved in theclaimed method over the entire range claimed. This effect cannot,therefore, be taken into account in the assessment of inventivestep in the sense of an improvement over the prior art.
Accordingly, at least with respect to patent applications filedin the EPO, and where an AI or machine learning model is to bedistinguished from the prior art, then a patent applicant may wantto include an example training data set, example trained weights,or at least sufficiently describe the input used to train the modelon a specific, claimed application or end-use. For example, atleast one example of data can be provided (or claimed) to show theinputs used to train specific weights, which may allow for theclaim to have sufficient disclosure, and, at the same time allowthe claim to cover a spectrum of AI models trained with aparticular set of data.
For the time being, such disclosure for an EPO case could beconsidered as additional when compared with the sufficiency ofdisclosure in the U.S. However, it is to be understood that theU.S. Patent office has also indicated the importance of includingtraining data or specific species of data used to train a model inits example guidance. See How to Patent an Artificial Intelligence (AI)Invention: Guidance from the U.S. Patent Office (USPTO). In anyevent, while there have been few court cases on AI-relatedinventions in the U.S. (see How the Courts treat Artificial Intelligence (AI)Patent Inventions: Through the Years since Alice), future casesmay indicate whether the U.S. will trend towards the EPO'sdecision in T0161/18 with respect to the sufficiency ofdisclosure.
The content of this article is intended to provide a generalguide to the subject matter. Specialist advice should be soughtabout your specific circumstances.
See original here:
- What is Artificial Intelligence (AI)? - Definition from ... [Last Updated On: June 12th, 2016] [Originally Added On: June 12th, 2016]
- Artificial Intelligence | Neuro AI [Last Updated On: June 12th, 2016] [Originally Added On: June 12th, 2016]
- Association for the Advancement of Artificial Intelligence [Last Updated On: June 13th, 2016] [Originally Added On: June 13th, 2016]
- A.I. Artificial Intelligence - Wikipedia, the free ... [Last Updated On: June 17th, 2016] [Originally Added On: June 17th, 2016]
- Artificial Intelligence - The New York Times [Last Updated On: June 17th, 2016] [Originally Added On: June 17th, 2016]
- Intro to Artificial Intelligence Course and Training ... [Last Updated On: June 28th, 2016] [Originally Added On: June 28th, 2016]
- Artificial Intelligence | Neuro AI [Last Updated On: July 1st, 2016] [Originally Added On: July 1st, 2016]
- What is Artificial Intelligence (AI)? Webopedia Definition [Last Updated On: July 1st, 2016] [Originally Added On: July 1st, 2016]
- Intro to Artificial Intelligence Course and Training Online ... [Last Updated On: July 5th, 2016] [Originally Added On: July 5th, 2016]
- Artificial Intelligence News -- ScienceDaily [Last Updated On: September 16th, 2016] [Originally Added On: September 16th, 2016]
- Artificial intelligence positioned to be a game-changer - CBS ... [Last Updated On: October 13th, 2016] [Originally Added On: October 13th, 2016]
- Artificial Intelligence: A Modern Approach - amazon.com [Last Updated On: October 31st, 2016] [Originally Added On: October 31st, 2016]
- Artificial Intelligence - IndiaBIX [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- The Non-Technical Guide to Machine Learning & Artificial ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence - Graduate Schools of Science ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence in Medicine: An Introduction [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- What does artificial intelligence mean? - Definitions.net [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence Lockheed Martin [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence Course - Computer Science at CCSU [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- FREE Artificial Intelligence Essay - Example Essays [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Elon Musk's artificial intelligence group signs Microsoft ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Real FX - Slotless Racing with Artificial Intelligence [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Artificial Intelligence: What It Is and How It Really Works [Last Updated On: January 4th, 2017] [Originally Added On: January 4th, 2017]
- Artificial Intelligence Market Size and Forecast by 2024 [Last Updated On: January 4th, 2017] [Originally Added On: January 4th, 2017]
- Algorithm-Driven Design: How Artificial Intelligence Is ... [Last Updated On: January 4th, 2017] [Originally Added On: January 4th, 2017]
- 9 Development in Artificial Intelligence | Funding a ... [Last Updated On: January 4th, 2017] [Originally Added On: January 4th, 2017]
- Artificial Intelligence Tops Humans in Poker Battle What's the Big Deal? - PokerNews.com [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Is AI a Threat to Christianity? - The Atlantic [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Allow mathematicians to pierce artificial intelligence frontiers - Livemint [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Montreal sees its future in smart sensors, artificial intelligence (with video) - Computerworld [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Silicon Valley Hedge Fund Takes On Wall Street With AI Trader - Bloomberg [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- The Observer view on artificial intelligence - The Guardian [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Artificial Intelligence Is Coming Whether You Like It Or Not - Mother Jones [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- RealDoll Creating Artificial Intelligence System, Robotic Sex Dolls ... - Breitbart News [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Forget lessons, these smart skis are loaded with artificial intelligence - Mashable [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Artificial Intelligence Correctly Predicted the Patriots' 34-28 Super ... - Digital Trends [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Why C-Levels Need To Think About eLearning And Artificial Intelligence - Forbes [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Artificial Intelligence-Driven Robots: More Brains Than Brawn - Forbes [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Artificial intelligence: How to build the business case - ZDNet [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- What 'social artificial intelligence' means for marketers - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Actress Kristen Stewart's Research Paper On Artificial Intelligence: A Critical Evaluation - Forbes [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Baidu cut its healthcare business to concentrate on artificial intelligence - Asia Times [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Google Android Wear 2.0 update puts artificial intelligence inside your wristwatch - The Sun [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- How criminals use Artificial Intelligence and Machine Learning - BetaNews [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- In the Labs: Connected vehicles in Ohio, artificial intelligence in Illinois and Massachusetts - Network World [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Keeping an eye on artificial intelligence - The National Business Review [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Actors, teachers, therapists think your job is safe from artificial intelligence? Think again - The Guardian [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Wells Fargo Innovation Group to Focus on Artificial Intelligence, Payments and APIs - Wall Street Journal (blog) [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- SAP aims to step up its artificial intelligence, machine learning game as S/4HANA hits public cloud - ZDNet [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Artificial Intelligence Is Coming To Police Bodycams, Raising Privacy Concerns - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Nvidia Beats Earnings Estimates As Its Artificial Intelligence Business Keeps On Booming - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Could Artificial Intelligence Ever Become A Threat To Humanity? - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Artificial intuition will supersede artificial intelligence, experts say - Network World [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- The Peril of Inaction with Artificial Intelligence - Gigaom [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- TASER International Bringing Artificial Intelligence to Law Enforcement - Motley Fool [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- LG G6 teasers emphasize battery life, artificial intelligence - CNET [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Wells Fargo sets up artificial intelligence team in tech push - Reuters [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford spending $1 billion on self-driving artificial intelligence - CNET [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Artificial Intelligence in Business Process Automation - Nanalyze [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- An artificial intelligence gamble that paid off - Minneapolis Star Tribune [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Ford to Invest $1 Billion in Artificial Intelligence Start-Up - New York Times [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Wells Fargo Pushes Into Artificial Intelligence - Fortune [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Artificial intelligence predictions surpass reality - UT The Daily Texan [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Creating artificial intelligence-driven technology products is almost like unleashing the Frankenstein's monster - Economic Times (blog) [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Inside Intel Corporation's Artificial Intelligence Strategy - Motley Fool [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- The artificial intelligence revolutionising healthcare - Irish Times [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford Announces Investment in Artificial Intelligence Company Argo AI - Motor Trend [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford Invests $1-Billion in Artificial Intelligence - AutoGuide.com [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Salesforce adds some artificial intelligence to customer service products - TechCrunch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- No hype, just fact: Artificial intelligence in simple business terms - ZDNet [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Artificial Intelligence and The Confusion of Our Age - Patheos (blog) [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- How Artificial Intelligence Startups Struck Gold - Entrepreneur [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Terrifyingly, Google's Artificial Intelligence acts aggressive when cornered - Chron.com [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- This Startup Has Developed A New Artificial Intelligence That Can (Sometimes) Beat Google - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- RPI artificial intelligence expert looks at Westworld - Albany Times Union [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Google's DeepMind artificial intelligence becomes 'highly aggressive' when stressed. Skynet, anyone? - Mirror.co.uk [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Artificial Intelligence Enters The Classroom - News One [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- John Pisarek Talks Artificial Intelligence - Customer Think [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Can Artificial Intelligence Predict Earthquakes? - Scientific American [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Artificial Intelligence Is Becoming A Major Disruptive Force In Banks' Finance Departments - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]