A mutational hotspot that determines highly repeatable evolution can be built and broken by silent genetic changes – Nature.com

Posted: October 21, 2021 at 10:21 pm

Weber, S., Ramirez, C. & Doerfler, W. Signal hotspot mutations in SARS-CoV-2 genomes evolve as the virus spreads and actively replicates in different parts of the world. Virus Res. 289, 198170 (2020).

CAS PubMed PubMed Central Article Google Scholar

Sekowska, A., Wendel, S., Fischer, E. C. & Nrholm, M. H. H. Generation of mutation hotspots in ageing bacterial colonies. Sci. Rep. 6, 410 (2016).

Article CAS Google Scholar

Galen, S. C. et al. Contribution of a mutational hot spot to hemoglobin adaptation in high-Altitude Andean house wrens. Proc. Natl Acad. Sci. U. S. A. 112, 1395813963 (2015).

ADS CAS PubMed PubMed Central Article Google Scholar

Trevino, V. HotSpotAnnotations a database for hotspot mutations and annotations in cancer. Database 18 (2020) https://doi.org/10.1093/database/baaa025.

Fong, S. S., Joyce, A. R. & Palsson, B. . Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res. 13651372 (2005) https://doi.org/10.1101/gr.3832305.15.

Ostrowski, E. A., Woods, R. J. & Lenski, R. E. The genetic basis of parallel and divergent phenotypic responses in evolving populations of Escherichia coli. Proc. R. Soc. B Biol. Sci. 275, 277284 (2008).

CAS Article Google Scholar

Riehle, M. M., Bennett, A. F. & Long, A. D. Genetic architecture of thermal adaptation in Escherichia coli. Proc. Natl Acad. Sci. USA. 98, 525530 (2001).

ADS CAS PubMed PubMed Central Article Google Scholar

Fraebel, D. T. et al. Environment determines evolutionary trajectory in a constrained phenotypic space. Elife 6, e24669 (2017).

PubMed PubMed Central Article Google Scholar

Bull, J. J. et al. Exceptional Convergent Evolution in a Virus. Genetics 147, 14971507 (1997).

CAS PubMed PubMed Central Article Google Scholar

Wichman, H. A., Badgett, M. R., Scott, L. A., Boulianne, C. M. & Bull, J. J. Different trajectories of parallel evolution during viral adaptation. Science 285, 422424 (1999).

CAS PubMed Article Google Scholar

Herron, M. D. & Doebeli, M. Parallel Evolutionary Dynamics of Adaptive Diversification in Escherichia coli. PLoS Biol. 11, e1001490 (2013).

CAS PubMed PubMed Central Article Google Scholar

Kram, K. E. et al. Adaptation of Escherichia coli to Long-Term Serial Passage in Complex Medium: Evidence of Parallel Evolution. mSystems 2, 112 (2017).

Article Google Scholar

Notley-McRobb, L. & Ferenci, T. Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations. Environ. Microbiol. 1, 3343 (1999).

CAS PubMed Article Google Scholar

Miller, C. et al. Adaptation of Enterococcus faecalis to daptomycin reveals an ordered progression to resistance. Antimicrob. Agents Chemother. 57, 53735383 (2013).

CAS PubMed PubMed Central Article Google Scholar

Avrani, S., Bolotin, E., Katz, S. & Hershberg, R. Rapid Genetic Adaptation during the First Four Months of Survival under Resource Exhaustion. Mol. Biol. Evol. 34, 17581769 (2017).

CAS PubMed PubMed Central Article Google Scholar

Meyer, J. R. et al. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335, 428432 (2012).

ADS CAS PubMed PubMed Central Article Google Scholar

Van Ditmarsch, D. et al. Convergent Evolution of Hyperswarming Leads to Impaired Biofilm Formation in Pathogenic Bacteria. Cell Rep. 4, 697708 (2013).

PubMed PubMed Central Article CAS Google Scholar

Bailey, S. F., Rodrigue, N. & Kassen, R. The effect of selection environment on the probability of parallel evolution. Mol. Biol. Evol. 32, 14361448 (2015).

CAS PubMed Article PubMed Central Google Scholar

Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457461 (2012).

ADS CAS PubMed Article PubMed Central Google Scholar

Eyre-Walker, A. & Hurst, L. D. The evolution of isochores. Nat. Rev. Genet. 2, 549555 (2001).

CAS PubMed Article Google Scholar

Wood, T. E., Burke, J. M. & Rieseberg, L. H. Parallel genotypic adaptation: When evolution repeats itself. Genetica 123, 157170 (2005).

PubMed PubMed Central Article Google Scholar

Woods, R., Schneider, D., Winkworth, C. L., Riley, M. A. & Lenski, R. E. Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. U. S. A. 103, 91079112 (2006).

ADS CAS PubMed PubMed Central Article Google Scholar

Weinreich, D. M., Delaney, N. F., De Pristo, M. A. & Hartl, D. L. Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins. Science. 312, (2006).

Bailey, S. F., Blanquart, F., Bataillon, T. & Kassen, R. What drives parallel evolution?: How population size and mutational variation contribute to repeated evolution. BioEssays 39, 19 (2017).

PubMed Article Google Scholar

Long, H. et al. Mutation rate, spectrum, topology, and context-dependency in the DNA mismatch repair-deficient Pseudomonas fluorescens ATCC948. Genome Biol. Evol. 7, 262271 (2014).

PubMed PubMed Central Article CAS Google Scholar

Duan, C. et al. Reduced intrinsic DNA curvature leads to increased mutation rate. Genome Biol. 19, 112 (2018).

Article CAS Google Scholar

De Boer, J. G. & Ripley, L. S. Demonstration of the production of frameshift and base-substitution mutations by quasipalindromic DNA sequences. Proc. Nail. Acad. Sci. USA 81 (1984).

Turner, C. B., Marshall, C. W. & Cooper, V. S. Parallel genetic adaptation across environments differing in mode of growth or resource availability. Evol. Lett. 2, 355367 (2018).

PubMed PubMed Central Article Google Scholar

Lssig, M., Mustonen, V. & Walczak, A. M. Predicting evolution. Nat. Ecol. Evol. 1, 19 (2017).

Article Google Scholar

Hermisson, J. & Pennings, P. S. Soft sweeps: Molecular population genetics of adaptation from standing genetic variation. Genetics 169, 23352352 (2005).

CAS PubMed PubMed Central Article Google Scholar

Barrett, R. D. H., MGonigle, L. K. & Otto, S. P. The distribution of beneficial mutant effects under strong selection. Genetics 174, 20712079 (2006).

CAS PubMed PubMed Central Article Google Scholar

Jerison, E. R. & Desai, M. M. Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments. Curr. Opin. Genet. Dev. 35, 3339 (2015).

CAS PubMed PubMed Central Article Google Scholar

Taylor, T. B. et al. Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system. Science 347, 10141017 (2015).

ADS CAS PubMed Article PubMed Central Google Scholar

Mcgee, L. W. et al. Synergistic pleiotropy overrides the costs of complexity in viral adaptation. Genetics 202, 285295 (2016).

CAS PubMed Article PubMed Central Google Scholar

McGrath, P. T. et al. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature 477, 321325 (2011).

ADS CAS PubMed PubMed Central Article Google Scholar

Sackman, A. M. et al. Mutation-driven parallel evolution during viral adaptation. Mol. Biol. Evol. 34, 32433253 (2017).

CAS PubMed PubMed Central Article Google Scholar

Alsohim, A. S. et al. The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion. Environ. Microbiol. 16, 22672281 (2014).

CAS PubMed Article PubMed Central Google Scholar

Lind, P. A., Libby, E., Herzog, J. & Rainey, P. B. Predicting mutational routes to new adaptive phenotypes. Elife 8, e38822 (2019).

PubMed PubMed Central Article Google Scholar

Wright, B. E., Reschke, D. K., Schmidt, K. H., Reimers, J. M. & Knight, W. Predicting mutation frequencies in stem-loop structures of derepressed genes: Implications for evolution. Mol. Microbiol. 48, 429441 (2003).

CAS PubMed Article Google Scholar

Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255258 (2009).

ADS CAS PubMed PubMed Central Article Google Scholar

Kristofich, J. et al. Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. PLOS Genet. 14, e1007615 (2018).

PubMed PubMed Central Article CAS Google Scholar

Lebeuf-Taylor, E., McCloskey, N., Bailey, S. F., Hinz, A. & Kassen, R. The distribution of fitness effects among synonymous mutations in a gene under selection. Elife e45952 (2019) https://doi.org/10.1101/553610.

Frumkin, I. et al. Codon usage of highly expressed genes affects proteome-wide translation efficiency. Proc. Natl Acad. Sci. U. S. A. 115, E4940E4949 (2018).

PubMed PubMed Central Article Google Scholar

Fieldhouse, D. & Golding, B. A source of small repeats in genomic DNA. Genetics 129, 563572 (1991).

CAS PubMed PubMed Central Article Google Scholar

Dong, F., Allawi, H. T., Anderson, T., Neri, B. P. & Lyamichev, V. I. Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA. Nucleic Acids Res. 29, 32483257 (2001).

CAS PubMed PubMed Central Article Google Scholar

Merrikh, C. N. & Merrikh, H. Gene inversion potentiates bacterial evolvability and virulence. Nat. Commun. 9, 10 (2018).

Article CAS Google Scholar

Vogwill, T., Kojadinovic, M., Furi, V. & Maclean, R. C. Testing the role of genetic background in parallel evolution using the comparative experimental evolution of antibiotic resistance. Mol. Biol. Evol. 31, 33143323 (2014).

CAS PubMed PubMed Central Article Google Scholar

Blount, Z. D., Barrick, J. E., Davidson, C. J. & Lenski, R. E. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489, 513518 (2012).

ADS CAS PubMed PubMed Central Article Google Scholar

Spor, A. et al. Phenotypic and genotypic convergences are influenced by historical contingency and environment in yeast. Evolution (N. Y). 68, 772790 (2014).

Google Scholar

Orr, H. A. The probability of parallel evolution. Evolution (N. Y). 59, 216 (2005).

CAS Google Scholar

Zagorski, M., Burda, Z. & Waclaw, B. Beyond the hypercube: evolutionary accessibility of fitness landscapes with realistic mutational networks. PLoS Comput. Biol. 12, 118 (2016).

Article CAS Google Scholar

Gillespie, J. H. Molecular evolution over the mutational landscape. Evolution (N. Y). 38, 1116 (1984).

CAS Google Scholar

Bailey, S. F., Guo, Q. & Bataillon, T. Identifying drivers of parallel evolution: A regression model approach. Genome Biol. Evol. 10, 28012812 (2018).

See the rest here:

A mutational hotspot that determines highly repeatable evolution can be built and broken by silent genetic changes - Nature.com

Related Posts