DeepMind's AlphaFold represents the first time a significant scientific problem has been solved by ... [+] AI.
It can be difficult to distinguish between substance and hype in the field of artificial intelligence. In order to stay grounded, it is important to step back from time to time and ask a simple question: what has AI actually accomplished or enabled that makes a difference in the real world?
This summer, DeepMind delivered the strongest answer yet to that question in the decades-long history of AI research: AlphaFold, a software platform that will revolutionize our understanding of biology.
In 1972, in his acceptance speech for the Nobel Prize in Chemistry, Christian Anfinsen made a historic prediction: it should in principle be possible to determine a proteins three-dimensional shape based solely on the one-dimensional string of molecules that comprise it.
Finding a solution to this puzzle, known as the protein folding problem, has stood as a grand challenge in the field of biology for half a century. It has stumped generations of scientists. One commentator in 2007 described it as one of the most important yet unsolved issues of modern science.
AI just solved it.
(While use of the word solved has generated some disagreement in the community, sometimes devolving into semantics, most experts closest to the topic agree that AlphaFold can indeed be considered a solution to the protein folding problem.)
Why does the protein folding problem matter? And why has it been so hard to solve?
Proteins are at the center of life itself. As prominent biologist Arthur Lesk put it, In the drama of life at a molecular scale, proteins are where the action is.
Proteins are involved in basically every important activity that happens inside every living thing, yourself included: digesting food, enabling muscles to contract, moving oxygen throughout the body, attacking foreign viruses and bacteria. Your hormones are made out of proteins; so is your hair.
To put it simply, proteins are so important because they are so versatile. Proteins are able to undertake a vast array of different structures and functions, far more than other types of biomolecules (e.g., lipids or carbohydrates). This incredible versatility is a direct consequence of how proteins are built.
Every protein is comprised of a string of building blocks known as amino acids linked together in a particular order. There are 20 different types of amino acid. In one sense, then, protein structure is elegantly simple: each protein is defined by its one-dimensional sequence of amino acids, with 20 different amino acids to choose from. Proteins can range from a few dozen to several thousand amino acids in length.
But proteins do not stay one-dimensional. In order to become functional, they first fold into complex three-dimensional shapes.
A proteins shape relates closely to its function. To take one example, antibody proteins fold into shapes that enable them to precisely identify and target particular foreign bodies, like a key fitting into a lock. Understanding the shape that proteins will fold into is thus essential to understanding how organisms function, and ultimately how life itself works.
Heres the challenge: the number of different configurations that a protein might fold into based on its amino acid sequence is astronomical. Per Levinthals paradox, any given protein can theoretically adopt something like 10^300 different configurations. To frame that figure more vividly, it would take longer than the age of the universe for a protein to fold into every configuration available to it, even if it attempted millions of configurations per second. Yet somehow, out of all of these possible configurations, each protein spontaneously folds into one particular shape and carries out its biological purpose accordingly.
Thus, knowing how proteins fold is both ludicrously difficult and absolutely essential to understanding biological processes. Little wonder that the protein folding problem has been something of a holy grail in the field of biology for decades. Enter AlphaFold.
AlphaFolds coming-out party was the Critical Assessment of Protein Structure Prediction (CASP) competition in November 2020. Held every other year, CASP is the most important event in this fieldin effect, the Olympics for protein folding.
The competitions format is simple. Contestants are given the one-dimensional amino acid sequences for roughly 100 proteins whose three-dimensional structures have been experimentally determined but are not yet publicly available. Using the amino acid sequences as inputs, the competitors generate predictions for the proteins structures, which are then compared against the ground truth structures to determine their accuracy.
AlphaFolds performance at last years CASP was historic, far eclipsing any other method to solve the protein folding problem that humans have ever attempted. On average, DeepMinds AI system successfully predicted proteins three-dimensional shapes to within the width of about one atom. The CASP organizers themselves declared that the protein folding problem had been solved.
Before AlphaFold, we knew the 3-D structures for only about 17% of the roughly 20,000 proteins in the human body. Those protein structures that we did know had been painstakingly worked out in the laboratory over the decades through tedious experimental methods like X-ray crystallography and nuclear magnetic resonance, which require multi-million-dollar equipment and months or even years of trial and error.
Suddenly, thanks to AlphaFold, we now have 3-D structures for virtually all (98.5%) of the human proteome. Of these, 36% are predicted with very high accuracy and another 22% are predicted with high accuracy.
At last year's CASP, AlphaFold accurately predicted the shapes of proteins to within the width of ... [+] about one atom. Two protein examples are shown here, with AlphaFold's prediction (blue) overlaid on the protein's actual structure (green).
CASP co-founder and long-time protein folding expert John Moult put the AlphaFold achievement in historical context: This is the first time a serious scientific problem has been solved by AI.
Evolutionary biologist Andrei Lupas was even more effusive: This will change medicine. It will change research. It will change bioengineering. It will change everything. AlphaFold has already enabled Lupas lab to determine the structure of a protein that had eluded it for a decade.
How did DeepMind achieve this historic feat?
As with any machine learning effort, the answer starts with training data. AlphaFold was trained on a few different publicly available datasets; helpfully, much important data in this field is open-source. The Protein Data Bank (PDB) is a database containing the three-dimensional structures and associated amino acid sequences for virtually all proteins whose structures have been determined by mankindaround 180,000 in total, spanning human and non-human proteins. Another database, UniProt, contains the amino acid sequences (without structures) for nearly two hundred million more proteins.
The AlphaFold AI model is built with transformers, the same cutting-edge neural network architecture that powers well-known language models like GPT-3 and BERT. Transformers have taken the world of machine learning by storm since being introduced by Google Brain researchers in a seminal 2017 paper. The AlphaFold team created a new type of transformer designed specifically to work with three-dimensional structures, which they call Invariant Point Attention (IPA).
Compared to previous efforts to solve protein folding computationally, one noteworthy characteristic of AlphaFolds design is how massively recursive and iterative it is. The model is architected to maximize information flow at every step; hypotheses pass back and forth prolifically among AlphaFolds many components, enabling the overall system to develop an increasingly accurate prediction of a proteins structure.
A comprehensive overview of AlphaFolds technical details can be found in DeepMinds two recently published Nature articles. One more big-picture observation is worth noting here: while DeepMind does have access to far greater computing resources than the typical academic lab, AlphaFold does not merely represent a triumph of brute-force computational power. The amount of compute required to train AlphaFold was in fact modest relative to other high-profile AI models. Building AlphaFold required brilliant software engineering and several significant machine learning innovations. DeepMind is the worlds most advanced AI research group, and it showed.
In the words of Columbia Universitys Mohammed AlQuraishi: AlphaFold is both a tour de force of technical innovation and a beautifully designed learning machine, easily containing the equivalent of six or seven solid ML papers but somehow functioning as a single force of nature.
With all this said, it is important to note that AlphaFold has meaningful limitations.
Its predictions are not always as accurate as more traditional experimental methods. It predicts one stable conformation per protein, but proteins are dynamic and may change shape as they move through the body. Edge caseslike intrinsically disordered proteins and unnatural amino acidscan trip AlphaFold up.
AlphaFold generates predictions about individual protein structures, but it sheds little light on multiprotein complexes, protein-DNA interactions, protein-small molecule interactions, and the likedynamics that are essential to understand for many biomedical use cases. And because (like any AI system) AlphaFold has learned to make predictions based on its training data, it may struggle to accurately predict the shapes of unusual new proteins, including de novo protein designs not found in nature.
Yet there is a broader point to keep in mind here: when the challenges that today remain beyond AlphaFolds grasp get solved, those solutions will themselves almost certainly be powered by deep learning. And the pace of progress will be relentless. For instance, new research out of George Churchs lab at Harvard has already improved on the AlphaFold work in important ways. Meanwhile, DeepMind has indicated that it plans to tackle protein complexes next.
The AI genie is out of the bottle; structural biology (and the life sciences more broadly) will never be the same. AlphaFold is just the beginning.
The most important part of the AlphaFold story happened this summer. In July 2021, in a move whose effects will be felt for years to come, DeepMind open-sourced AlphaFold and its associated protein structures.
The London-based AI lab made AlphaFolds source code freely available online and published two peer-reviewed articles in Nature detailing its research methodology. Even more important, it launched an online database containing the three-dimensional structures for over 350,000 proteinsagain, completely open-source and freely available. This includes structures for nearly every protein in the human body, as well as for 20 other scientifically relevant species like the fruit fly and the mouse.
To put this in perspective, before AlphaFold, humanity had collectively figured out the three-dimensional structures for roughly 180,000 proteins.
And this is just the beginning. DeepMind says that it plans to release structures for over one hundred million more proteins in the coming monthsthat is, nearly every protein whose genetic sequence is known to science.
In the words of EMBL-EBI Director Ewan Birney: This will be one of the most important datasets since the mapping of the Human Genome.
The implications of DeepMinds decision to open-source AlphaFold are hard to overstate.
As the history of technology makes clear, nothing beats open, permissionless innovation. From the distributed creativity unleashed by the Internet twenty-five years ago to the success and ubiquity of open-source platforms like Kubernetes and Linux, true Cambrian explosions of technology development happen when everyonenot just small closed groupscan freely engage and contribute.
As legendary Sun Microsystems cofounder Bill Joy put it: No matter who you are, most of the smartest people work for someone else.
With AlphaFold open-source, an entire ecosystem of biotechnology research and startups will spring up around it in the years ahead. No one can anticipate the many different directions that innovation will flow once millions of high-quality protein structures are freely available at the click of a button. Reflecting the importance and diversity of proteins themselves, the possibilities are limitless.
Early use cases hint at the potential.
Researchers at UCSF have used AlphaFold to uncover previously unknown details about a key SARS-CoV-2 protein, which will advance the development of COVID-19 therapeutics. Using AlphaFold, a team at the University of Colorado Boulder was able to pinpoint a particularly tricky bacterial protein structure, a discovery that will aid their efforts to combat antibiotic resistance, a looming public health crisis. The Boulder team had spent years unsuccessfully trying to determine this proteins structure; with AlphaFold, they learned it in 15 minutes.
When it comes to commercial opportunity and startup activity, there are two applications in particular for which AlphaFold attracts a lot of attention: drug discovery and protein design.
In a nutshell, designing a new drug entails identifying a compound in the bodymost often a proteinthat you want to target, and then finding a molecule (the drug) that will successfully bind to that target, producing some beneficial health outcome. Knowing the three-dimensional shape of a prospective protein target is essential to this process because a proteins shape defines which and how other molecules will bind to it. AlphaFold makes available a vast new set of drug target candidates to explore.
One area of drug discovery for which AlphaFold holds particular promise is neglected diseases. Neglected diseases are those for which little research funding is directed to develop treatments, often because the disease affects very few people or because the populations that it affects are low-income and thus represent a less compelling market opportunity.
AlphaFold helps level the playing field in the search for therapeutics for these disease states by, for the first time, making relevant protein structures instantly available without the need for costly laboratory work. DeepMind has already announced a partnership with the nonprofit Drugs for Neglected Diseases initiative (DNDi) to tackle deadly neglected diseases like Chagas disease and Leishmaniasis.
But it is important to keep expectations here tempered. AlphaFold will not transform drug discovery overnight, for a few reasons.
AlphaFolds structures are not always accurate and granular enough for drug discovery purposes, particularly when it comes to a proteins active binding sites. In addition, the fact that AlphaFold predicts structures for individual proteins in isolation is a major limitation: what is most essential to understand for purposes of drug development is the structure of protein-drug interactions. Building a computational system to predict protein-drug structures is an even more daunting puzzle than individual protein folding (due above all to training data requirements); it remains out of reach today.
And ultimately, target discovery is just the first step in the very long and expensive process of creating a new drug. While AlphaFold may help accelerate this initial phase, it can do little about the many less tractable downstream bottlenecks (namely, human clinical trials) in the years-long journey to bring a new drug to market.
Protein researchers and entrepreneurs seem even more excited about AlphaFolds potential to boost the burgeoning field of de novo protein design.
The basic insight motivating protein design is that there is a vast universe of proteins that could theoretically be constructed, of which only an infinitesimal fraction have actually ended up in the world as a result of natural evolution. By exploring this uncharted universe of possible structures not found in nature, researchers seek to bring novel proteins into the world that are tailor-made for particular applications, from fighting disease to slowing climate change.
AlphaFold may prove to be a powerful tool in these efforts. For instance, verifying that a particular de novo protein candidate will actually fold up in a structurally viable way is a major gating function; before AlphaFold, this was costly and time-consuming and therefore could only be done for a small handful of candidates. With AlphaFold, it is trivial to map an amino acid sequence to a hypothesized three-dimensional structure, enabling much more rapid experimentation.
DeepMind and the University of Portsmouth in the U.K. recently announced a partnership to use AlphaFold to help design new types of proteins that more efficiently break down plastic waste, in order to combat pollution.
Structure-informed enzyme engineering is a core aspect of our work but obtaining those structures has, until now, always been the bottleneck in our research pipeline, said University of Portsmouth professor Andy Pickford. Being given access to AlphaFold has transformed our research strategy.
AlphaFold is a scientific achievement of the first order. It represents the first time that AI has significantly advanced the frontiers of humanitys scientific knowledge. Credible industry observers have speculated that it might one day win the researchers at DeepMind a Nobel Prize.
This is a history book moment, said protein folding researcher Carlos Outeiral.
At the same time, AlphaFold is no silver bullet for real-world challenges like drug discovery. Figuring out the most viable and impactful ways to translate AlphaFolds fundamental insights into products that create value in the real world will entail years of hard work from researchers and entrepreneurs. But make no mistake: the long-term impact will be transformative.
The European Molecular Biology Laboratory (EMBL), the non-profit research organization in charge of stewarding AlphaFold, summed it up well: AlphaFold will provide new insights and understanding of fundamental processes related to health and disease, with applications in biotechnology, medicine, agriculture, food science and bioengineering. It will probably take one or two decades until the full impact of this development can be properly assessed.
Go here to read the rest:
AlphaFold Is The Most Important Achievement In AIEver - Forbes
- AI File Extension - Open . AI Files - FileInfo [Last Updated On: June 14th, 2016] [Originally Added On: June 14th, 2016]
- Ai | Define Ai at Dictionary.com [Last Updated On: June 16th, 2016] [Originally Added On: June 16th, 2016]
- ai - Wiktionary [Last Updated On: June 22nd, 2016] [Originally Added On: June 22nd, 2016]
- Adobe Illustrator Artwork - Wikipedia, the free encyclopedia [Last Updated On: June 25th, 2016] [Originally Added On: June 25th, 2016]
- AI File - What is it and how do I open it? [Last Updated On: June 29th, 2016] [Originally Added On: June 29th, 2016]
- Ai - Definition and Meaning, Bible Dictionary [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- ai - Dizionario italiano-inglese WordReference [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- Bible Map: Ai [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai dictionary definition | ai defined - YourDictionary [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai (poet) - Wikipedia, the free encyclopedia [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- AI file extension - Open, view and convert .ai files [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- History of artificial intelligence - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Artificial intelligence (video games) - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- North Carolina Chapter of the Appraisal Institute [Last Updated On: September 8th, 2016] [Originally Added On: September 8th, 2016]
- Ai Weiwei - Wikipedia, the free encyclopedia [Last Updated On: September 11th, 2016] [Originally Added On: September 11th, 2016]
- Adobe Illustrator Artwork - Wikipedia [Last Updated On: November 17th, 2016] [Originally Added On: November 17th, 2016]
- 5 everyday products and services ripe for AI domination - VentureBeat [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Realdoll builds artificially intelligent sex robots with programmable personalities - Fox News [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- ZeroStack Launches AI Suite for Self-Driving Clouds - Yahoo Finance [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI and the Ghost in the Machine - Hackaday [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Why Google, Ideo, And IBM Are Betting On AI To Make Us Better Storytellers - Fast Company [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Roses are red, violets are blue. Thanks to this AI, someone'll fuck you. - The Next Web [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Wearable AI Detects Tone Of Conversation To Make It Navigable (And Nicer) For All - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Who Leads On AI: The CIO Or The CDO? - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI For Matching Images With Spoken Word Gets A Boost From MIT - Fast Company [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Teach undergrads ethics to ensure future AI is safe compsci boffins - The Register [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- AI is here to save your career, not destroy it - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- A Heroic AI Will Let You Spy on Your Lawmakers' Every Word - WIRED [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- With a $16M Series A, Chorus.ai listens to your sales calls to help your team close deals - TechCrunch [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Microsoft AI's next leap forward: Helping you play video games - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Samsung Galaxy S8's Bixby AI could beat Google Assistant on this front - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- 3 common jobs AI will augment or displace - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Stephen Hawking and Elon Musk endorse new AI code - Irish Times [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- SumUp co-founders are back with bookkeeping AI startup Zeitgold - TechCrunch [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Five Trends Business-Oriented AI Will Inspire - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI Systems Are Learning to Communicate With Humans - Futurism [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Pinterest uses AI and your camera to recommend pins - Engadget [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Chinese Firms Racing to the Front of the AI Revolution - TOP500 News [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Real life CSI: Google's new AI system unscrambles pixelated faces - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI could transform the way governments deliver public services - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Amazon Is Humiliating Google & Apple In The AI Wars - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- What's Still Missing From The AI Revolution - Co.Design (blog) [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Legaltech 2017: Announcements, AI, And The Future Of Law - Above the Law [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Can AI make Facebook more inclusive? - Christian Science Monitor [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- How a poker-playing AI could help prevent your next bout of the flu - ExtremeTech [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Dynatrace Drives Digital Innovation With AI Virtual Assistant - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- AI and the end of truth - VentureBeat [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Taser bought two computer vision AI companies - Engadget [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Google's DeepMind pits AI against AI to see if they fight or cooperate - The Verge [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- The Coming AI Wars - Huffington Post [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Is President Trump a model for AI? - CIO [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Who will have the AI edge? - Bulletin of the Atomic Scientists [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How an AI took down four world-class poker pros - Engadget [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- We Need a Plan for When AI Becomes Smarter Than Us - Futurism [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- See how old Amazon's AI thinks you are - The Verge [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford to invest $1 billion in autonomous vehicle tech firm Argo AI - Reuters [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Zero One: Are You Ready for AI? - MSPmentor [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford bets $1B on Argo AI: Why Silicon Valley and Detroit are teaming up - Christian Science Monitor [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google Test Of AI's Killer Instinct Shows We Should Be Very Careful - Gizmodo [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google's New AI Has Learned to Become "Highly Aggressive" in Stressful Situations - ScienceAlert [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- An artificially intelligent pathologist bags India's biggest funding in healthcare AI - Tech in Asia [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford pledges $1bn for AI start-up - BBC News [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Dyson opens new Singapore tech center with focus on R&D in AI and software - TechCrunch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How to Keep Your AI From Turning Into a Racist Monster - WIRED [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How Chinese Internet Giant Baidu Uses AI And Machine Learning - Forbes [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Humans engage AI in translation competition - The Stack [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Watch Drive.ai's self-driving car handle California city streets on a ... - TechCrunch [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Cryptographers Dismiss AI, Quantum Computing Threats - Threatpost [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Is AI making credit scores better, or more confusing? - American Banker [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI and Robotics Trends: Experts Predict - Datamation [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- IoT And AI: Improving Customer Satisfaction - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI's Factions Get Feisty. But Really, They're All on the Same Team - WIRED [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Elon Musk: Humans must become cyborgs to avoid AI domination - The Independent [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Facebook Push Into Video Allows Time To Catch Up On AI Applications - Investor's Business Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Defining AI, Machine Learning, and Deep Learning - insideHPC [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI Predicts Autism From Infant Brain Scans - IEEE Spectrum [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- The Rise of AI Makes Emotional Intelligence More Important - Harvard Business Review [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Google's AI Learns Betrayal and "Aggressive" Actions Pay Off - Big Think [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI faces hype, skepticism at RSA cybersecurity show - PCWorld [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- New AI Can Write and Rewrite Its Own Code to Increase Its Intelligence - Futurism [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]