Species invasions into novel habitats mark major transitions in the evolution of life on Earth. Some of these are relatively ancient, such as the vertebrate transition from the oceans to life on land (375 Mya) or the evolution of arboreal vertebrate species (160 Mya). When divergent lineages transition to the same novel habitat, it provides an opportunity to investigate the mechanisms that permit these adaptations and the relationship between similar phenotypes among lineages and the underlying genetic basis. Convergent processes may utilize homologous genomic regions in different lineages to achieve similar phenotypes (1). Alternatively, distinct, genomic processes may be possible (2), or genetic drift may lead to different options for divergent lineages. Relatively recent transitions may be the most informative, on the assumption that extended periods of evolution may obscure the relationship between genomic differences and the original adaptations. A system well suited to this investigation is the adaptation of divergent, terrestrial mammalian lineages to life in aquatic environments.
Marine mammals, broadly defined as mammals whose terrestrial predecessors entered the sea and who obtain all or most of their food from a marine environment, comprise at least 129 extant species divided into three orders (3). Cetartiodactyla includes cetaceans (whales, dolphins, and porpoises); Carnivora includes pinnipeds (walruses, sea lions, and seals), sea otters, and polar bears; and Sirenia includes sea cows (now extinct), manatees, and dugongs (3). Of these, cetaceans, pinnipeds, and sirenians are considered the oldest groups of marine mammals (3). In contrast, sea otters and the polar bear emerged relatively recently so much so that the polar bear can still hybridize with terrestrial sister taxa (35). The most species-rich group of marine mammals is Cetacea, which comprises 90 species (3). Cetaceans, pinnipeds, and sirenians represent an exceptional case of convergent evolutionthe emergence of similar phenotypic traits in species separated by millions of years of evolution (6). In these separate lineages of marine mammals, phenotypic convergence is observed in all major physiological systems (7, 8). The degree to which convergence is reflected at the molecular level can now be partially answered using genomics. However, the interpretation of such results has hitherto been restricted by the limited number of high-quality genomes from marine mammals (6, 9). Remaining uncertainties include the phylogenetic relationships between and within marine mammal groups and their demographic history. To address these questions, we assembled and annotated 17 marine mammal genomes (11 cetaceans and six pinnipeds). Based on more comprehensive genomic data, we identified many putative genetic innovations for the aquatic adaptation of mammals, including those associated with thermoregulation and skeletal systems.
We performed the sequencing and de novo assembly of 17 marine mammal genomes (11 cetaceans and six pinnipeds) (SI Appendix, Table S1). Among these, 14 were assembled by Supernova (10) with 10 Genomics data (average scaffold N50 = 28.66 Mb and contig N50 = 142.33 kb) (Table 1 and SI Appendix, Tables S1S3). The remaining three genomes were assembled using Illumina paired-end reads (SI Appendix, Tables S1S3). Eight of the assemblies were further improved by Hi-C chromosome anchoring (SI Appendix, Fig. S1). The assembled genomes of the 17 marine mammal species range in size from 2.37 to 2.62 Gb, which is similar to k-merbased estimations using GCE (11) (SI Appendix, Table S4) and those of published marine mammal genomes (SI Appendix, Table S5). More than 95% of each species short reads could be mapped to their respective assembly (SI Appendix, Fig. S2). BUSCO (Benchmarking Universal Single-Copy Orthologs) (version 3.0.2) (12) was used to assess the quality of the assemblies, revealing an average genome completeness of 90.98% (SI Appendix, Table S6). Analysis of syntenic relationships, comparing genome assemblies of closely related species, also showed high continuity of these genomes (SI Appendix, Fig. S3).
Assembly statistics for the 17 novel marine mammal genomes generated for this study
We employed de novo and homology-based prediction methods to annotate the genes and repeat sequences of the assembled genomes (SI Appendix, Tables S7 and S8). Annotated protein-coding genes ranged from 20,083 to 20,947 per species (Table 1). The average gene lengths were similar to those of closely related species (SI Appendix, Fig. S4), and we recovered an average 96.44% of the BUSCO Mammalia gene set (4,104 genes) (Table 1). Overall, we generated high-quality genome sequences for 17 marine mammals, providing a good foundation for developing a better understanding of aquatic adaptation in marine mammals across three divergent ancestral lineages.
Combining published genome data with our 17 genomes, we were able to provide a detailed phylogenomic reconstruction of marine mammal species. Two nucleotide datasets were used (SI Appendix, Table S9): ortholog sequences from whole-genome alignment and reciprocal best hit ortholog genes from gene annotations. The maximum-likelihood trees generated from the alignments of the individual loci of the two datasets were used as input for the coalescent-based phylogenetic method ASTRAL-III (13), and these two datasets generated a consensus topology (SI Appendix, Fig. S5 and Fig. 1A). The overall phylogenetic relationship of three lineages of marine mammals is consistent with previous studies (8, 1416). For cetaceans, they support the monophyly of Physeteroidea + Kogiidae, Delphinidae, Monodontidae + Phocoenidae, and Ziphiidae among odontocete taxa, with Physeteroidea as the most basal clade of odontocetes, consistent with a recent large-scale phylogenomic analysis of cetaceans (17). For pinnipeds, there is support for a sister group relationship between Musteloidea and Pinnipedia and the monophyly of Odobenidae + Otariidae, consistent with studies based on mitochondrial DNA (18).
Phylogeny and population changes of marine mammals. (A) A maximum likelihood phylogenetic tree of 35 marine mammal species and 16 outgroup mammal species. Three lineages of marine mammals are distinguished by columns of different colors: Cetacea (blue), Pinnipedia (green), and Sirenia (red). Red stars represent the species differentiation node mentioned in the main text. (B) Population size history of three lineages of marine mammals. The normalized effective population size (Ne) of each species was estimated using pairwise sequentially Markovian coalescent. The Ne for each group of marine mammals is shown.
We further assessed divergence times for each marine mammal phylogenetic tree node (SI Appendix, Fig. S7). The divergence time between Cetacea and Hippopotamidae was estimated to be 55.5 Mya, which coincides with the PaleoceneEocene transition and a global temperature rise, which possibly prompted terrestrial mammals to enter the sea (19). The initial split of Mysticeti (baleen whales) and Odontoceti (toothed whales) was about 37.7 Mya. The emergence of Pinnipedia was estimated to be 27.4 Mya, while the divergence time between Odobenidae and Otariidae was about 18.6 Mya. The divergence time of sirenians and the African savanna elephant, their closest land relative, was estimated to be 63.9 Mya.
We also reconstructed the demographic histories of cetaceans, pinnipeds, and sirenians (SI Appendix, Table S10). The three marine mammal lineages were found to experience different historical changes in population size (see normalized average effective population size, Ne, in Fig. 1B and individual species profiles in SI Appendix, Fig. S8). Specifically, the Ne of cetaceans experienced a rapid decline during the last 500,000 y. Consistently, the heterozygosity rate of most cetaceans is even lower than the endangered giant panda [1.32 (20, 21)] (SI Appendix, Table S11), highlighting the ongoing conservation needs of cetacean species.
We compared the genome sizes of the three marine mammal lineages with their terrestrial relatives: Cetacea versus Ruminantia, Pinnipedia versus Canidae, and Sirenia versus Proboscidea. The average genome size of Pinnipedia (2.4 Gb) and Sirenia (3.1 Gb) was similar to their terrestrial sister taxa (Fig. 2B). In contrast, the genome size of cetaceans ranged from 2.4 to 2.6 Gb and displayed a decreasing trend compared to Ruminantia (2.8 Gb in reindeer, cattle, and goat), their most closely related lineage (Fig. 2B). Consistent with the genome size comparisons, pinnipeds and sirenians present similar repeat contents to their terrestrial sister taxa, while cetacean genomes have 10% fewer repeats than ruminants. Five subtypes of repeats are more abundant in ruminant species (SI Appendix, Table S12), including LINE/RTE-BovB, LTR/ERV1, LTR/ERVK, SINE/Core-RTE, and SINE/tRNA-Core-RTE. In addition to several reported large fragments in ruminant genomes (22), we found 11 large (>1.5 Mb) deletions and three large insertions (SI Appendix, Tables S13S15) in cetaceans, compared to their terrestrial counterpart cattle.
Structural characteristics and chromosome evolution of marine mammal genomes. (A) Circos plot of representative genomes of marine mammals: sperm whale, Indo-Pacific bottlenose dolphin (IPB dolphin), South American fur seal (SA fur seal), and spotted seal. (B) Genome sizes and transposable element content analysis of representative genomes of marine mammals. We selected three Ruminantia species, three cetacean species, three Canidae species, three pinniped species, an elephant, and a manatee. (C) Chromosome evolution of Cetacea and Pinnipedia. We reconstructed 23 and 19 ancestral chromosomes of Cetacea and Pinnipedia, respectively. The chromosome assignment to ancestral chromosomes is shown by colored bars, Indo-Pacific humpback dolphin (IPH dolphin).
Based on the eight chromosome-level genome assemblies that we generated (SI Appendix, Fig. S1) and two publicly available chromosome-level genomes [(sperm whale (23) and Indo-Pacific humpback dolphin (24)], we reconstructed the ancestral chromosomes of Cetacea (using the Indo-Pacific bottlenose dolphin as the reference genome) and Pinnipedia (using the South American sea lion as the reference genome) with DESCHRAMBLER (25) at 300-kb resolution (Fig. 2C). In Cetacea, we identified 1,308 conserved segments and reconstructed 23 ancestral predicted chromosome fragments (APCFs), with a total length of 2.09 Gb. In Pinnipedia, we identified 194 conserved segments and reconstructed 19 APCFs, with a total length of 1.84 Gb. We traced back the source of these APCFs for both lineages and found there are fewer chromosome rearrangement events in Pinnipedia than in Cetacea (Fig. 2C).
We next assessed the expansion and contraction of gene families, positively selected genes (PSGs), and rapidly evolving genes (REGs) in the three marine mammal lineages. In total, 44, 29, and 212 gene families were identified as expanded, and 87, 15, and 12 gene families were contracted in the ancestor node of Cetacea, Pinnipedia, and Sirenia, respectively (SI Appendix, Fig. S9). Functional enrichment analysis of these gene families revealed that olfactory transduction is the only shared contracted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (SI Appendix, Table S16). Several expanded gene family-associated KEGG pathways are shared among two types of marine mammals: thermogenesis and oxidative phosphorylation in Cetacea and Pinnipedia and neural plasticity (as suggested by the alcoholism pathway) and estrogen signaling in Pinnipedia and Sirenia (SI Appendix, Table S17).
To assess the selective pressures acting on marine mammal genomes, we estimated the dN/dS ratio () using 7,252 orthologous, protein-coding genes. When compared with terrestrial outgroups, marine mammal branches always had a higher dN/dS ratio (SI Appendix, Fig. S10). We identified 5, 11, and 16 PSGs and 21, 17, and 295 REGs in the ancestral branches of Cetacea, Pinnipedia, and Sirenia, respectively (SI Appendix, Tables S18 and S19 and Fig. S9) (2 test, P < 0.05). We found that cystic fibrosis transmembrane conductance regulator (CFTR) underwent rapid evolution in both Pinnipedia and Sirenia. CFTR plays a vital role in the transport of various ions across the cell membrane, water transport, and fluid homeostasis (26, 27).
We identified 4,518,724 and 4,341,059 conserved noncoding elements (CNEs) in Cetacea and Pinnipedia, respectively. We further performed assay for transposase-accessible chromatin sequencing (ATAC-seq) (28) of two cetaceans (Indo-Pacific bottlenose dolphin and Rissos dolphin) and two pinnipeds (Baikal seal and South American sea lion) to identify CNEs associated with open chromatin (i.e., accessible to the transcriptional machinery). A total of 1,158 and 1,684 genes in Cetacea and Pinnipedia, respectively, have CNEs with ATAC-seq signal peaks within 3 kb upstream or downstream (SI Appendix, Tables S21 and 22). Of these genes, 371 have CNE peaks in both marine orders (SI Appendix, Table S23 and Fig. S11). Although further experimental work could be a worthwhile attempt to assess the contribution of these CNEs, our results provide a valuable resource for further studies on gene regulation in marine mammal species.
The evolution of marine mammals, the adaptation of terrestrial mammalian lineages to life histories dependent on the marine environment, is considered a seminal example of convergent evolution. The degree to which convergence is reflected at the molecular level can be addressed using genomics. Understanding this phenomenon addresses key questions about redundancy, pleiotropy, and the relationship between genotype and phenotype. We applied the Convergence at Conservative Sites method (29) to investigate convergent genes in the three lineages of marine mammals. Orthologous genes were assigned by synteny alignment (SI Appendix, SI Materials and Methods). We identified 195 convergent amino acid substitutions in 172 genes among marine mammals (SI Appendix, Tables S24). Only three genes (FAM20B, NFIA, and KYAT1) share convergent amino acid substitution in all three marine mammal lineages. Six genes (HERC1, MITF, EPG5, FAT1, SYNE1, and ATM) show convergent mutations at different amino acid positions in cetacean manatee and pinniped manatee. For example, MITF has an L10F substitution in cetaceans and sirenians (the manatee) and a T570A substitution in pinnipeds and the manatee. Among the 94 genes with convergent amino acid substitutions in the fully aquatic cetaceans and Sirenia, but not between the amphibious pinnipeds in either cetaceans or Sirenia, five genes are within the KEGG pathway dopaminergic synapse (though the adjusted P value is not significant at the 0.05 level: P = 0.51; SI Appendix, Table S25). Previous studies indicate that UCP1 has been independently lost in many marine mammals, especially in cetaceans and sirenians (30, 31). We confirm and extend this inference, showing that a functional UCP1 is present in most pinnipeds, except for the Antarctic fur seal, which is the most polar of the species included in this assessment (SI Appendix, Table S26 and Fig. S12).
Cetaceans have many unique biological characteristics, including echolocation, deep diving, and large variation in body size. The molecular basis of echolocation has been well studied previously (3234). However, based on more comprehensive data, we systematically reanalyzed the 504 hearing-related gene sequences in 40 species, including two groups of echolocating bats (group M: big brown bat, Natal long-fingered bat, Brandts bat, and little brown bat and group G: greater horseshoe bat) and 16 toothed whales (group T) (SI Appendix, Fig. S13). A total of 64 genes were identified as convergent genes, most reported in previous studies (SI Appendix, Table S27).
We next compared the four whale species with the best diving abilities to 20 comparatively shallow-diving species to study the genetic basis of deep diving in cetaceans. The deep-diving species are sperm whale (reported to dive to 1,860 m for >1 h) (35), Blainvilles beaked whale (1,251 m for 57 min) (36, 37), and dwarf and pygmy sperm whales [species in the family Kogiidae with highly similar ecology and habitat (up to 1,425 m for 43 min) (3840)]. We retrieved 1,803 genes from HypoxiaDB, a hypoxia-regulated protein database (41), and observed 39 genes with at least one specific amino acid change unique to the deep-diving group (SI Appendix, Table S28). MB encodes myoglobin, a protein critical for oxygen storage and transport (42). Deep-diving species have amino acid residue changes associated with elevated myoglobin net surface charge and maximal dive time (43). Compared with background branches, 45 genes showed significantly higher dN/dS ratios in deep-diving species (SI Appendix, Table S29) (2 test, P < 0.05). We detected 45 REGs in deep-diving cetaceans. Of these, three genes (SETX, GIF, and TMPRSS11D) had dN/dS values above 1, indicating positive selection. Seven REGs (CEP170, DHCR7, DSP, GBE1, PLD1, SETX, and TMPRSS11D) have shared amino acid mutations in the four deep-diving species.
Cetacean bodyweight spans orders of magnitude from 50 kg (the vaquita, Phocoena sinus) up to 180,000 kg (the blue whale, Balaenoptera musculus) (44). We selected a set of 1,528 genes involved in body size development and estimated their dN/dS ratios in cetaceans with large body size: the blue whale (3) and the sperm whale (3). Compared to the background, we found 102 REGs (with significantly higher dN/dS) in giant cetaceans (SI Appendix, Table S30 and Fig. S14) (2 test, P < 0.05). These REGs were enriched in the Hedgehog and Wnt signaling pathways essential for bone development (45) (SI Appendix, Table S31). Additional bone developmentrelated genes with a higher dN/dS in giant cetaceans include BMP1 in the TGF- signaling pathway and the Notch signaling pathway genes SNW1 and CTBP2.
More:
Comparative genomics provides insights into the aquatic adaptations of mammals - pnas.org
- ENCODE: Encyclopedia Of DNA Elements - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- 07.05.2010 - The Human Genome [ Coast To Coast AM ] - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- NOVA scienceNOW : 51 - Public Genomes, Algae Fuel, Mystery of the Gakkel Ridge, Yoky Matsuoka - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Vincent T. - Genome (Club Remix) - [Preview] - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Comparing The Human And Chimpanzee Genomes - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Whole Genome Sequencing and Its Impact on Clinical Care - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Carlos Bustamante -- "Reconstructing the Great Human Diasporas from Genome Variation Data" - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- 3 Sad Surprises: The Human Genome Project - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- The RFW interviews Genome - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Science Bulletins: Scientists Peer Inside "Superbug" Genome - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genome : Live @ Smu's : June 3 2012 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Inoki Genome Federation - Genome 19 - 04 02 2012 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- THE HUMAN GENOME MUSIC PROJECT - CHROMOSOME 1 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genomic Medicine - Bruce Korf (2012) - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Human Genome's 'Blockbuster' Potential Undervalued in Bid GSK vs HGSI - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Announcing the Completion of the First Survey of the Entire Human Genome at the White House - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- DNA analysis Part I. Genomic Sequencing - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- The Genome Question: Moore vs. Jevons with Bud Mishra - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genome-Wide Association Studies - Karen Mohlke (2012) - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- New human genome research aids understanding of disease [Last Updated On: September 8th, 2012] [Originally Added On: September 8th, 2012]
- UNC Lineberger scientists lead definition of key lung cancer genome [Last Updated On: September 10th, 2012] [Originally Added On: September 10th, 2012]
- Illumina Announces Expedited Individual Genome Sequencing Service (IGS) [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Genome research given a boost with opening of bioscience facility [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Re-Imagining Our Genes: ENCODE Project Reveals Genome as an Information Processing System [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Illumina unveils upgraded genome sequence service [Last Updated On: September 12th, 2012] [Originally Added On: September 12th, 2012]
- US Personalized Cancer Genome Sequencing Market [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Yale maps “uncharted” genome regions [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Research and Markets: US Personalized Cancer Genome Sequencing Market [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- 3Qs: New clues to unlocking the genome [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- Oyster Genome Pries Open Mollusk Evolutionary Shell [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Bangladeshi scientist decodes genome of deadly fungus [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Oyster genome uncover the stress adaptation and complexity of shell formation [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- The oyster genome reveals stress adaptation and complexity of shell formation [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Diseases of aging map to a few 'hotspots' on the human genome [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- GnuBIO Awarded $4.5 Million in Funding from the National Human Genome Research Institute to Develop Lower Cost Genome ... [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Oyster genome mystery unravelled [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Devangshu Datta: What's in a genome [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Pacific Oyster Genome Shows Stress Adaptation And Complexity Of Shell Formation [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- UNC Lineberger scientists lead cancer genome analysis of breast cancer [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- Encoding the human genome [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- Cancer genome analysis of breast cancer: Team identifies genetic causes and similarity to ovarian cancer [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- Fungus genome map paves way for 'Snow White' jute variety [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- New online, open access journal focuses on microbial genome announcements [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- By Simply Sharing, Doctors Could Unlock the Genome's Potential [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- Forget the Cloud—Knome Offers Genome Analysis in a Box [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- BGI@CHOP Joint Genome Center to Offer Clinical Next-Generation Sequencing Services [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- Holy Bat Virus! Genome Hints At Origin Of SARS-Like Virus [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- Community Fundraising Effort Helps Researchers Sequence Parrot Genome [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- UMass Med professors are sleuths of the genome [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Knome Introduces the knoSYS™100; First Plug-and-Play Human Genome Interpretation System [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- First large scale trial of whole-genome cancer testing for clinical decision-making reported [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Should You Get Your Genome Mapped? [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Surprising differences between apples and pears [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- 50-Hour Whole Genome Sequencing Provides Rapid Diagnosis for Children With Genetic Disorders [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- A map of rice genome variation reveals the origin of cultivated rice [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Genome analysis promises hope for breast cancer patients [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Genome Alberta Welcomes Alberta Minister of Enterprise and Advanced Education, Stephen Khan and Federal Minister of ... [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Fifty-hour whole genome sequencing provides rapid diagnosis for children with genetic disorders [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Will Low-Cost Genome Sequencing Open 'Pandora's Box'? [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Genome testing could help individualize treatments [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Would you get your genome tested? [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- The Genome — a Pandora's Box? [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- Fast genome test could help sick newborns [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- In-Depth Genome Analysis Moves Toward The Hospital Bed [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Your Verdict On Getting A Genome Test? Bring It On [Last Updated On: October 6th, 2012] [Originally Added On: October 6th, 2012]
- Genome-wide study identifies 8 new susceptibility loci for atopic dermatitis [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- Genome-wide study identifies eight new susceptibility loci for atopic dermatitis [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- Genome interpreter vies for place in clinical market [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- The $1,000 Genome: A Bait and Switch? [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Mount Sinai School of Medicine Offers First-Ever Course with Whole Genome Sequencing [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- First whole genome sequencing of multiple pancreatic cancer patients has been outlined [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Cheap genome sequences demand new rules on privacy [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- UConn Gets Grant For Genome Research [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Inconsistent Genome Privacy Laws Need Toughening, Panel Says [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- US panel calls for stronger privacy for genome data [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- Genome Canada Board Appoints New Chair [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- The $1,000 Genome Is Almost Here- Are We Ready? [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Global genome effort seeks genetic roots of disease [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Massive encyclopedia helps explain how the human genome works [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Genome evolution and carbon dioxide dynamics [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]