The proliferation of artificial intelligence and algorithmic decision-making has helped shape myriad aspects of our society: From facial recognition to deep fake technology to criminal justice and health care, their applications are seemingly endless. Across these contexts, the story of applied algorithmic decision-making is one of both promise and peril. Given the novelty, scale, and opacity involved in many applications of these technologies, the stakes are often incredibly high.
This is the introduction to FTC Commissioner Rebecca Kelly Slaughter's whitepaper:Algorithms and Economic Justice: A Taxonomy of Harms and a Path Forward for the Federal Trade Commission. If you have been keeping up with data-driven and algorithmic decision-making, analytics, machine learning, AI, and their applications, you can tell it's spot on. The 63-page Whitepaper does not disappoint.
Slaughter worked on the whitepaper with her FTC colleagues Janice Kopec and Mohamad Batal. Their work was supported by Immuta, and it has just been published as part of theYale Law School Information Society Project Digital Future Whitepapers series. The Digital Future Whitepaper Series, launched in 2020, is a venue for leading global thinkers to question the impact of digital technologies on law and society.
The series aims to provide academics, researchers, and practitioners a forum to describe novel challenges of data and regulation, to confront core assumptions about law and technology, and to propose new ways to align legal and ethical frameworks to the problems of the digital world.
Slaughter notes that in recent years, algorithmic decision-making has produced biased, discriminatory, and otherwise problematic outcomes in some of the most important areas of the American economy. Her work provides a baseline taxonomy of algorithmic harms that portend injustice, describing both the harms themselves and the technical mechanisms that drive those harms.
In addition, it describes Slaughter's view of how the FTC's existing tools can and should be aggressively applied to thwart injustice, and explores how new legislation or an FTC rulemaking could help structurally address the harms generated by algorithmic decision-making.
Slaughter identifies three ways in which flaws in algorithm design can produce harmful results: Faulty inputs, faulty conclusions, and failure to adequately test.
The value of a machine learning algorithm is inherently related to the quality of the data used to develop it, and faulty inputs can produce thoroughly problematic outcomes. This broad concept is captured in the familiar phrase: "Garbage in, garbage out."
The data used to develop a machine-learning algorithm might be skewed because individual data points reflect problematic human biases or because the overall dataset is not adequately representative. Often skewed training data reflect historical and enduring patterns of prejudice or inequality, and when they do, thesefaulty inputs can create biased algorithms that exacerbate injustice, Slaughter notes.
She cites some high-profile examples of faulty inputs, such asAmazon's failed attempt to develop a hiring algorithm driven by machine learning, and theInternational Baccalaureate'sandUK's A-Level exams. In all of those cases, the algorithms introduced to automate decisions kept identifying patterns of bias in the data used to train them and attempted to reproduce them.
A different type of problem involves feeding data into algorithms that generate conclusions that are inaccurate or misleading -- perhaps better phrased as "data in, garbage out." This type of flaw, faulty conclusions, undergirds fears about the rapidly proliferating field of AI-driven "affect recognition" technology and is often fueled by failures in experimental design.
Machine learning often works as a black box, and as applications are becoming more impactful, that can be problematic. Image: Immuta
Slaughter describes situations in which algorithms attempt to find patterns in, and reach conclusions based on, certain types of physical presentations, and mannerisms. But, she notes, as one might expect, human character cannot be reduced to a set of objective, observable factors. Slaughter highlights the use of affect recognition technology in hiring as particularly problematic.
Some more so than others, such as a company that purports to profile more than sixty personality traits relevant to job performance -- from "resourceful" to "adventurous" to "cultured" -- all based on an algorithm's analysis of an applicant's 30-second recorded video cover letter.
Despite the veneer of objectivity that comes from throwing around terms such as "AI" and "machine learning," in many contexts, the technology is still deeply imperfect, and many argue that its use is nothing less than pseudo-science.
But even algorithms designed with care and good intentions can still produce biased or harmful outcomes that are unanticipated, Slaughter notes. Too often, algorithms are deployed without adequate testing that could uncover these unwelcome outcomes before they harm people in the real world.
Slaughter mentions bias in search results uncovered when testing withGoogle'sandLinkedIn'ssearch but focuses on the health care field. Arecent studyfound racial bias in a widely used machine learning algorithm intended to improve access to care for high-risk patients with chronic health problems.
The algorithm used health care costs as a proxy for health needs, but for a variety of reasons unrelated to health needs, white patients spend more on health care than their equally sick Black counterparts do. Using health care costs to predict health needs, therefore, caused the algorithm to disproportionately flag white patients for additional care.
Researchers estimated that as a result of this embedded bias, the number of Black patients identified for extra care was reduced by more than half. The researchers who uncovered the flaw in the algorithm were able to do so because they looked beyond the algorithm itself to the outcomes it produced and because they had access to enough data to conduct a meaningful inquiry.
When the researchers identified the flaw, the algorithm's manufacturer worked with them to mitigate its impact,ultimately reducing bias by 84%-- exactly the type of bias reduction and harm mitigation that testing and modification seeks to achieve, Slaughter notes.
Not all harmful consequences of algorithms stem from design flaws. Slaughter also identifies three ways in which sophisticated algorithms can generate systemic harm: by facilitating proxy discrimination, by enabling surveillance capitalism, and by inhibiting competition in markets.
Proxy discrimination is the use of one or more facially neutral variables to stand in for a legally protected trait, often resulting in disparate treatment of or disparate impact on protected classes for certain economic, social, and civic opportunities. In other words, these algorithms identify seemingly neutral characteristics to create groups that closely mirror a protected class, and these "proxies" are used for inclusion or exclusion.
Slaughter mentions some high-profile cases of proxy discrimination: The Department of Housing and Urban Development allegations against Facebook's tool called "Lookalike Audiences,"showings of job openings to various audiences, andFinTech innovations that can enable the continuation of historical biasto deny access to the credit system or to efficiently target high-interest products to those who can least afford them.
An additional way algorithmic decision making can fuel broader social challenges is the role it plays in the system ofsurveillance capitalism, which Slaughter defines as a business model that systematically erodes privacy, promotes misinformation and disinformation, drives radicalization, undermines consumers' mental health, and reduces or eliminates consumers' choices.
AI Ethics has very real ramifications that are getting increasingly more widespread and important
Through constant, data-driven adjustments, Slaughter notes, algorithms that process consumer data, often in real-time, evolve, and "improve" in a relentless effort to capture and monetize as much attention from as many people as possible. Many surveillance capitalism enterprises are remarkably successful at using algorithms to "optimize" for consumers' attention with little regard for downstream consequences.
Slaughter examines the case ofYouTube content addressed at children and how it's been weaponized. TheFTC has dealt with this, and Slaughter notes that YouTube announced they will use machine learning to actively search for mis-designated content and automatically apply age restrictions.
While this sounds like the technological backstopSlaughter requestedin that case, she notes two major differences: First, it is entirely voluntary, and second, both its application and effectiveness are opaque. That, she argues, brings up a broader set of concerns about surveillance capitalism -- one that extends beyond any single platform.
The pitfalls associated with algorithmic decision-making sound most obviously in the laws the FTC enforces through its consumer protection mission, Slaughter notes. But the FTC is also responsible for promoting competition, and the threats posed by algorithms profoundly affect that mission as well.
Moreover, she goes on to add, these two missions are not actually distinct, and problems -- including those related to algorithms and economic justice -- need to be considered with both competition and consumer protection lenses.
Slaughter examines topics including traditional antitrust fare such as pricing and collusion, as well as more novel questions such as the implications of the use of algorithms by dominant digital firms to entrench market power and to engage in exclusionary practices.
Overall, the whitepaper seems well-researched and shows a good overview of the subject matter. While the paper's sections on using the FTC's current authorities to better protect consumers and proposed new legislative and regulatory solutions refer to legal tools we do not feel qualified to report on, we encourage interested readers to read them.
We would also like to note, however, that while it's important to be aware ofAI ethics and the far-reaching consequences of data and algorithms, it's equally important to maintain a constructive and unbiased attitude when it comes to issues that are often subjective and open to interpretation.
Overzealous attitude in debates that often take place on social media, where context and intent can easily be misinterpreted and misrepresented, may not be the most constructive way to make progress. Case in point, AI figureheadsYann LeCunandPedro Domingo'smisadventures.
When it comes to AI ethics, we need to go beyond sensationalism and toward a well-informed and, well, data-driven approach. Slaughter's work seems like a step in that direction.
Originally posted here:
AI ethics in the real world: FTC commissioner shows a path toward economic justice - ZDNet
- AI File Extension - Open . AI Files - FileInfo [Last Updated On: June 14th, 2016] [Originally Added On: June 14th, 2016]
- Ai | Define Ai at Dictionary.com [Last Updated On: June 16th, 2016] [Originally Added On: June 16th, 2016]
- ai - Wiktionary [Last Updated On: June 22nd, 2016] [Originally Added On: June 22nd, 2016]
- Adobe Illustrator Artwork - Wikipedia, the free encyclopedia [Last Updated On: June 25th, 2016] [Originally Added On: June 25th, 2016]
- AI File - What is it and how do I open it? [Last Updated On: June 29th, 2016] [Originally Added On: June 29th, 2016]
- Ai - Definition and Meaning, Bible Dictionary [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- ai - Dizionario italiano-inglese WordReference [Last Updated On: July 25th, 2016] [Originally Added On: July 25th, 2016]
- Bible Map: Ai [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai dictionary definition | ai defined - YourDictionary [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Ai (poet) - Wikipedia, the free encyclopedia [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- AI file extension - Open, view and convert .ai files [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- History of artificial intelligence - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Artificial intelligence (video games) - Wikipedia, the free ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- North Carolina Chapter of the Appraisal Institute [Last Updated On: September 8th, 2016] [Originally Added On: September 8th, 2016]
- Ai Weiwei - Wikipedia, the free encyclopedia [Last Updated On: September 11th, 2016] [Originally Added On: September 11th, 2016]
- Adobe Illustrator Artwork - Wikipedia [Last Updated On: November 17th, 2016] [Originally Added On: November 17th, 2016]
- 5 everyday products and services ripe for AI domination - VentureBeat [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Realdoll builds artificially intelligent sex robots with programmable personalities - Fox News [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- ZeroStack Launches AI Suite for Self-Driving Clouds - Yahoo Finance [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI and the Ghost in the Machine - Hackaday [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Why Google, Ideo, And IBM Are Betting On AI To Make Us Better Storytellers - Fast Company [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Roses are red, violets are blue. Thanks to this AI, someone'll fuck you. - The Next Web [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Wearable AI Detects Tone Of Conversation To Make It Navigable (And Nicer) For All - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Who Leads On AI: The CIO Or The CDO? - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- AI For Matching Images With Spoken Word Gets A Boost From MIT - Fast Company [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Teach undergrads ethics to ensure future AI is safe compsci boffins - The Register [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- AI is here to save your career, not destroy it - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- A Heroic AI Will Let You Spy on Your Lawmakers' Every Word - WIRED [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- With a $16M Series A, Chorus.ai listens to your sales calls to help your team close deals - TechCrunch [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Microsoft AI's next leap forward: Helping you play video games - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Samsung Galaxy S8's Bixby AI could beat Google Assistant on this front - CNET [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- 3 common jobs AI will augment or displace - VentureBeat [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Stephen Hawking and Elon Musk endorse new AI code - Irish Times [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- SumUp co-founders are back with bookkeeping AI startup Zeitgold - TechCrunch [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Five Trends Business-Oriented AI Will Inspire - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI Systems Are Learning to Communicate With Humans - Futurism [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Pinterest uses AI and your camera to recommend pins - Engadget [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Chinese Firms Racing to the Front of the AI Revolution - TOP500 News [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Real life CSI: Google's new AI system unscrambles pixelated faces - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- AI could transform the way governments deliver public services - The Guardian [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Amazon Is Humiliating Google & Apple In The AI Wars - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- What's Still Missing From The AI Revolution - Co.Design (blog) [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Legaltech 2017: Announcements, AI, And The Future Of Law - Above the Law [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Can AI make Facebook more inclusive? - Christian Science Monitor [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- How a poker-playing AI could help prevent your next bout of the flu - ExtremeTech [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Dynatrace Drives Digital Innovation With AI Virtual Assistant - Forbes [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- AI and the end of truth - VentureBeat [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Taser bought two computer vision AI companies - Engadget [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Google's DeepMind pits AI against AI to see if they fight or cooperate - The Verge [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- The Coming AI Wars - Huffington Post [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Is President Trump a model for AI? - CIO [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Who will have the AI edge? - Bulletin of the Atomic Scientists [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How an AI took down four world-class poker pros - Engadget [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- We Need a Plan for When AI Becomes Smarter Than Us - Futurism [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- See how old Amazon's AI thinks you are - The Verge [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford to invest $1 billion in autonomous vehicle tech firm Argo AI - Reuters [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Zero One: Are You Ready for AI? - MSPmentor [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Ford bets $1B on Argo AI: Why Silicon Valley and Detroit are teaming up - Christian Science Monitor [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google Test Of AI's Killer Instinct Shows We Should Be Very Careful - Gizmodo [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Google's New AI Has Learned to Become "Highly Aggressive" in Stressful Situations - ScienceAlert [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- An artificially intelligent pathologist bags India's biggest funding in healthcare AI - Tech in Asia [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Ford pledges $1bn for AI start-up - BBC News [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Dyson opens new Singapore tech center with focus on R&D in AI and software - TechCrunch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How to Keep Your AI From Turning Into a Racist Monster - WIRED [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How Chinese Internet Giant Baidu Uses AI And Machine Learning - Forbes [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Humans engage AI in translation competition - The Stack [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Watch Drive.ai's self-driving car handle California city streets on a ... - TechCrunch [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Cryptographers Dismiss AI, Quantum Computing Threats - Threatpost [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Is AI making credit scores better, or more confusing? - American Banker [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI and Robotics Trends: Experts Predict - Datamation [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- IoT And AI: Improving Customer Satisfaction - Forbes [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI's Factions Get Feisty. But Really, They're All on the Same Team - WIRED [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Elon Musk: Humans must become cyborgs to avoid AI domination - The Independent [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Facebook Push Into Video Allows Time To Catch Up On AI Applications - Investor's Business Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Defining AI, Machine Learning, and Deep Learning - insideHPC [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI Predicts Autism From Infant Brain Scans - IEEE Spectrum [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- The Rise of AI Makes Emotional Intelligence More Important - Harvard Business Review [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Google's AI Learns Betrayal and "Aggressive" Actions Pay Off - Big Think [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- AI faces hype, skepticism at RSA cybersecurity show - PCWorld [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- New AI Can Write and Rewrite Its Own Code to Increase Its Intelligence - Futurism [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]