The Evolution of the Space Suit – IEEE Spectrum

Posted: July 29, 2021 at 8:57 pm

I decided on building a 213-by-107-cm bench. This was the largest space that I could reasonably reach across and also fit in my garage without blocking movement. The 2x4basics kit came with shelves, providing space for plastic storage boxes. At this point, I thought I was done, because surely this bench would be simply something that I built and useda background thing that needs no more mention than a screwdriver or hammer would.

As it turns out, I can't leave well enough alone. The initial tweaks were small. To enhance the bench's storage, I added magnets on which to hang various tools, and augmented my existing storage cases with 3D-printed dividers. Then I added an eyebolt for my air compressora fabulous tool for its roughly US $40 priceto keep it at the ready for blowing off excess material. Toward the back of the bench rests a hot-air gun and a soldering station, as well as my bag of other electrical tools.

The solder squid (left) uses an EZ Fan board and a motion sensor to control a fan. The bench lights are controlled using an Arduino Nano (far right)inserted into another custom board, the Grounduino (middle), which also provides a dedicated space for the recommended large capacitor when driving addressable LED strips.James Provost

Then things got more complex. I added a DIY solder squida block with four flexible arms that I use to hold components in place while solderingwith a concrete base and an automatic solder fume extractor.

Yes, my solder squid is made out of concrete, via a 3D-printed moldthough that last refinement is perhaps optional. You could make nearly the same sort of brick using a plastic storage container. Heavy, cheap, and nonconductive, concrete is the perfect base material for such a device, and for arms you simply need to stick a few coolant lines in while the concrete cures. Two of the arms have alligator clips attached, one has a larger clamp, and the third has an old PC fan, recycled for my fume extractor.

I automated the fan by hooking up a rechargeable battery, a USB charger board, and a passive infrared (PIR) motion sensor. When activated by soldering movements, the PIR sensor turns the fan on with the help of a leftover original EZ Fan transistor board. (I created the EZ Fan board to control add-on cooling fans for Raspberry Pi computers, and now sell an even slimmer version.) This means that I don't ever have to remember to turn the fan on or off: It just comes on when it senses that I'm soldering. I normally keep it plugged into a USB port that provides power, but there is also a battery inside for when a USB port isn't available.

I mounted one PIR sensor at the end of a piece of pipe and one in the middle, and then strung a strip of WS2812B RGB addressable lights along the length. I attached this to the overhead shelves with pipe hangers, which let me adjust the lighting angle as needed to complement the static white LEDs. To control both the addressable LEDs and the nonaddressable strip, I used an Arduino Nano plugged into another utility board of my own creation, the Grounduino, and connected another PIR sensor to it, giving me three sensors along the length. The Grounduino provides screw terminals for hooking wires to the Nano and, as the name suggests, five extra ground connections (and five extra 5V connections as well). It also has built-in accommodation for the recommended capacitor that others often forget to use with WSx addressable LED lights.

Three infrared sensors that detect motion are spaced along the bench sothat my work zone is always automatically illuminated.James Provost

Probably the biggest challenge here was actually fishing the various wires through the length of pipe, but in the end it worked quite well. Three segments of addressable LEDs turn on based on which PIR sensor is triggered, while the 12V nonaddressable strip is powered via a FQP30N06L metal-oxide-semiconductor field-effect transistor (MOSFET) under control of the Arduino (the power required is just a little on the high side for an EZ Fan board). A push-button control lets me alter the brightness of the strips using pulse-width modulation.

If I was starting from scratch, I'd use a single LED voltage, as my setup currently has two power transformers (12V and 5V). Hindsight is 20/20, though it's very possible this project isn't quite done yet. I use open-source Home Assistant software to turn on house lights over Wi-Fi, and a homemade ESP8266 contraption to link the same system to my garage door, so why not my bench lights? The Grounduino and Nano were good choices here, but with an ESP8266, I could potentially automate everything and/or control it all with my phone if needed

However, for now at least, I can finally fit my projects, and my tools, on one bench!

This article appears in the August 2021 print issue as This Huge Workbench Gives You a Hand."

See the article here:

The Evolution of the Space Suit - IEEE Spectrum

Related Posts