May 17, 2021• Physics 14, 74
A method that enables long-range interactions between fermions on a lattice allows atomic quantum simulations of exotic quantum many-body phenomena.
Currently, one of the best ways to model complex quantum systems is through atomic quantum simulations. Controlling interactions between atoms is key to such simulations, something that can be achieved in atomic lattices using the well-established Feshbach-resonance approach. While that approach can be used to vary the strength of short-range interactions between atoms, it does not carry over to long-range interactions, leaving some interesting quantum systems outside of the techniques scope. Elmer Guardado-Sanchez at Princeton University and colleagues have now shown that such long-range interactions can be controlled using Rydberg dressing in a lattice of lithium ( 6Li) atoms [1]. The teams demonstration opens up unprecedented opportunities for exploring systems that exhibit rich fermionic many-body physics.
In the Feshbach-resonance approach to interaction control, a variable magnetic field is used to tune the scattering dynamics of colliding atoms. The use of this technique has led to the experimental observation of the crossover between the Bose-Einstein-condensation (BEC) regimein which strongly interacting fermions form bosonic moleculesand the Bardeen-Cooper-Schrieffer (BCS) regimein which weakly interacting fermions form loosely bound Cooper pairs. Quantum phenomena that can be simulated using such interactions range from the electron correlations behind high-temperature superconductors to the quantum kinematics taking place in distant neutron stars. Despite this versatility, there remains an important class of systems beyond the reach of simulations based on local interactions. Those systems are ones composed of spinless fermions, which the Pauli exclusion principle forbids from sitting on top of one another, making local interactions largely irrelevant. Instead, it is the long-range interactions that must be controlled.
One way to engineer such long-range interactions between spinless atomic fermions is to excite the atoms to Rydberg states, in which an electron occupies a high orbital. This method has been proposed theoretically as a way to mediate correlated topological density waves within a fermionic system [2]. Guardado-Sanchez and colleagues now employ the technique experimentally, which they do with an ensemble of spinless, fermionic 6Li atoms.
The team cooled a dilute gas of 6Li atoms in an optical lattice to a quantum degenerate temperature, one where each atoms de Broglie wavelength becomes larger than the interatomic spacing. Unable to reach the ground state simultaneously (because of the Pauli exclusion principle), the atoms freeze one by one at the lowest momentum available, forming a Fermi sea (Fig. 1). In this sea state, the atoms barely interact, and there are both minimal thermal and minimal quantum fluctuations.
The teams next step was to use a laser to implement a Rydberg dressing scheme, which mixes the systems internal ground state with a highly excited Rydberg state. An atom in a Rydberg state exhibits a larger electric dipole moment than one in the ground state because of the greater distance between its ion core and its outermost electron. This dipole-moment enhancement produces an effective soft-core interaction between Rydberg-dressed atoms, meaning that the interaction strength remains roughly constant as the interparticle distance increases, before dropping off above a threshold length scale [24]. The researchers show that they can manipulate the strength and the range of this interaction by varying the intensity and frequency of the laser. Although the Rydberg-dressing-induced interaction is isotropic across the two-dimensional system, the motion (by quantum tunneling) of the fermions is restricted to one dimension. This limited freedom of motion hinders the infamous Rydberg-avalanching-loss process by which Rydberg atoms collide, gain kinetic energy, and escape the trap.
The long-range interaction and the consequent hopping motion of the fermions generate many-body excitationscommonly called quantum fluctuationson top of the Fermi sea. These collective quantum fluctuations can have tremendously rich features, yielding many kinds of quantum-correlated states of matter. The types of phenomena that arise in such a system of interacting fermions depend on the way in which the fermions pair up, or, more precisely, on the momenta of the participating fermions and the Cooper pairs that result. These momentum-dependent interactions, in turn, are governed largely by the range of the interaction relative to the lattice spacing. A soft-core interaction with a tunable length, such as that realized by Guardado-Sanchez and colleagues, could lead to abundant momentum-dependent behaviors, generating, for example, topological density waves [2] and chiral p+ip superfluidity [5]. Such p+ip superfluids support topological Majorana vortices and offer a plausible route toward realizing topological quantum computation.
Even more exotic and counterintuitive phenomena may arise when different pairing possibilities occur simultaneously. For example, although mean-field theories typically predict that superfluidity appears in the presence of purely attractive interactions, functional renormalization group calculations suggest that a complex combination of different fermion pairings should generate unconventional f-wave superfluidity even with atomic repulsion [6]. Guardado-Sanchez and colleagues have so far only demonstrated attractive interactions, but tuning from attraction to repulsion is experimentally feasible [7]. Interesting effects should also arise when the interaction strength completely dominates the kinetic energy, with the system then being driven toward a Wigner crystal or fractional quantum Hall state [8, 9].
In the teams experiment, with its lattice-hopping fermions, the dynamical aspects of the system are more easily observed than the quantum many-body equilibrium states. Uncovering how to probe such states in a nonequilibrium setting should stimulate future theoretical investigation. On the application side, as well as the above-mentioned potential for topological quantum computing, long-range interaction control is a key step toward performing quantum simulations of quantum chemistry problems. Such simulations represent one arena ripe for applications employing the so-called quantum advantage to solve problems that would be intractable using classical computers. One strength of the teams scheme in realizing applications is that, unlike previously developed Feshbach-resonance techniques, it is magnetic-field-free. This aspect provides extra freedom to integrate the technique with certain magnetic-field-sensitive cold-atom quantum technologies, such as artificial gauge fields.
Xiaopeng Li is professor of physics in the Physics Department of Fudan University, China, jointly employed by Shanghai Qi Zhi Institute. He is active in quantum information science and condensed-matter theories, with his primary research interests in exploiting the quantum computation power of various quantum simulation platforms. He received his Ph.D. in physics from the University of Pittsburgh in 2013 and joined Fudan University as a faculty member in 2016 after three years at the University of Maryland, supported by a Joint Quantum Institute theoretical postdoctoral fellowship. He has been a full professor since 2019.
Elmer Guardado-Sanchez, Benjamin M. Spar, Peter Schauss, Ron Belyansky, Jeremy T. Young, Przemyslaw Bienias, Alexey V. Gorshkov, Thomas Iadecola, and Waseem S. Bakr
Phys. Rev. X 11, 021036 (2021)
Published May 17, 2021
A new experimental method based on adsorption can indicate whether a material is a Mott insulator or a common insulator. Read More
Read more here:
Disturbing the Fermi Sea with Rydberg States - Physics
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum computing utilizes 3D crystals - Johns Hopkins News-Letter [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- Quantum Computing and What All Good IT Managers Should Know - TrendinTech [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- World's First Quantum Computer Made By China 24000 Times Faster Than International Counterparts - Fossbytes [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- What is Quantum Computing? Webopedia Definition [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- China hits milestone in developing quantum computer - South China Morning Post [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Five Ways Quantum Computing Will Change the Way We Think ... - PR Newswire (press release) [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- New materials bring quantum computing closer to reality - Phys.org - Phys.Org [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- Researchers Invent Nanoscale 'Refrigerator' for Quantum ... - Sci-News.com [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- China's New Type of Quantum Computing Device, Built Inside a Diamond - TrendinTech [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Molecular magnets closer to application in quantum computing - Next Big Future [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- quantum computing - WIRED UK [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- D-Wave Closes $50M Facility to Fund Next Generation of Quantum Computers - Marketwired (press release) [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computing Could Use Graphene To Create Stable Qubits - International Business Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Bigger is better: Quantum volume expresses computer's limit - Ars Technica [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- It's time to decide how quantum computing will help your business - Techworld Australia [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- The route to high-speed quantum computing is paved with error - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes leap in quantum computing power - ITworld [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Quantum Computing Research Given a Boost by Stanford Team - News18 [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Stanford researchers push forward quantum computing research ... - The Indian Express [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- NASA Scientist Eleanor Rieffel to give a talk on quantum computing - Chapman University: Happenings (blog) [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- IBM Q Offers Quantum Computing as a Service - The Merkle [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Quantum Computing Is Going Commercial With the Potential ... [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum computing, election pledges and a thief who made science history - Nature.com [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- IBM to Sell Use of Its New 17-Qubit Quantum Computer over the Cloud - All About Circuits [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- For more advanced computing, technology needs to make a ... - CIO Dive [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Microsoft, Purdue Extend Quantum Computing Partnership To Create More Stable Qubits - Tom's Hardware [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Toward mass-producible quantum computers | MIT News - MIT News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Purdue, Microsoft Partner On Quantum Computing Research | WBAA - WBAA [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Tektronix AWG Pulls Test into Era of Quantum Computing - Electronic Design [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's how we can achieve mass-produced quantum computers ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Quantum computers to drive customer insights, says CBA CIO - CIO - CIO Australia [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 8th, 2017] [Originally Added On: June 8th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The Machine of Tomorrow Today: Quantum Computing on the Verge - Bloomberg [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Angry Birds, qubits and big ideas: Quantum computing is tantalisingly close - The Australian Financial Review [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Consortium Applies Quantum Computing to Drug Discovery for Neurological Diseases - Drug Discovery & Development [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum computing - ZDNet [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- How to get ahead in quantum machine learning AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Quantum computing, the machines of tomorrow - The Japan Times [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]