Introduction
Antidepressants are a first-line treatment for major depressive disorder (MDD) and are widely prescribed for other conditions, such as obsessive-compulsive disorder (OCD). However, between 40% and 50% of patients on antidepressants do not respond to treatment or relapse.1,2 This individual variability could be due to the complexity of antidepressant response that involves the interplay of both environmental and genetic factors.3 There are currently no specific sociodemographic or clinical markers to predict the response to antidepressants.4
Pharmacogenetic studies have shown that genetic variation influences antidepressant response, but have not fully explained individual variability.5 Recent reports have indicated that the estimates of heritability due to common genetic variants are lower than expected and that significant associations are poorly replicated.6,7 Thus, the search for biomarkers other than genetic factors that predict antidepressant response is gaining increasing attention,3 with epigenetic markers, especially DNA methylation, attracting a lot of interest.8
DNA methylation involves the addition of a methyl group at position 5 of the cytosine pyrimidine ring, a reaction catalyzed by members of the DNA methyltransferase (DNMT) family that usually occurs in cytosine bases that are immediately followed by a guanine (CpG). Large clusters of CpGs, known as CpG islands, occur in promoter regions. With some exceptions, active promoters are generally unmethylated, while inactive promoters tend to be methylated.
Several studies strongly indicate that antidepressants can induce the epigenetic modification of DNMTs, thus altering methylation levels and, subsequently, gene expression. This could explain how antidepressants modulate several molecular mechanisms and significantly affect synaptic plasticity.3,5.
A number of studies have identified epigenetic biomarkers of antidepressant response, with the majority of these studies using a targeted approach to examine a limited number of CpG sites within a specific gene locus. These gene loci include: the brainderived neurotrophic factor (BDNF);9,10 the sodium-dependent serotonin transporter (SLC6A4);1113 the serotonin receptor 1B (HTR1B);14,15 and the interleukin 11 gene (IL11).16 Recently, a genome-wide methylation study identified a set of CpG sites in specific genes such as PPFIA4 and HS3ST1 that accurately predicted paroxetine response.17
In the present study, we performed a genome-wide study assessing differences in DNA methylation that were characterized at baseline after 8 weeks of fluoxetine treatment in a homogenous sample of child and adolescent patients receiving fluoxetine for the first time.
Twenty-two children and adolescents aged between 13 and 17 years, receiving fluoxetine treatment for the first time participated in the present study. None of the participants had been treated previously with antidepressants or other psychotropic drugs. Patients were diagnosed using the Diagnostic and Statistical Manual of Mental Disorders-V (DSM-V).18 The study was carried out at the Child and Adolescent Psychiatry and Psychology Service of the Institute of Neuroscience in Barcelona. Exclusion criteria were comorbidity with other psychiatric disorders, Tourettes syndrome, autism, somatic or neurological diseases, an intelligence quotient <70, and a non-Caucasian ethnicity. All procedures were approved by the Hospital Clnic ethics committee. Written informed consent was obtained from all the parents and verbal informed consent was given by all the participants following explanation of the procedures involved. All experiments were performed in accordance with relevant guidelines and regulations. This study was conducted in accordance with the Declaration of Helsinki.
Information on illness severity was obtained during the initial phase of the study using the following questionnaires: the Childrens Depression Inventory (CDI) for MDD patients (Kovacs, 1992) and the Childrens Yale-Brown Obsessive Compulsive Scale (CYBOCS) for OCD patients.19,20 The same scales, as well as the CGI-Improvement scale (CGI-I), were administered after 8 weeks of fluoxetine treatment. The clinical response after 8 weeks of fluoxetine treatment was evaluated using the percentage of improvement: ((CDI8weeks-CDIbasal)/CDIbasal)*100 or ((CYBOCS8weeks- CYBOCSbasal)/CYBOCS basal)*100. Patients were classified as Responders or Non-Responders according to CGI-I score after 8 weeks of fluoxetine treatment. The CGI-I scale assesses the adequacy of clinical response since the start of treatment and is rated on a 7-point scale, as follows: 1=very much improved, 2=much improved, 3=minimally improved, 4=no change from baseline, 5=minimally worse, 6=much worse and 7=very much worse. According to this rating, and according to the literature: Responders were patients with CGI-I<2 (Very much improved or much improved) and Non-Responders were patients with CGI-I>3 (from minimally improved to very much worse).
A blood sample from each participant was collected in EDTA (BD Vacutainer K2EDTA tubes; Becton Dickinson, Franklin Lakes, New Jersey, USA) before the start of fluoxetine treatment. Genomic DNA was extracted using the MagNA Pure LC DNA Isolation Kit III and a MagNA Pure LC system (Roche Diagnostics GmbH, Mannheim, Germany). DNA concentration and quality were measured using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Surrey, UK).
Genome-wide DNA methylation was profiled using the Illumina Infinium MethylationEPIC BeadChip Kit carried out at CEGEN-PRB3-ISCIII. Raw.IDAT files were received and bioinformatics processes were conducted in house using the Chip Analysis Methylation Pipeline (ChAMP) Bioconductor package.21 Raw intensity data files were used to load the data into the R environment with the champ.load function, which also allows for probe QC and removal steps to occur simultaneously. Probes with low detected signals (p<0.01) (n=3302), cross reactive probes (n= 11), non-CpG probes (n=2954), probes with <3 beads in at least 5% of samples per probe (n=6891), probes that bound to SNP sites (n=96,621), and sex chromosome probes (n=61,734) are all considered problematic for accurate downstream methylation detection. After removing these probes, 739,405 probes remained for downstream analysis. Beta values were then normalized using the champ.norm function, specifically with the beta mixture quartile method (BMIQ function). Cell counts were measured using the champ.refbase function. The following cells were counted: CD8+ T cells, CD4+ T cells, natural killer (NK) cells, B cells, monocytes, and granulocytes. Next, the singular value decomposition (SVD) method was performed by champ.SVD in order to assess the amount and significance of technical batch components, along with any potential confounding variables (sex, age, diagnosis, cell count, fluoxetine dosage), in our dataset. Using the champ.runCombat function, Combat algorithms were applied in order to correct for slide and array as significant components detected by SVD. No effect of sex, age, diagnosis, cell count, or fluoxetine dosage was detected.
After filtering, normalization, and detection of batches and covariates, differentially methylated positions (DMPs) were identified using the function champ.DMP, which implements the limma package to calculate the p-value for differential methylation using a linear model. The absolute value of the difference between -value medians () of Responders and Non-Responders higher than 0.2 was set as a cut-off value to decrease the number of significant CpGs and identify sites with more biologically relevant methylation differences. Hierarchical cluster analysis of significant DMP was plotted as a heatmap and a dendrogram using the gplot and d3heatmap R packages.
Table 1 shows the sociodemographic and clinical data of the 22 participants of this study classified as Responders or Non-Responders according to the CGI-I scale after 8 weeks of fluoxetine treatment. No significant differences in age, sex, BMI, fluoxetine dose or basal clinical scores were observed between the two groups.
Table 1 Sociodemographic, Clinical and Pharmacological Data of the 22 Study Participants
We classified 47,690 probes as significant DMPs (adjusted p-values FDR<0.05): however, this included DMPs with very small differences in methylation between Responders and Non-Responders. Therefore, a > 0.2 cutoff was applied to identify 21 DMPs with methylation changes that are more likely to be biologically relevant (Table 2).
Table 2 21 Significant (FDR<0.05, > 0.2) Differentially Methylated Probes (DMPs) Between Responders and Non-Responders
We assessed the distribution of these 21 DMPs and the other probes in the array in relation to genomic regulatory elements and CpG islands. The genomic regulatory elements considered were the first exon, 3UTR, 5UTR, the gene body, and promoter-proximal regions (TSS1500 and TSS200). Hypermethylated probes in Responders were enriched in the first exon (27% vs 0.025% of all probes) and hypomethylated probes were enriched in the 5UTR (30% vs 0.08% of all probes) (Figure 1A). Regarding the CpG islands, we differentiated between CpG islands, shores (2 kbp from a CpG site), shelves (2 to 4 kbp from a CpG site) and open sea CpGs (isolated CpG in the genome). Hypermethylated probes in Responders were enriched in CpG islands (45% vs 18%) and hypomethylated probes were enriched in open sea CPGs (90% vs 58%) (Figure 1B).
Figure 1 (A) Distribution of 21 significant (FDR<0.05, > 0.2) DMPs and the rest of the probes of the array relative to regulatory elements including transcription start sites (TSS1500, and TSS200), gene body, untranscribed regions (3UTR and 5UTR) and first exon. (B) Distribution of DMPs and the rest of the probes of the array relative to CpG islands, shores, shelves, and sea.
The 21 significant CpGs mapped to 11 genes (RHOJ, RPTOR, ADAP1, SPAG1, GPR1-AS, SLC15A5, OR2L13, NDUFAF1, PPP5D1, LOX2 and ZNF697) and five intergenic regions. Two genes showed more than two significant DMPs (FDR<0.05, > 0.2) (Figure 2A). RHOJ (Ras Homolog Family Member J) presented four CpGs that were significantly hypermethylated in Non-Responders. These CpGs were in the 5-UTR and first exon of the gene, a region that, according to the UCSF browser, includes a promoter region enriched with H3K27AC marks in all cell lines considered by ENCODE (Figure 2B). Two of these CpGs (cg18771300 and cg07157030) were included in The Blood-Brain Epigenetic Concordance database (BECon; https://redgar598.shinyapps.io/BECon/)22 and showed significant correlation between methylation levels in blood and Brodmann Area 10 (BA10) and Brodmann Area 20 (BA20) (r>0.66). Both CpGs were highly variable in the blood (reference range>0.1) and fitted with the definition of a bloodbrain informative CpG in the BECon.
Figure 2 (A) Genes most enriched by the 21 significant DMPs (FDR<0.05, > 0.2). (B) Distribution of significant DMPs (FDR<0.05, > 0.2) in the RHOJ (Ras Homolog Family Member J) gene, and methylation values in Responders (RES) and Non-Responders (NORES). (C) Distribution of significant DMPs (FDR<0.05, > 0.2) in the OR2L13 (Olfactory Receptor family 2 subfamily L member 13) gene and methylation values in Responders and Non-Responders. (D) Hierarchical cluster analysis of the seven CpG sites in the RHOJ (Ras Homolog Family Member J) and OR2L13 (Olfactory Receptor family 2 subfamily L member 13) genes.
OR2L13 (Olfactory Receptor family 2 subfamily L member 13) presented three CpGs that were significantly hypomethylated in Non-Responders, located on a large CpG island in the first exon of the gene (Figure 2C). According to the BECon database, the three CpGs showed significant correlations between methylation levels in blood and the BA10, BA20 and BA7 areas (r>0.5) and were also highly variable in blood and could be considered bloodbrain informative CpGs.
As a sensitivity analysis, we tested the correlations between the methylation level of the seven CpG sites in the RHOJ (Ras Homolog Family Member J) and OR2L13 (Olfactory Receptor family 2 subfamily L member 13) genes and the percentage of improvement scored using the CDI or the CYBOCS. Significant correlations were obtained in all cases: cg03748376 (r=0.55, p=0.008), cg20507276 (r=0.54, p=0.010), cg08944170 (r=0.54, p=0.010), cg11079896 (r=0.44, p=0.038), cg07157030 (r=0.49, p=0.021), cg07189587 (r=0.48, p=0.024) and cg18771300 (r=0.43, p=0.045).
We conducted a hierarchical cluster analysis of the seven sites in these two genes RHOJ (Ras Homolog Family Member J) and OR2L13 (Olfactory Receptor family 2 subfamily L member 13). The results were expressed as a heat map indicating the methylation level at each CpG, and as a dendrogram (Figure 2D). The dendrogram clearly indicated that Responders and Non-Responders differed from each other.
To our knowledge, the present study is the first to analyze differences in DNA methylation in association with response to fluoxetine in the peripheral blood of children and adolescents using a genome-wide approach. We identified 21 CpG sites significantly (FDR<0.05) associated with fluoxetine response that showed meaningful differences (> 0.2) in methylation level between Responders and Non-Responders. Two genes, RHOJ and OR2L13, were enriched in significant CpG sites that showed a strong correlation in DNA methylation between the blood and brain (The Blood-Brain Epigenetic Concordance database BECon; https://redgar598.shinyapps.io/BECon/).
RHOJ (Ras Homolog Family Member J) is a member of the Cdc42 subfamily of the Rho family of GTPases, a group of small signaling molecules that are major regulators of cytoskeleton properties.23 Rho GTPases are involved in various cellular processes, including adhesion, cell polarization, motility and transformation, gene activation and vesicular trafficking, and have been associated with cytoskeletal organization and the regulation of axon outgrowth.24 Early studies suggested that RhoJ plays a role in modulating the formation of distinct cytoskeletal structures and lamellipodia as well as in actin filaments.25 Also, RhoJ has been shown to regulate the early endocytic pathway, being necessary for the transport of endocytosed receptors.26 Recently, the crp1 gene in Caenorhabditis elegans that encodes a protein that resembles human RhoJ has been linked to axon guidance and neuronal migration.27
OR2L13 (Olfactory Receptor family 2 subfamily L member 13) is responsible for the initialization of the neuronal response to odorants.28 Differential DNA methylation in a CpG site of this gene has been identified in multiple independent studies examining epigenetic modification in neurodevelopmental disorders.29 The CpG of interest in these studies (cg20507276) was also identified in the current study.
Our hierarchical cluster analysis indicated that methylation sites in RHOJ (Ras Homolog Family Member J) and OR2L13 (Olfactory Receptor family 2 subfamily L member 13) could be important for explaining interindividual differences in fluoxetine response. However, experimental research is needed to confirm that the methylation of these genes plays an important role in the pharmacological effect of fluoxetine and to elucidate their involvement in the mechanism of action of antidepressant drugs.
The significant CpGs identified in relation to fluoxetine in our analysis also mapped to other genes. There is some connection with neuronal physiology or pathological mechanisms of neuropsychiatric disorders for some of these genes, including ADAP1 (Stricker and Reiser, 2014), SPAG1, SLC15A5 and RPTOR.3033 For the other genes (GPR1-AS, NDUFAF1, PPP5D1, LOX2 and ZNF697) or intergenic regions identified we have little or no information about their physiological connection with the pharmacological effect of fluoxetine or their role in the pathophysiology of neuropsychiatric disorders.
To our knowledge, this study is the first genome-wide DNA methylation study of fluoxetine response in children and adolescents. The major strength of our study was that several potential confounders were controlled for, such as age, smoking status, pharmacological treatment and the course of the disease. Our sample contained children and adolescents of similar ages who had not previously been treated with antidepressants or other psychotropic drugs and who were at the initial stages of the illness. We also controlled for blood cell composition, as DNA methylation is cell-type specific and different cell compositions between samples could affect the methylation data obtained.
However, the findings of this study should be interpreted by bearing in mind several important limitations. The sample size limited the statistical power of the study and made it difficult to detect small or modest effects on DNA methylation. Given that the study was hypothesis-driven and due to the small sample size, our results should be seen as preliminary and should be considered as exploratory findings that require further confirmation. Our study had several limitations. We used peripheral blood even though DNA methylation is known to be tissue-specific. However, blood is considered to be a useful proxy for detecting changes across tissues and is the most appropriate tissue in which to look for biomarkers. Moreover, there is a moderate correlation between blood and the brain for non-specific regulatory regions across the methylome.22 Third, the observation period was eight weeks, which could not be enough to detect long-term epigenetic changes. Finally, our study included patients with different diagnoses, MDD and OCD. For this reason, in the primary analysis, Responders and Non-Responders were defined according to the CGI-I scale. However, the sensitivity analysis, replacing the dichotomous classification of patients according to the CGI by the symptoms improvement scored using the CDI and the CYBOCS, confirms our significant findings.
In conclusion, our findings provide new insights into the molecular mechanisms underlying the complex phenotype of antidepressant response and suggest that methylation at specific genes, such as (RHOJ and OR2L13) could become potential biomarkers for predicting antidepressant response. However, the replication of our results in large samples is necessary in order to include the methylation level of these specific genes as biomarkers to develop predictors for clinical applications.
The authors thank the Language Advisory Service at the University of Barcelona for manuscript revision. The authors also thank all subjects and their families for the time and effort spent on this study.
Rodriguez N and Martnez-Pinteo A participated carrying out the experimental procedures, performing the bioinformatic analyses and the interpretation of results and wrote the first draft of the manuscript.
Gass P helped in performing the statistical analyses and the interpretation of results and helped in drafting the manuscript.
Blzquez A, Varela E and Plana MT participated in the recruitment and assessment of the sample and helped in drafting the manuscript.
Lazaro L participated in the coordination of the recruitment and assessment of the sample, the maintenance of the database, acquisition of funding, and helped in drafting the manuscript.
Lafuente A participated in helping in conceiving, designing and coordinating the whole study, interpreting the results and drafting the manuscript.
Mas S conceived and designed the whole study and participated in performing the statistical analysis, interpretation of results and wrote the first draft of the manuscript.
All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval for the version to be published; and agree to be accountable for all aspects of the work.
This work was supported by the Alicia Koplowitz Foundation; Ministerio de Economa y Competitividad-Instituto de Salud Carlos III-Fondo Europeo de Desarrollo Regional (FEDER)-Unin Europea (PI16/01086). Support was also given by the CERCA Programme/the Government of Catalonia, Secretaria dUniversitats i Recerca del Departament dEconomia i Coneixement to the Child Psychiatry and Psychology Group (2017SGR881) and to the Clinical Pharmacology and Pharmacogenetics Group (2017SGR1562). Funding sources had no further role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.
Dr Natalia Rodriguez reports grants from Alicia Koplowitz Foundation, Ministerio de Economa y Competitividad-Instituto de Salud Carlos III-Fondo Europeo de Desarrollo Regional (FEDER)- Unin Europea, and non-financial support from CERCA Programme/the Government of Catalonia, Secretaria dUniversitats i Recerca del Departament dEconomia i Coneixement, during the conduct of the study. The authors reported no other potential conflicts of interest for this work.
1. Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:19051917. doi:10.1176/ajp.2006.163.11.1905
2. Mrazek DA, Biernacka JM, McAlpine DE, et al. Treatment outcomes of depression: the pharmacogenomic research network antidepressant medication pharmacogenomic study. J Clin Psychopharmacol. 2014;34:313317. doi:10.1097/JCP.0000000000000099
3. Belzeaux R, Lin R, Ju C, et al. Transcriptomic and epigenomic biomarkers of antidepressant response. J Affect Disord. 2018;233:3644. doi:10.1016/j.jad.2017.08.087
4. Gadad BS, Jha MK, Czysz A, et al. Peripheral biomarkers of major depression and antidepressant treatment response: current knowledge and future outlooks. J Affect Disord. 2018;233:314. doi:10.1016/j.jad.2017.07.001
5. Fabbri C, Serretti A. Clinical application of antidepressant pharmacogenetics: considerations for the design of future studies. Neurosci Lett. 2018;726. doi:10.1016/j.neulet.2018.06.020.
6. Fabbri C, Tansey KE, Perlis RH, et al. New insights into the pharmacogenomics of antidepressant response from the GENDEP and STAR*D studies: rare variant analysis and high-density imputation. Pharmacogenomics J. 2018;18:413421. doi:10.1038/tpj.2017.44
7. Uher R, Tansey KE, Henigsberg N; GENDEP Investigators, MARS Investigators, STAR*D Investigators. Common genetic variation and antidepressant efficacy in major depressive disorder: a meta-analysis of three genome-wide pharmacogenetic studies. Am J Psychiatry. 2013;170:207217. doi:10.1176/appi.ajp.2012.12020237
8. Lisoway AJ, Zai CC, Tiwari AK, Kennedy JL. DNA methylation and clinical response to antidepressant medication in major depressive disorder: a review and recommendations. Neurosci Lett. 2018;669:1423. doi:10.1016/j.neulet.2016.12.071
9. Tadi A, Mller-Engling L, Schlicht KF, et al. Methylation of the promoter of brain-derived neurotrophic factor exon IV and antidepressant response in major depression. Mol Psychiatry. 2014;19:281283. doi:10.1038/mp.2013.58
10. Wang P, Zhang C, Lv Q, et al. Association of DNA methylation in BDNF with escitalopram treatment response in depressed Chinese Han patients. Eur J Clin Pharmacol. 2018;74:10111020. doi:10.1007/s00228-018-2463-z
11. Domschke K, Tidow N, Schwarte K, et al. Serotonin transporter gene hypomethylation predicts impaired antidepressant treatment response. Int J Neuropsychopharmacol. 2014;17:11671176. doi:10.1017/S146114571400039X
12. Kang HJ, Kim JM, Stewart R, et al. Association of SLC6A4 methylation with early adversity, characteristics and outcomes in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:2328. doi:10.1016/j.pnpbp.2013.01.006
13. Okada S, Morinobu S, Fuchikami M, et al. The potential of SLC6A4 gene methylation analysis for the diagnosis and treatment of major depression. J Psychiatr Res. 2014;53:4753. doi:10.1016/j.jpsychires.2014.02.002
14. Wang P, Lv Q, Mao Y, et al. HTR1A/1B DNA methylation may predict escitalopram treatment response in depressed Chinese Han patients. J Affect Disord. 2018;228:222228. doi:10.1016/j.jad.2017.12.010
15. Gass P, Rodrguez N, Blzquez A, et al. Epigenetic and genetic variants in the HTR1B gene and clinical improvement in children and adolescents treated with fluoxetine. Prog Neuropsychopharmacol Biol Psychiatry. 2017;75:2834. doi:10.1016/j.pnpbp.2016.12.003
16. Powell TR, Smith RG, Hackinger S. Hackinger Set al. DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Transl Psychiatry. 2013;3:e300. doi:10.1038/tp.2013.73
17. Takeuchi N, Nonen S, Kato M, et al. Therapeutic response to paroxetine in major depressive disorder predicted by DNA methylation. Neuropsychobiology. 2017;75:8188. doi:10.1159/000480512
18. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th. American Psychiatric Press; 2013.
19. Kovacs M. Childrens Depression Inventory Manual. New York, NY: Multi Health Systems; 1992.
20. Scahill L, Riddle MA, McSwiggin-Hardin M, et al. Childrens yale-brown obsessive compulsive scale: reliability and validity. J Am Acad Child Adolesc Psychiatry. 1997;36:844852. doi:10.1097/00004583-199706000-00023
21. Tian Y, Morris TJ, Webster AP, et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics. 2017;33:39823984. doi:10.1093/bioinformatics/btx513
22. Edgar RD, Jones MJ, Meaney MJ, Turecki G, Kobor MS. BECon: a tool for interpreting DNA methylation findings from blood in the context of brain. Transl Psychiatry. 2017;7:e1187. doi:10.1038/tp.2017.171
23. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420:629635. doi:10.1038/nature01148
24. Azzarelli R, Kerloch T, Pacary E. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies. Front Cell Neurosci. 2015;8:445. doi:10.3389/fncel.2014.00445
25. Shi TT, Li G, Xiao HT. The role of RhoJ in endothelial cell biology and tumor pathology. Biomed Res Int. 2016;6386412. doi:10.1155/2016/6386412
26. de Toledo M, Senic-Matuglia F, Salamero J, et al. The GTP/GDP cycling of rho GTPase TCL is an essential regulator of the early endocytic pathway. Mol Biol Cell. 2003;14:48464856. doi:10.1091/mbc.e03-04-0254
27. Alan JK, Robinson SK, Magsig KL, Demarco RS, Lundquist EA. The atypical Rho GTPase CHW-1 works with SAX-3/robo to mediate axon guidance in Caenorhabditis elegans. G3 (Bethesda). 2018;8:18851895. doi:10.1534/g3.118.200148
28. Berko ER, Suzuki M, Beren F, et al. Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder. PLoS Genet. 2014;10:e1004402. doi:10.1371/journal.pgen.1004402
29. DallAglio L, Muka T, Cecil CAM, et al. The role of epigenetic modifications in neurodevelopmental disorders: a systematic review. Neurosci Biobehav Rev. 2018;94:1730. doi:10.1016/j.neubiorev.2018.07.011
30. Stricker R, Reiser G. Functions of the neuron-specific protein ADAP1 (centaurin-1) in neuronal differentiation and neurodegenerative diseases, with an overview of structural and biochemical properties of ADAP1. Biol Chem. 2014;395:13211340. doi:10.1515/hsz-2014-0107
31. Chatterton Z, Hartley BJ, Seok MH, et al. In utero exposure to maternal smoking is associated with DNA methylation alterations and reduced neuronal content in the developing fetal brain. Epigenetics Chromatin. 2017;10:4. doi:10.1186/s13072-017-0111-y
32. Maul S, Giegling I, Fabbri C, Corponi F, Serretti A, Rujescu D. Genetics of resilience: implications from genome-wide association studies and candidate genes of the stress response system in posttraumatic stress disorder and depression. Am J Med Genet B Neuropsychiatr Genet. 2020;183:7794. doi:10.1002/ajmg.b.32763
33. Kosillo P, Doig NM, Ahmed KM, et al. Tsc1-mTORC1 signaling controls striatal dopamine release and cognitive flexibility. Nat Commun. 2019;10:5426. doi:10.1038/s41467-019-13396-8
Read more from the original source:
[Full text] DNA Methylation of Fluoxetine Response in Child and Adolescence: Preli | PGPM - Dove Medical Press
- Discovering the mysteries of human DNA - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Scientists go deeper into DNA - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Instant Egghead - Genes vs. DNA vs. Chromosomes - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- DNA Calls Out Lineup Of Rappers For Future Battles - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- What is DNA? - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Turn Your DNA Into Fine Art, BMW Zagato Roadster - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- DNA - OFFICIAL URLTV SUMMER MADNESS 2 RECAP! - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- "Binary DNA" - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- 16x9 - DNA Prophecies: Code reveals your future - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Gilbert Gottfried - Space DNA, Sexy Weight Loss, Badonkadonk Booty - Gilbert Gets It - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Animated Health Video Production | DNA Services of America - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Michael Tsarion ~ Mayans ~ 2012 ~ DNA - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Mini-drones to take your DNA? - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- C2CAM - DNA Research - 07-09-2012 - Coast To Coast AM - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Inside The DNA Of MDNA - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- KOTD - Rap Battle - DNA vs Eurgh - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Starchild DNA Showing "Wright" Stuff - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Chrome Cats - DNA of a Winner(Official Video) - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- DNA leads to arrest in 1980 murder of Oxnard girl [Last Updated On: September 8th, 2012] [Originally Added On: September 8th, 2012]
- 'Junk' DNA: Not So Useless After All [Last Updated On: September 8th, 2012] [Originally Added On: September 8th, 2012]
- Decoding Human DNA [Last Updated On: September 9th, 2012] [Originally Added On: September 9th, 2012]
- Planet of the Apes: What is that big hunk of 'junk' DNA up to ? [Last Updated On: September 10th, 2012] [Originally Added On: September 10th, 2012]
- Genetics Breakthrough Changes Thinking About DNA [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- 'Junk DNA' and the mystery of mankind's missing genes [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Real-time observation of single DNA molecule repair [Last Updated On: September 12th, 2012] [Originally Added On: September 12th, 2012]
- Court hears DNA findings in child sex case [Last Updated On: September 12th, 2012] [Originally Added On: September 12th, 2012]
- 2012 International Symposium on Human Identification Features Emerging and Best Practice Forensic DNA Techniques ... [Last Updated On: September 12th, 2012] [Originally Added On: September 12th, 2012]
- DNA could help ID a king [Last Updated On: September 13th, 2012] [Originally Added On: September 13th, 2012]
- DNA with a Twist [Last Updated On: September 13th, 2012] [Originally Added On: September 13th, 2012]
- Three reasons to like junk DNA [Last Updated On: September 13th, 2012] [Originally Added On: September 13th, 2012]
- LBNL Seeks Licensees for Highly Specific and Sensitive DNA Extraction Method [Last Updated On: September 13th, 2012] [Originally Added On: September 13th, 2012]
- Under-twisted DNA origami delivers cancer drugs to tumors [Last Updated On: September 13th, 2012] [Originally Added On: September 13th, 2012]
- DNA ‘junk' contains a treasure of information about disease [Last Updated On: September 14th, 2012] [Originally Added On: September 14th, 2012]
- Research: Hopping DNA supercoils [Last Updated On: September 14th, 2012] [Originally Added On: September 14th, 2012]
- DNA evidence missing in Assange case [Last Updated On: September 16th, 2012] [Originally Added On: September 16th, 2012]
- Missing DNA evidence in Assange case [Last Updated On: September 16th, 2012] [Originally Added On: September 16th, 2012]
- No Assange DNA on torn condom - report [Last Updated On: September 16th, 2012] [Originally Added On: September 16th, 2012]
- Calif. DNA Collection From Arrestees Challenged [Last Updated On: September 17th, 2012] [Originally Added On: September 17th, 2012]
- Federal appeals court to hear challenge to California DNA collection law [Last Updated On: September 17th, 2012] [Originally Added On: September 17th, 2012]
- Applied DNA Sciences Contracts With Inventionland [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Applied DNA Sciences, Textile Centre of Excellence Unveil Textiles Anti-Counterfeiting Platform [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Rapist caught by DNA test jailed [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- FBI eager to embrace mobile 'Rapid DNA' testing [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- Expansion of criminal DNA collection proposed [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- Assessment of HPV DNA Alone Insufficient to Identify HPV-Driven Head and Neck Cancers [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- George Zimmerman's DNA, not Trayvon Martin's, found on gun [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- George Zimmerman: No DNA evidence of a struggle for his gun [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- DNA evidence links Vallejo man to January stabbing in SLO, police say [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Legal hurdles threaten to slow FBI's 'Rapid DNA' revolution [Last Updated On: September 21st, 2012] [Originally Added On: September 21st, 2012]
- Judge denies motions to dismiss DNA evidence in Hudson murder case [Last Updated On: September 22nd, 2012] [Originally Added On: September 22nd, 2012]
- Researchers report novel approach for single molecule electronic DNA sequencing [Last Updated On: September 22nd, 2012] [Originally Added On: September 22nd, 2012]
- Novel approach for single molecule electronic DNA sequencing [Last Updated On: September 22nd, 2012] [Originally Added On: September 22nd, 2012]
- DNA helps Wyckoff police nab 'motorcycle burglar' [Last Updated On: September 22nd, 2012] [Originally Added On: September 22nd, 2012]
- Novel DNA barcode engineered: New technology could launch biomedical imaging to next level [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- DNA Microarray 2012: A Focus on Sales Growth [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- DNA in 1980 Maine murder case shown to match defendant [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- DNA recovered during Rayney probe [Last Updated On: September 26th, 2012] [Originally Added On: September 26th, 2012]
- FBI makes headway on DNA testing backlog, report says [Last Updated On: September 26th, 2012] [Originally Added On: September 26th, 2012]
- Male DNA found for first time in female brains [Last Updated On: September 27th, 2012] [Originally Added On: September 27th, 2012]
- Bearing Sons Leaves Male DNA Traces in Mom's Brain [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- Many female brains contain male DNA [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- New drive to take criminals' DNA [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- DNA remains focus in Highway of Tears cases [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- Analysing The Evidence On DNA [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- DNA Clears Death Row Inmate [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- Burn victim identified by DNA in maggots [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- DNA fails to match couple on two other skeletons [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- DNA Dynamics Update on Sports Title [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- DNA solves teen's 1974 murder [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Some Women's Brains Contain Male DNA: Study [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- DNA exonerates man after 15 years on death row - Video [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- DNA link prompts charges in cold case rapes - Video [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- DNA testing has its limits [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- DNA evidence exonerates 300th prisoner nationwide [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- DNA testing facility in Pune to speed up cases in Mumbai [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Rape DNA process 'not adequate' [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- IntegenX Announces U.S. Launch of the RapidHIT™ 200 System – Rapid DNA Technology That Will Revolutionize the Use of ... [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- 300th person exonerated by DNA evidence [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- Inherited Diseases Found Sooner in Newborns With DNA Scan [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Woman charged in husband's death gives DNA sample [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]