The my Quantum computer is bigger than yours game has played out for many years, and the leading contenders in the Qubits superiority race are the USA and China.
Now Europe wants to get a seat at the big Quantum table, and there are EU consortiums and British led partnerships aiming to not only develop a hyper-fast computer but crucially, one that has many practical applications commercially.
So what are they up against? Well, the machine to beat at present is the Chinese computer called Jiuzhang, which the Chinese claim is just a mere 10billion times faster than Googles current offering. China says this gives them Quantum supremacy, but then they would because thats exactly the term used by Google to describe its Quantum offering.
Is there a difference between the Chinese machine and Googles? Yes, there is. Jiuzhang makes its calculations using optical circuits, whereas Google's uses Sycamore, which is superconducting materials on a chip, a design that resembles classical computers.
But, in the technological chest-thumping world of Quantum computing, there is just one boast that everyone wants to make, and that is, mines the fastest.
In the need-for-speed, Chinas Jiuzhang computer is claimed to be 100 trillion times faster than supercomputers. This means in seconds. It can do what normal computers would take millions of years to achieve. These figures are impressive, but a word of caution here does depend on what test the Quantum computer was given to perform as different tests can produce different computational speed results.
Nevertheless, the speed of true Quantum computing is mind-boggling, to say the least, and the real question is how these speeds are achieved? Qubits are how.
Normal computers can only calculate using bits that have only two working states that of 0 or 1. Quantum machines have bits (Qubits) that can provide numerous different states simultaneously. This is what gives them a tremendous speed boost. Get a load of these Qubits in a synchronised linkage, and they can calculate in seconds what would take a conventional computer millions of years.
Qubits represent atoms, ions, photons or electrons and give Quantum computers their inherent parallelism. This means that whereas a conventional computer will work on a single calculation, a Quantum computer can simultaneously work on millions.
But its not just all about the speed. Quantum computing falls in a big way in three areas, and these are, firstly, exactly what tests were made to achieve certain speed results. Secondly, are Quantum computers reliable and, thirdly, what practical applications can they handle that makes them a commercially viable proposition?
The point about speed tests is that not all speed tests are created equal. Quantum computers have to be set up to perform a specific function. To test Jiuzhang, the computer had to calculate the output of a complex circuit that used light. It detected an average of 40 outputs, and its time to do that was a mere three minutes, whereas one of the worlds fastest supercomputers would have taken two billion years to reach the same conclusion. But this was a specially-tailored test and didnt necessarily have relevance to broader applications in the commercial world.
Googles Sycamore testing also came into scrutiny from rival IBM, and again the discussion came down to how relevant was the testing in terms of real-world practicality.
So given these out-of-this-world performance figures, it makes Hitch Hikers Guide to the Galaxys supercomputer Deep Thought look pretty pedestrian. It took Deep Thought a pedestrian 7.5 million years to decide the answer to the question of life, the universe and everything was 42.
Another operational shortfall with Quantum computing is reliability. By their very nature, Qubits are not durable and can easily be upset and need to be in a perfect, temperature-controlled environment that is totally free of vibrations and ambient atomic structures. This, of course, can be created to keep the Qubits bits happy. Still, the length of time they will operate efficiently and accurately is minimal before they technically slow down and abdicate their Quantum coherence.
So while we are all astonished at examples of their computational speeds, Quantum computers are not anywhere near becoming a commercially viable proposition.
Enter the first European consortium that has ambitions to change all that. Its snappily titled the German Quantum Computer based on Superconducting Qubits (GeQCoS) group. Munich chip-maker Infineon and scientists from five research institutes in Germany aim to drive forward the development and industrialisation of Quantum computing.
According to Infineon, Quantum computers have the potential to replace existing conventional computers in specific applications. They could, for example, calculate simulations of complex molecules for the chemical and pharmaceutical industry, complicated optimisations for the automotive and aviation industry, or new findings from the analysis of complex financial data.
The project is funded by the German Ministry of Education and Research and hopes to create a Quantum processor based on superconducting Qubits and demonstrate its special capabilities on a prototype within four years. Working together to achieve this are scientists at the Walther Meisner Institute of the Bavarian Academy of Sciences and Humanities and the Technical University of Munich, the Karlsruhe Institute of Technology, the Friedrich Alexander University of Erlangen-Nuremberg, the Forschungszentrum Jlich and the Fraunhofer Institute for Applied Solid State Physics and Infineon.
If we in Germany and Europe dont want to be dependent for this future technology solely on American or Asian know-how, we must move forward with the industrialisation now, explained Sebastian Luber, senior director of technology & innovation at Infineon.
Naturally, Germany is not alone in its bid to gain Quantum supremacy. The VTT Technical Research Centre of Finland is also part of a consortium seeking a Quantum technology lead.
It correctly believes superconducting processors could become a key ingredient for creating the next generation of supercomputers. Firstly, they could help tackle the major challenge of scaling up Quantum computers and secondly, they could speed up traditional supercomputers and drastically cut their power consumption.
A multidisciplinary research project led by VTT will tackle one of the main technical challenges to achieve this, the data transfer to and from low temperatures required for superconductivity.
The VTT consortium consists of Tampere University in Finland, KTH Royal Institute of Technology in Sweden, ETH Zrich in Switzerland and PTB, the national metrology institute of Germany, and corporate partners Single Quantum in the Netherlands and Polariton Technologies in Switzerland. It is a three-year project.
We know that a Quantum computer's processing power is based on superconducting Qubits operating at extremely low temperatures, and Qubits are typically controlled by conventional electronics at room temperature and connected through electrical cables. However, when the number of Qubits eventually rises to the required level of hundreds of thousands, the number of control cables to match the number of Qubits will generate an extreme heat-load that considerably inhibits Quantum's speed processors.
One solution is to control the Quantum processor with a nearby classical processor. A promising solution is to use the single flux Quantum (SFQ) technology which emulates traditional computers in logic but uses superconducting technology instead of conventional semiconductors. Because it requires low operational temperatures, SFQ has rarely been used in traditional computers. This disadvantage, however, turns into an advantage when used in combination with superconducting Quantum computers.
But a major challenge remains. Calculation instructions come to the SFQ processor from a conventional supercomputer, and calculation results must be sent back from the SFQ processor to the same machine. This requires data transfer between extremely low temperatures and room temperatures which doesnt suit conventional semiconductors.
The VTT projects vision is to replace electrical cables with optical fibres and suitable converters which convert optical signals to electrical signals and vice versa. Unlike existing solutions, these components must be able to operate at low temperatures. This will require the development of innovative converters that can drive and read out a simple SFQ processor.
Besides Quantum computers, conventional supercomputers could benefit from the development of optical connections for SFQ technology. A major limitation of supercomputers is the extremely high-power consumption of CPUs and GPUs due to the silicon chips' energy dissipation. Replacing silicon chips with superconducting SFQ chips in GPUs could have a notable impact on supercomputers' performance and power consumption.
Here in the United Kingdom, Oxford Instruments Nanoscience announces significant innovation in its Cryofree dilution refrigerator technology. It believes the advancement of its ProteoxLX, a dilution refrigerator, will take the research into Quantum computing to the next level, enabling its commercialisation globally.
Since the launch of Proteox at APS Physics last year, Oxford Instruments has announced its partnership with the University of Glasgow and Rigetti and Oxford Quantum Circuits. Oxford Instruments NanoScience has also secured significant wins outside of Europe, more recently with Proteox selected by SpinQ Technology in China.
NanoScience is committed to driving leadership and innovation to support the development and commercialisation of Quantum computing around the world, explained Stuart Woods, managing director of Oxford Instruments NanoScience.
The ProteoxLX can maximise Qubit counts with large sample space and ample coaxial wiring capacity, low vibration features for reduced noise and support of long Qubit coherence times and full integration of signal conditioning components.
The LX also provides two fully customisable secondary Inserts for an optimised layout of cold electronics and high-capacity input and output lines, fully compatible and interchangeable across the Proteox family. Finally, the ProteoxLX offers 25 W cooling power available at 20 mK, low base temperature at < 7 mK, and twin pulse tubes providing up to 4.0 W cooling power at 4 K.
All these UK and EU corporate and academic consortium driven projects to advance Quantum computing should give the US and Chinese technologists some challenges relative to who stays ahead in the race to develop a commercially viable machine. Still, I dont expect either the US or China will be resting on their Qubit laurels.
Continued here:
Quantum Computing- The UK and Europe play catch-up with the USA and China. - Electropages
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum computing utilizes 3D crystals - Johns Hopkins News-Letter [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- Quantum Computing and What All Good IT Managers Should Know - TrendinTech [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- World's First Quantum Computer Made By China 24000 Times Faster Than International Counterparts - Fossbytes [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- What is Quantum Computing? Webopedia Definition [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- China hits milestone in developing quantum computer - South China Morning Post [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Five Ways Quantum Computing Will Change the Way We Think ... - PR Newswire (press release) [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- New materials bring quantum computing closer to reality - Phys.org - Phys.Org [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- Researchers Invent Nanoscale 'Refrigerator' for Quantum ... - Sci-News.com [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- China's New Type of Quantum Computing Device, Built Inside a Diamond - TrendinTech [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Molecular magnets closer to application in quantum computing - Next Big Future [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- quantum computing - WIRED UK [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- D-Wave Closes $50M Facility to Fund Next Generation of Quantum Computers - Marketwired (press release) [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Computing Could Use Graphene To Create Stable Qubits - International Business Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Bigger is better: Quantum volume expresses computer's limit - Ars Technica [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- It's time to decide how quantum computing will help your business - Techworld Australia [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- The route to high-speed quantum computing is paved with error - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- IBM makes leap in quantum computing power - ITworld [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Quantum Computing Research Given a Boost by Stanford Team - News18 [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Stanford researchers push forward quantum computing research ... - The Indian Express [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- NASA Scientist Eleanor Rieffel to give a talk on quantum computing - Chapman University: Happenings (blog) [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- IBM Q Offers Quantum Computing as a Service - The Merkle [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Quantum Computing Is Going Commercial With the Potential ... [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum computing, election pledges and a thief who made science history - Nature.com [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- IBM to Sell Use of Its New 17-Qubit Quantum Computer over the Cloud - All About Circuits [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- For more advanced computing, technology needs to make a ... - CIO Dive [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Microsoft, Purdue Extend Quantum Computing Partnership To Create More Stable Qubits - Tom's Hardware [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Toward mass-producible quantum computers | MIT News - MIT News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Purdue, Microsoft Partner On Quantum Computing Research | WBAA - WBAA [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Tektronix AWG Pulls Test into Era of Quantum Computing - Electronic Design [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's how we can achieve mass-produced quantum computers ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Quantum computers to drive customer insights, says CBA CIO - CIO - CIO Australia [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 8th, 2017] [Originally Added On: June 8th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The Machine of Tomorrow Today: Quantum Computing on the Verge - Bloomberg [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Angry Birds, qubits and big ideas: Quantum computing is tantalisingly close - The Australian Financial Review [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Consortium Applies Quantum Computing to Drug Discovery for Neurological Diseases - Drug Discovery & Development [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum computing - ZDNet [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- How to get ahead in quantum machine learning AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Quantum computing, the machines of tomorrow - The Japan Times [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]