Introduction
Antiretroviral therapy (ART) has significantly reduced HIV-related morbidity and mortality globally. However, the emerging threat of HIV drug resistance may reduce ART efficacy resulting in pronounced negative public health impact, especially in sub-Saharan Africa which account for about 70% of the global HIV epidemic.1 Scale-up of ART availability has been implemented and, in 2019, a global median of 67% of those in need (90% in Botswana)2,3 have had access to ART.4 Among the antiretroviral drugs (ARVs) used as first-line ART regimen, first-generation Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs), such as Efavirenz (EFV) and Nevirapine (NVP), are still largely used for HIV treatment in sub-Saharan Africa,5 although since 2017 the World Health Organization (WHO) has been recommending an EFV/NVP-sparing ART regimen in countries in which resistance to NNRTIs exceeds 10%.6 Despite the introduction of Dolutegravir (DTG)-based first-line ART in Botswana in June 2016, a significant proportion of HIV patients are still on EFV- or NVP-containing ART regimen.7 A recent (2019) WHO HIV drug resistance report encompassing 18 countries (6 from sub-Saharan Africa) revealed that pre-treatment HIV drug resistance rate to EFV/NVP exceeds 10% amongst adults initiating first-line ART (nearly twice as high in women than men).5 The rate was even higher (up to 30%) in those previously exposed to ARVs, including women having taken ARVs for the prevention of mother-to-child transmission.5
Antiretroviral therapy efficacy largely depends on adequate drug exposure to suppress viral replication and allow the immune system to recover. However, occurrence of drug toxicity, suboptimal patients compliance, suboptimal virologic responses, incomplete immune reconstitution and/or emergence of drug resistance limit therapeutic outcomes.8 HIV drug resistance, beside known viral factors, more frequently occurs because of sub-therapeutic ARV drug exposure and/or acquisition of drug-resistant strains. In resource-limited settings such as Botswana, HIV-diagnosed individuals with virologic failure are more likely to stay on virologically failing regimens for prolonged periods, because of lack of adequate virological follow-up. This may result in an ineffective drug exposure potentially causing drug toxicity and a higher risk of selecting and transmitting drug-resistant viruses.9 Moreover, the presence of HIV drug resistance mutations (DRMs) in minor viral populations is associated with an increased risk of virologic failure, in particular for NNRTI-based ART regimens, regardless of adherence, ethnicity, and immuno-virological basal characteristics of patients.8
Efavirenz and NVP are primarily metabolized in the liver by the cytochrome P450 2B6 enzyme (CYP2B6) with a minor contribution from other cytochromes (i.e. CYP2A6, CYP3A4/5).1012 Studies on several populations have shown that Africans display the greatest level of genetic diversity in the CYP2B6 gene.13 Cytochrome P450 2B6 is one of the most polymorphic CYP450 genes in humans with over 100 described single nucleotide polymorphisms (SNPs), numerous complex haplotypes and distinct ethnic frequencies.14 Cytochrome P450 2B6 gene polymorphism has been associated with interindividual differences in drug pharmacokinetics and consequent plasma exposure, with possible consequences on drug efficacy and safety.14 There are different SNPs in the CYP2B6 gene that, according to their combination as haplotypes, may lead to different degrees of slow and/or fast EFV/NVP metabolizer phenotypes.14 Among those SNPs, 516G>T (rs3745274) and 983T>C (rs28399499) are associated with a significant loss of CYP2B6 function, leading to reduced clearance and prolonged half-life both for EFV1518 and NVP.19,20 The 983T>C SNP affects the metabolism of both EFV and NVP; the 516G>T SNP influences mainly the EFV metabolism, while data on its impact on NVP metabolism are less conclusive.21,22 Conversely, two other SNPs, namely 785A>G (rs2279343) and 82T>C (rs34223104) are associated with a gain of CYP2B6 function, leading to lower drug exposure.2325 Indeed, the 785A>G SNP increases EFV26 and NVP27 metabolism, whereas there are no studies assessing the clinical/pharmacological impact in vivo of the 82T>C SNP. Nonetheless, CYP2B6 82T>C has recently been included in the panel of CYP2B6 SNPs that should be considered for the evaluation of therapeutic impact by the Clinical Pharmacogenetics Implementation Consortium.28
Pharmacogenetic studies of EFV and NVP have mostly been based on the CYP2B6 516G>T and 983T>C SNPs, with little or no clear assessment of the impact of the CYP2B6 785A>G and 82T>C SNPs.14 Studies from Botswana on HIV patients taking EFV-based ART showed that the CYP2B6 516T allele was protective against 1-year,29 but not at 6-months,30 virologic breakthrough. However, no HIV DRMs have been assessed in either study. Similar results on the influence of the CYP2B6 516G>T substitution on virologic outcome were observed in studies from the US involving HIV patients of African ancestry31 and HIV-diagnosed women from a multi-ethnic cohort,32 whereas other studies did not find any evidence of protection.3335 Another work, on 66 HIV-diagnosed women from Kenya taking NVP-based ART, showed no associations of CYP2B6 516G>T and 983T>C with virologic response and toxicity at 12 months of follow-up.20
Study results concerning the association of CYP2B6 slow metabolizer profiles (defined by the presence of 516T and/or 983C alleles) and EFV and NVP-related adverse events and/or toxicity are also conflicting, with some showing an association15,3639 and others not.1820,30,31,40,41 Notably, due to the complexity of the CYP2B6 polymorphisms and the highest frequency of slow/intermediate genotypes among individuals of African ancestry, it is likely that haplotypes rather than a single polymorphism are better predictors of EFV/NVP plasma concentrations,14 as well as of toxicity, in which polymorphisms in genes other than the CYP450 system may also play a role.42,43
Efavirenz and NVP have a long half-life (estimated at 40115 and 25164hrs, respectively), a low genetic barrier for HIV drug resistance, and complex pharmacogenetics, which raises the possibility of sub-therapeutic drug concentration in plasma, especially among CYP2B6 fast metabolizers, an aspect that has not been fully studied. The CYP2B6 fast metabolizer profile may allow low EFV/NVP plasma exposure, possibly leading to the selection and spread of HIV mutations and consequent viral drug resistance. On the other hand, EFV/NVP CYP2B6 slow metabolizers are exposed to higher drug plasma concentration, leading to potential higher toxicity and consequently reduced patients adherence and/or loss to care with possibility of sub-therapeutic plasma exposure and higher risk of HIV drug resistance (at least in a long-term perspective). While studies produced conflicting results, a posology adjustment according to the CYP2B6 polymorphism background has been proposed to address these potential issues in the context of personalized medicine.44,45
In summary, different CYP2B6 genotypes may influence immuno-virological response and/or toxicity by affecting EFV and NVP plasma concentration.14 We explored the possible impact of CYP2B6 genetic (and haplotype) variation on the risk of selection, accumulation and spread of HIV DRMs, providing a particular attention to the CYP2B6 fast metabolizer profile. To date, to the best of our knowledge, this aspect has not yet been fully evaluated.
This study was performed in Botswana with the aim to: i) assess CYP2B6 genotypes (for SNPs 82T>C, 516G>T, 785A>G, 983 T>C) in HIV-diagnosed adults taking EFV or NVP containing ART, and to classify corresponding CYP2B6 phenotypes as very slow, slow, extensive, rapid and ultra-rapid metabolizers; ii) construct haplotypes and apply a metabolic score according to the DRMs profile; iii) determine if there is any association of the CYP2B6 genotypes and haplotypes with the presence of EFV/NVP-resistant infections.
This retrospective casecontrol study was part of a larger Tshepo study46 that was conducted at Botswana-Harvard AIDS Institute Partnership (BHP) between 2002 and 2007. The Tshepo study was a 5-years open-label, randomized study with a sample of 650 HIV-1 diagnosed ART nave Botswana citizens (451 females and 199 males) attending the Infectious Disease Care Clinic (IDCC) in Princess Marina Hospital in Gaborone. The aim of Tshepo study was to evaluate the efficacy, tolerability and occurrence of drug resistance of six (6) different first-line ART regimens, all including an NNRTI either EFV or NVP, during a follow-up period of 156 weeks. For the purpose of the present study, being patients adherence assessed and comparable results,46 cases were defined as HIV-diagnosed individuals taking EFV or NVP containing ART and having virological failure (evaluated after at least 4 months of ART) related to DRMs assessed by HIV genotyping, whereas controls were HIV-diagnosed individuals taking EFV or NVP-based ART without virological failure.46
Overall, 242 available residual samples were included in the present study. Of them, 40 were available cases that developed NNRTI resistance mutations, and 202 were controls.
Genomic DNA was extracted using Qiagen kits manual platform according to the manufacturers protocol (Qiagen, Hilden, Germany) from about 200L of peripheral blood mononuclear cells (PMBCs) stored at 80C.
CYP2B6 516G>T (rs3745274) detection was carried out using PCR-RFLP technique according to Lavandera et al47 protocol with minor modifications. CYP2B6 983T>C (rs28399499) detection was carried out using a touchdown PCR-RFLP assay published by Paganotti et al.48 CYP2B6 785A>G (rs2279343) detection was done using an in-house optimized RFLP-PCR protocol.49
For purposes of this study, we also adopted a new in-house assay for analysis of the CYP2B6 82T>C (rs34223104) polymorphism. We designed two (2) primers (forward primer: 5-CAAGCAGGAAGTCTGGGTTC-3; reverse primer: 3-AGTTCCATGGTCCTGGTCT-5). PCR reaction was conducted in a total volume of 20L containing 100ng genomic DNA. PCR protocol with the following conditions was used: 3min of denaturation at 94C, 30s at 94 oC, 30s at 64 oC and 60s at 72 oC for 35 cycles with a final step of 5min at 72 oC. The PCR product was then digested with PsiI restriction enzyme at 37 oC for 90 min. The enzyme cuts the wild-type allele (T) in two fragments of 92 bp and 88bp; while the mutant allele is not cut. The digested fragments were visualized on a 4% metaphor gel stained with ethidium bromide.
CYP2B6 genotype and haplotype information was translated into a measure of phenotype using the metabolic score (MS) system,49 already adopted as activity score for CYP2A6,50 CYP2C19,51 CYP2D6,52 and also consistent with Vujkovic et al,41 for CYP2B6. The MS translates composite genotype and/or haplotype information into a qualitative measure of phenotype. The scores are based on the algebraic sum of the individual allele values according to an additive model for CYP2B6.49 The MS was set conferring a 1 value for each slow metabolism alleles (516T, 983C) and +1 for rapid metabolism alleles (82C, 785G), while an extensive metabolism allele was scored 0 (82T, 516G, 785A, 983T) both for composite CYP2B6 genotypes and haplotypes.49
Several methods were applied. We used the Arlequin software (v3.5.2.2)53 to test for HardyWeinberg Equilibrium (HWE) and the genetic fixation index (FST) with default settings, while Linkage Disequilibrium (LD) was tested using the Expectation-Maximization (EM) algorithm with 20,000 permutations and three initial conditions. Binary Logistic Regression (BLR) analysis (run on IBM SPSS statistical package, version 20) was applied to find any association between the dependent variable drug resistance with the independent variables (age, BMI, baseline CD4+ T-cell count and viral load, CYP2B6 genotype). Fishers exact test, chi-square test and z-statistic were applied for statistical significance where needed.
Out of the 242 samples, 15 were excluded (5 due to the lack of complete genotypic information and 10 failed PCR). Thus, 227 samples were retained for analysis, with 40 (18.6%) belonging to the group that developed virological failure with EFV/NVP DRMs. The remaining 187 samples (81.4%) belonged to the group that did not develop virological failure during the follow-up period. Information about gender was available for 223 individuals, 146 (65.5%) being females. The study population characteristics at baseline were available for 225 individuals, being as follows: mean age 33.7 years (range: 20.450.9); mean BMI 21.3 (range: 14.534.6); median baseline CD4+ T-cell count 188 cells/L (IQR: 147221); median baseline viral load 5.30 Log10 copies/mL (IQR: 4.835.71). The ART regimen data were available for 225 individuals, with 117 (50.6%) receiving EFV, and 108 (46.8%) receiving NVP containing ART. Table 1 summarises the baseline characteristics of the study population according to the EFV/NVP resistance status.
Table 1 Baseline Characteristics of the Study Population
This study was based on a subsample of the Tshepo study46 conducted in Botswana on HIV-diagnosed individuals taking EFV/NVP-based ART regimen and followed up to 3-years (156 weeks) after the treatments start. All cases of virologic failure reported in the Tshepo study underwent HIV genotyping46 and EFV/NVP DRMs were detected in all the 40 cases used in the present study (Supplementary Table 1). Thus, in the present study, virologic failure and EFV/NVP DRMs coincide.46 The median interval between start of ART and appearance of virologic failure was 72 weeks (IQR: 45.5104).
The CYP2B6 genotype distribution and allele frequencies of the four SNPs (82T>C, 516G>T, 785A>G, 983T>C) are summarized in Table 2. The comparisons of the three genotypes distribution between the subjects with and those without HIV DRM for each single SNP were all not statistically different but for the CYP2B6 516G>T polymorphism (chi-square = 8.121; P = 0.017) (Figure 1), with the wild-type extensive metaboliser 516G allele at higher frequency among resistant than sensitive infections (70% vs 54%, calculated from Table 2).
Table 2 CYP2B6 Genotype and Allele Frequencies of the Four SNPs
Figure 1 Distribution of CYP2B6-516 genotypes according to NNRTI-resistance status. Chi-square associated P-value is 0.017.
HardyWeinberg Equilibrium analysis showed that CYP2B6 983 locus displayed significant deviations from HWE in EFV/NVP-resistant, EFV/NVP-susceptible and combined (overall) samples (P = 0.001; P < 0.001; P < 0.001, respectively). A reason for this deviation may be due to a defect in heterozygous samples. Furthermore, CYP2B6 82 and CYP2B6 516 did not show a statistically significant deviation from HWE in the EFV/NVP-resistant HIV infections (P = 0.449 and P = 0.230, respectively), whereas a statistically significant deviation from HWE was noted in the EFV/NVP-susceptible (P = 0.039 and P = 0.031, respectively) and all the samples combined (P = 0.030 and P = 0.010, respectively), with an excess of heterozygotes in both groups. CYP2B6 785 genotypes were in equilibrium in all the groups analysed (EFV/NVP-resistant, EFV/NVP-susceptible and both combined).
Linkage disequilibrium was observed between CYP2B6 82 and CYP2B6 516 in all groups (Table 3). Linkage disequilibrium was also observed between CYP2B6 82 and CYP2B6 983, as well as between CYP2B6 516 and CYP2B6 983, in the EFV/NVP-susceptible and overall samples, but not in the EFV/NVP-resistant group (Table 3). Finally, CYP2B6 785 did not show strong association with the other three loci, thus justifying the respect of HWE in all the three groups (EFV/NVP-resistant, EFV/NVP-susceptible, overall samples) (Table 3).
Table 3 Pairwise Linkage Disequilibrium (LD) Analysis for the Four Polymorphic Loci (CYP2B6 82, 516, 785, 983)
The fixation index (FST) between EFV/NVP-resistant and susceptible samples gave a distance of 0.023 (P = 0.008 0.003, 1023 permutations). While significant, this difference is consistent with panmixia between the two groups. Furthermore, an exact test of population differentiation revealed no statistical difference between the two groups (P = 0.060 0.008; 100,000 Markov chain steps).
Binary Logistic Regression analysis was set with the dependent dichotomic variable assuming two values according to the presence of EFV/NVP-susceptible or EFV/NVP-resistant HIV infections. Factors tested were age, BMI, baseline lymphocytes T-CD4+, viral load, genotypes for CYP2B6 82, CYP2B6 516, CYP2B6 785, CYP2B6 983 (see Supplementary Table 2). First step results showed only one significant factor (CYP2B6 516G). After removal of the non-significant factors, the BLR was repeated with only one (significant) factor in the model (CYP2B6 516G>T). This second step analysis revealed a significant statistical association between presence of CYP2B6 516G and DRMs status (OR: 2.26; 95% CI:1.274.01; P = 0.005).
Finally, the CYP2B6 516T allele presence (GT and TT genotypes) was tested for its possible protection against virologic failure (corresponding to EFV/NVP resistance in the present study as stated in the Methods section): no association was found at 6 months, nor beyond six months (up to 3 years) (Fishers exact test, P > 0.05).
Haplotype frequencies for CYP2B6 were estimated using the EM algorithm in Arlequin (Table 4). For all the samples, based on the four SNPs of CYP2B6 analysed (82T>C, 516G>T, 785A>G, 983T>C), the TGAT haplotype was the most common, whereas the CGAC, CTAT and CGGT haplotypes the rarest (Table 4). The haplotype TGAT was also the most abundant haplotype when EFV/NVP-resistant and susceptible samples were analysed separately, whereas no CGGT haplotypes were estimated in the EFV/NVP-susceptible group, and no TGGC, CGAC and CTAT haplotypes were estimated in the EFV/NVP-resistant group (Table 4).
Table 4 Estimated and Maximum-Likelihood (ML) Haplotype Frequencies by Phenotype and for All the Samples Combined. Maximum-Likelihood Haplotype Frequencies are Shown in Parenthesis with Their Standard Deviations (SD). The Order of Nucleotides in the Reconstructed Haplotypes is Made According to the SNP Position in the CYP2B6 Gene (82T>C, 516G>T, 785A>G, 983T>C)
The inferred MS was calculated for the haplotypes and they are shown in Table 4. In order to assess the possible risk of carrying EFV/NVP-resistant HIV infections according to the CYP2B6 fast metabolizer profile, the metabolic phenotypes were classified as follows: MS0, this including extensive, slow and very slow inferred metabolic phenotypes; MS1, this including rapid and ultra-rapid inferred metabolic phenotypes. The breakdown of metabolic phenotypes between groups according to the EFV/NVP resistance status are shown in Table 5. The comparison between EFV/NVP-resistant and susceptible HIV infections by MS was associated to a z-statistic of 1.812 (P = 0.035), therefore showing that the rate of EFV/NV resistance was significantly higher among fast metabolizers haplotypes compared to the other group (30.8% vs 16.8%, respectively).
Table 5 EFV/NVP Resistance by CYP2B6 Metabolic Phenotype
In line with the BLR results, the CYP2B6 516G allele was present in 100% (n=30/30) of rapid (CGAT and TGGT) and ultra-rapid (CGGT) haplotypes, whereas it was only present in 53.8% (n=228/424) of extensive/slow metabolizers haplotypes (Fishers exact test, P < 0.001) (see Table 4, overall column).
Understanding the factors that modulate the selection of DRMs associated with HIV-1 infection is essential to design efficient control strategies. Drug resistance usually emerges rapidly when ARV drugs are administered as monotherapy or in the presence of incomplete viral suppression, suggesting that resistance is caused by the selection of mutant viruses within the host.54 Besides known viral factors (HIV diversity, HIV replication, drug selection pressure and fitness of drug-resistant viral sub-populations) and patient ART adherence, human genetic background is a possible further, not yet fully understood, co-factor affecting HIV drug resistance selection. In this study, we addressed the hypothesis that human pharmacogenetics can drive the selection of HIV drug resistance. We therefore found a statistically significant association between EFV/NVP-resistant HIV infections and CYP2B6 516G allele presence (OR: 2.26; 95% CI:1.274.01; P = 0.005). In fact, EFV/NVP resistant infections had higher 516G allele frequency (Table 2 and Figure 1). Further information comes from the haplotype reconstruction where 100% of rapid (CGAT and TGGT) and ultra-rapid (CGGT) CYP2B6 haplotypes carried the 516G allele (Table 4), whereas only 53.8% of the extensive, slow (TGAC, TTAT and TTGC) and very slow (TTAC) haplotypes carried it. Moreover,
CYP2B6 rapid and ultra-rapid metabolizers showed a significantly higher frequency of EFV/NVP-resistant HIV infections than extensive and slow metabolizers (30.8% vs 16.8%; z-statistic = 1.812; P = 0.035), based on their haplotype reconstruction (Table 5). Nevertheless, it is important to note that the rate of rapid and ultra-rapid haplotypes is less than 6% (26/454) of the total haplotypes.
A possible interpretation of these results is that EFV/NVP resistance tends to accumulate based on the presence of the CYP2B6 516G allele (GG>GT>TT), and that in rapid and ultra-rapid metabolisers might happen at a higher rate. This could be an important model for drug resistance selection that may be verified on a larger longitudinal cohort and tested on different pathogens, different antimicrobial drugs and epidemiological contexts.
These results are partially in line with similar findings on malaria drug resistance where it has been demonstrated that the CYP2C8 slow metabolizer phenotype is associated with the risk of carrying chloroquine- and amodiaquine-resistant parasites.55,56
We also found that LD into the 1000 bp region analysed (spanning from CYP2B6 82 to 983 nucleotide positions) was strong (P < 0.001) and departures from the HWE were coherent with the physical and genetic linkage between SNPs. Genotype and allele frequencies for the four CYP2B6 SNPs analysed in this study were in line with literature, including most if not all studies from Botswana (Table 6). The only discrepancy was represented by a study41 conducted in the same area as the present research that indicated an allele frequency for CYP2B6 785G of 6%, well outside the accepted range of 35.252.8% for Southern Africa (Table 6). Finally, the two groups (with and without EFV/NVP-resistant HIV infections) into which we subdivided our study population appeared to be in panmixia, therefore offering an ideal situation for the comparison.
Table 6 CYP2B6 SNPs (82T>C, 516G>T, 785A>G, 983T>C) Frequency in Sub-Saharan Africa
In summary, subjects carrying the CYP2B6 516G allele were more likely to carry HIV drug-resistant infections. Coherently with our hypothesis, the 516G allele is always present in the rapid and ultra-rapid haplotypes, confirming the possibility that rug resistance selection is enhanced when drug metabolism is faster. However, the rate of fast metabolisers was not high in this cohort, therefore reducing its possible impact.
The present study has few limitations: i) the sample size was relatively small, therefore haplotypes reconstruction provided higher statistical power in the comparisons, ii) it would have been more powerful to use matched-case control, to avoid any confounding factors, and iii) the lack of data on EFV/NVP plasma exposure hampered the quantitative confirmation of CYP2B6 metabolic phenotypes. Nonetheless, our findings suggest a trend towards a role for the genetic background of patients affecting drug therapy outcomes, and warrants further studies.
In conclusion, this work indicates that the CYP2B6 516G allele, and its combination into rapid and ultra-rapid metabolizer profiles, as defined by the correspondent haplotypes, is directly associated with the risk of development of drug resistance in HIV-diagnosed individuals receiving EFV- or NVP-containing ART in Botswana. However, larger studies will be needed to confirm this association. In general, our findings support the hypothesis that pharmacogenetics may play a significant role in HIV therapy outcomes. Besides the known possible impact of slow EFV/NVP metabolism on ART toxicity and compliance, fast EFV/NVP metabolism may also affect ART outcomes. A deeper knowledge of the genetic background at an individual level could thus be highly beneficial in personalising ART therapies and improving their efficacy, especially in patients who show poor response following initiation of treatment.
This was a retrospective casecontrol study approved by Health Research Division Office (HRDC) of the Botswana Ministry of Health and Wellness. The approval was done in accordance with the amendments made to the initial permit of The host genetics of HIV-1 subtype C infection progression and treatment in Africa/Gwas on determinants of HIV-1 subtype C infection [Reference No: HPDME 13/18/1 X1 (163)]. For the purpose of this study signed informed consent was sought from the participants. In addition, Botswana-Harvard AIDS Institute Partnership, as the database owner authorized by HRDC, gave permission to use its data and samples for the current study. This study was conducted in accordance with the Declaration of Helsinki.
We would like to express our gratitude to SANTHE for funding this research in collaboration with Botswana Harvard AIDS Institute Partnership. We also express gratitude to the University of Botswana, Faculty of Health Sciences, School of Allied Health Professions and Botswana-University of Pennsylvania Partnership laboratory staff for their help, assistance and continuous support to this study. These authors have joint senior authorship: Gianluca Russo, Simani Gaseitsiwe, Giacomo M Paganotti.
This work was supported through the Sub-Saharan African Network for TB/HIV Research Excellence (SANTHE), a DELTAS Africa Initiative [grant # DEL-15-006]. The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS)s Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africas Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust [grant # 107752/Z/15/Z] and the UK government. The views expressed in this publication are those of the author(s) and not necessarily those of AAS, NEPAD Agency, Wellcome Trust or the UK government. The work was also supported by the Penn Center for AIDS Research [grant # P30 AI045008].
The authors report no conflicts of interest in this work.
1. UNAIDS, 2020. UNAIDS data. 2020. Available from: https://www.unaids.org/sites/default/files/media_asset/2020_aids-data-book_en.pdf. Accessed March 8, 2021.
2. Makhema J, Wirth KE, Pretorius Holme M, et al. Universal testing, expanded treatment, and incidence of HIV infection in Botswana. N Engl J Med. 2019;381(3):230242. doi:10.1056/NEJMoa1812281
3. Essex M, Makhema J, Lockman S. Reaching 90-90-90 in Botswana. Curr Opin HIV AIDS. 2019;14(6):442448. doi:10.1097/COH.0000000000000580
4. WHO, World Health Organization. Antiretroviral therapy coverage estimates by WHO region. 2020. Available from: https://apps.who.int/gho/data/view.main.23300REGION?lang=en. Accessed September 15, 2020.
5. WHO, World Health Organization. HIV drug resistance report 2019. 2019. Available from: https://www.who.int/hiv/pub/drugresistance/hivdr-report-2019/en/. Accessed September 15, 2020.
6. WHO, World Health Organization. Guidelines for the public heath response to pretreatment HIV drug resistance. 2017. Available from: https://www.who.int/hiv/pub/guidelines/hivdr-guidelines-2017/en/. Accessed September 15, 2020.
7. Republic of Botswana. Handbook of the Botswana 2016 Integrated HIV Clinical Care Guidelines. 2016.
8. Li JZ, Paredes R, Ribaudo HJ, et al. Low-frequency HIV-1 drug resistance mutations and risk of NNRTI-based antiretroviral treatment failure: a systematic review and pooled analysis. JAMA. 2011;305(13):13271335. doi:10.1001/jama.2011.375
9. Cambiano V, Bertagnolio S, Jordan MR, Lundgren JD, Phillips A. Transmission of drug resistant HIV and its potential impact on mortality and treatment outcomes in resource-limited settings. J Infect Dis. 2013;207(Suppl 2):S57S62. doi:10.1093/infdis/jit111
10. Erickson DA, Mather G, Trager WF, Levy RH, Keirns JJ. Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab Dispos. 1999;27(12):14881495.
11. Desta Z, Saussele T, Ward B, et al. Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro. Pharmacogenomics. 2007;8(6):547558. doi:10.2217/14622416.8.6.547
12. Di Iulio J, Fayet A, Arab-Alameddine M, et al. In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function. Pharmacogenet Genomics. 2009;19(4):300309. doi:10.1097/FPC.0b013e328328d577
13. Alessandrini M, Pepper MS. Priority pharmacogenetics for the African continent: focus on CYP450. Pharmacogenomics. 2014;15(3):385400. doi:10.2217/pgs.13.252.
14. Russo G, Paganotti GM, Soeria-Atmadja S, et al. Pharmacogenetics of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in resource-limited settings: influence on antiretroviral therapy response and concomitant anti-tubercular, antimalarial and contraceptive treatments. Infect Genet Evol. 2016;37:192207. doi:10.1016/j.meegid.2015.11.014
15. Haas DW, Ribaudo HJ, Kim RB, et al. Pharmacogenetics of efavirenz and central nervous system side effects: an adult AIDS Clinical Trials Group study. AIDS. 2004;18(18):23912400.
16. Ribaudo HJ, Haas DW, Tierney C, et al. Pharmacogenetics of plasma efavirenz exposure after treatment discontinuation: an adult AIDS Clinical Trials Group Study. Clin Infect Dis. 2006;42(3):401407. doi:10.1086/499364
17. Mutwa PR, Fillekes Q, Malgaz M, et al. Mid-dosing interval efavirenz plasma concentrations in HIV-1-infected children in Rwanda: treatment efficacy, tolerability, adherence, and the influence of CYP2B6 polymorphisms. J Acquir Immune Defic Syndr. 2012;60(4):400404. doi:10.1097/QAI.0b013e3182569f57
18. Sarfo FS, Zhang Y, Egan D, et al. Pharmacogenetic associations with plasma efavirenz concentrations and clinical correlates in a retrospective cohort of Ghanaian HIV-infected patients. J Antimicrob Chemother. 2014;69(2):491499. doi:10.1093/jac/dkt372
19. Dickinson L, Chaponda M, Carr DF, et al. Population pharmacokinetic and pharmacogenetic analysis of nevirapine in hypersensitive and tolerant HIV-infected patients from Malawi. Antimicrob Agents Chemother. 2014;58(2):706712. doi:10.1128/AAC.02069-13
20. Oluka MN, Okalebo FA, Guantai AN, McClelland RS, Graham SM. Cytochrome P450 2B6 genetic variants are associated with plasma nevirapine levels and clinical response in HIV-1 infected Kenyan women: a prospective cohort study. AIDS Res Ther. 2015;12:10. doi:10.1186/s12981-015-0052-0
21. Chen J, Sun J, Ma Q, et al. CYP2B6 polymorphism and nonnucleoside reverse transcriptase inhibitor plasma concentrations in Chinese HIV-infected patients. Ther Drug Monit. 2010;32(5):573578. doi:10.1097/FTD.0b013e3181ea953c
22. Lehr T, Yuan J, Hall D, et al. Integration of absorption, distribution, metabolism, and elimination genotyping data into a population pharmacokinetic analysis of nevirapine. Pharmacogenet Genomics. 2011;21(11):721730. doi:10.1097/FPC.0b013e32834a522e
23. Zukunft J, Lang T, Richter T, et al. A natural CYP2B6 TATA box polymorphism (82T> C) leading to enhanced transcription and relocation of the transcriptional start site. Mol Pharmacol. 2005;67(5):17721782. doi:10.1124/mol.104.008086
24. Bumpus NN, Kent UM, Hollenberg PF. Metabolism of efavirenz and 8-hydroxyefavirenz by P450 2B6 leads to inactivation by two distinct mechanisms. J Pharmacol Exp Ther. 2006;318(1):345351. doi:10.1124/jpet.106.102525
25. Zanger UM, Klein K, Saussele T, Blievernicht J, Hofmann MH, Schwab M. Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics. 2007;8(7):743759. doi:10.2217/14622416.8.7.743
26. Wang J, Snnerborg A, Rane A, et al. Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug efavirenz. Pharmacogenet Genomics. 2006;16(3):191198. doi:10.1097/01.fpc.0000189797.03845.90
27. Bertrand J, Chou M, Richardson DM, et al. Multiple genetic variants predict steady-state nevirapine clearance in HIV-infected cambodians. Pharmacogenet Genomics. 2012;22(12):868876. doi:10.1097/FPC.0b013e32835a5af2
28. Desta Z, Gammal RS, Gong L, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2B6 and efavirenz-containing antiretroviral therapy. Clin Pharmacol Ther. 2019;106(4):726733. doi:10.1002/cpt.147
29. Vujkovic M, Bellamy SL, Zuppa AF, et al. Brief report: CYP2B6 516G>T minor allele protective of late virologic failure in efavirenz-treated HIV-infected patients in Botswana. J Acquir Immune Defic Syndr. 2017;75(4):488491. doi:10.1097/QAI.0000000000001442
30. Gross R, Bellamy SL, Ratshaa B, et al. CYP2B6 genotypes and early efavirenz-based HIV treatment outcomes in Botswana. AIDS. 2017;31(15):21072113. doi:10.1097/QAD.0000000000001593
31. Ribaudo HJ, Liu H, Schwab M, et al. Effect of CYP2B6, ABCB1, and CYP3A5 polymorphisms on efavirenz pharmacokinetics and treatment response: an AIDS Clinical Trials Group study. J Infect Dis. 2010;202(5):717722. doi:10.1086/655470
32. Frasco MA, Mack WJ, Van Den Berg D, et al. Underlying genetic structure impacts the association between CYP2B6 polymorphisms and response to efavirenz and nevirapine. AIDS. 2012;26(16):20972106. doi:10.1097/QAD.0b013e3283593602
33. Haas DW, Smeaton LM, Shafer RW, et al. Pharmacogenetics of long-term responses to antiretroviral regimens containing efavirenz and/or nelfinavir: an Adult Aids Clinical Trials Group Study. J Infect Dis. 2005;192(11):19311942. doi:10.1086/497610
34. Haas DW, Severe P, Jean Juste MA, Pape JW, Fitzgerald DW. Functional CYP2B6 variants and virologic response to an efavirenz-containing regimen in Port-au-Prince, Haiti. J Antimicrob Chemother. 2014;69(8):21872190. doi:10.1093/jac/dku088
35. Lehmann DS, Ribaudo HJ, Daar ES, et al. Genome-wide association study of virologic response with efavirenz-containing or abacavir-containing regimens in AIDS clinical trials group protocols. Pharmacogenet Genomics. 2015;25(2):5159. doi:10.1097/FPC.0000000000000106
36. Rotger M, Colombo S, Furrer H, et al. Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet Genomics. 2005;15(1):15. doi:10.1097/01213011-200501000-00001
37. Gounden V, van Niekerk C, Snyman T, George JA. Presence of the CYP2B6 516G> T polymorphism, increased plasma efavirenz concentrations and early neuropsychiatric side effects in South African HIV-infected patients. AIDS Res Ther. 2010;7:32. doi:10.1186/1742-6405-7-32
38. Yuan J, Guo S, Hall D, et al. Toxicogenomics of nevirapine-associated cutaneous and hepatic adverse events among populations of African, Asian, and European descent. AIDS. 2011;25(10):12711280. doi:10.1097/QAD.0b013e32834779df
39. Ciccacci C, Di Fusco D, Marazzi MC, et al. Association between CYP2B6 polymorphisms and nevirapine-induced SJS/TEN: a pharmacogenetics study. Eur J Clin Pharmacol. 2013;69(11):19091916. doi:10.1007/s00228-013-1549-x
40. Mukonzo JK, Okwera A, Nakasujja N, et al. Influence of efavirenz pharmacokinetics and pharmacogenetics on neuropsychological disorders in Ugandan HIV-positive patients with or without tuberculosis: a prospective cohort study. BMC Infect Dis. 2013;13:261. doi:10.1186/1471-2334-13-261
41. Vujkovic M, Bellamy SL, Zuppa AF, et al. Polymorphisms in cytochrome P450 are associated with extensive efavirenz pharmacokinetics and CNS toxicities in an HIV cohort in Botswana. Pharmacogenomics J. 2018;18(5):678688. doi:10.1038/s41397-018-0028-2
42. Kwara A, Lartey M, Sagoe KW, Kenu E, Court MH. CYP2B6, CYP2A6 and UGT2B7 genetic polymorphisms are predictors of efavirenz mid-dose concentration in HIV-infected patients. AIDS. 2009;23(16):21012106. doi:10.1097/QAD.0b013e3283319908
43. Cummins NW, Neuhaus J, Chu H, et al. Investigation of efavirenz discontinuation in multi-ethnic populations of HIV-positive individuals by genetic analysis. EBioMedicine. 2015;2(7):706712. doi:10.1016/j.ebiom.2015.05.012
44. Mukonzo JK, Owen JS, Ogwal-Okeng J, et al. Pharmacogenetic-based efavirenz dose modification: suggestions for an African population and the different CYP2B6 genotypes. PLoS One. 2014;9(1):e86919. doi:10.1371/journal.pone.0086919
45. Mhandire D, Lacerda M, Castel S, et al. Effects of CYP2B6 and CYP1A2 genetic variation on nevirapine plasma concentration and pharmacodynamics as measured by CD4 cell count in Zimbabwean HIV-infected patients. OMICS. 2015;19(9):553562. doi:10.1089/omi.2015.0104
46. Wester CW, Thomas AM, Bussmann H, et al. Non-nucleoside reverse transcriptase inhibitor outcomes among combination antiretroviral therapy-treated adults in Botswana. AIDS. 2010;24(Suppl 1(Suppl 1)):S27S36. doi:10.1097/01.aids.0000366080.91192.55
47. Lavandera JV, Parera VE, Rossetti MV, Batlle AM, Buzaleh AM. Identification of CYP3A5 and CYP2B6 polymorphisms in porphyria cutanea tarda associated to human immunodeficiency virus. J Clin Exp Dermatol Res. 2011;S2:006. doi:10.4172/2155-9554.S2-006.
48. Paganotti GM, Russo G, Sobze MS, et al. CYP2B6 poor metaboliser alleles involved in efavirenz and nevirapine metabolism: CYP2B6*9 and CYP2B6*18 distribution in HIV-exposed subjects from Dschang, Western Cameroon. Infect Genet Evol. 2015;35:122126. doi:10.1016/j.meegid.2015.08.003
49. Tawe L, Motshoge T, Ramatlho P, et al. Human cytochrome P450 2B6 genetic variability in Botswana: a case of haplotype diversity and convergent phenotypes. Sci Rep. 2018;8(1):4912. doi:10.1038/s41598-018-23350-1
50. Kumondai M, Hosono H, Orikasa K, et al. Genetic polymorphisms of CYP2A6 in a case-control study on bladder cancer in Japanese smokers. Biol Pharm Bull. 2016;39(1):8489. doi:10.1248/bpb.b15-00604
51. Dodgen TM, Drgemller BI, Wright GE, et al. Evaluation of predictive CYP2C19 genotyping assays relative to measured phenotype in a South African cohort. Pharmacogenomics. 2015;16(12):13431354. doi:10.2217/pgs.15.80
52. Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther. 2008;83(2):234242. doi:10.1038/sj.clpt.6100406
53. Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Resour. 2010;10(3):564567. doi:10.1111/j.1755-0998.2010.02847.x
54. Mackie N. Resistance to non-nucleoside reverse transcriptase inhibitors. In: Geretti AM, editor. Antiretroviral Resistance in Clinical Practice. London: Mediscript;2006:Chapter 2. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2249/. Accessed October 1, 2020.
Originally posted here:
[Full text] CYP2B6 genetic variation with efavirenz and nevirapine | PGPM - Dove Medical Press
- SCARY GHOST ENCOUNTER! (The Hidden) - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Human Genetics and Genomics: The Science for the 21st Century - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- DNA Research - 07-09-2012 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Replying to Equestions on Junk DNA - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- 2013 Rosalind Franklin Young Investigator Awards Announced [Last Updated On: September 8th, 2012] [Originally Added On: September 8th, 2012]
- Jackson Lab CEO Leads From Heart [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- Love of science lifts Hobe Sound teen to genetics conference in Germany [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Nobel Laureates and Experts Gather to Discuss Genetics and Society [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Seattle Genetics and Millennium Complete Enrollment in Phase III AETHERA Trial of ADCETRIS® for Post-Transplant ... [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- GENETICS Journal Highlights for October 2012 [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- Myriad Genetics Sponsors Cancer Awareness Initiatives in Support of National Hereditary Breast and Ovarian Cancer Week [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Study Says Genetics Of Intelligence Remains A Riddle, For Now [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- ORF Genetics to Offer endotoxin- and Animal-free FGFb and mLIF for Stem Cell Research [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- Research and Markets: Human Genes and Genomes. Science, Health, Society Provides Students and Professionals Alike With ... [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Mosquito genetics may offer clues to control malaria, researchers say [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Delphi Genetics Grants Merck License for the Use of the StabyExpressâ„¢ System [Last Updated On: October 8th, 2012] [Originally Added On: October 8th, 2012]
- This Week in PNAS [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Outsmarting breast cancer [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Economics and genetics meet in uneasy union [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Nurture trumps nature in study of oral bacteria in human twins, study finds [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- Nurture trumps nature in study of oral bacteria in human twins, says CU study [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- Claim That Links Economic Success and Genetic Diversity Draws Criticism [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- Master-builder of the Human Genetics Unit [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Genetics Society of America announces 2013 award recipients [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Myriad Genetics to Announce First Fiscal Quarter 2013 Results on Monday, November 5, 2012 [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Petes Wins Lifetime Achievement Award in Genetics [Last Updated On: October 16th, 2012] [Originally Added On: October 16th, 2012]
- 23andMe Names Christine Castro, Neil Rothstein and Jonathan Ward to Leadership Positions [Last Updated On: October 16th, 2012] [Originally Added On: October 16th, 2012]
- Privately owned genetic databases may hinder diagnosis and bar the way to the arrival of personalized medicine [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- Neil Risch - Wiki Article - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- GHOST DANCE (The Hidden) - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- SCARY GAME - "The Hidden" With Mr.Mitch361, Charlie, and ChildDolphin - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- International Academy of Cardiology: Neil Bowles, Ph.D.: GENETIC CAUSES OF CONGENITAL HEART DEFECTS - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- The Best Of: "The Hidden" - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- MEAT SHIELD (The Hidden) - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- The 10000 Year Explosion: How Civilization Accelerated Human Evolution - , Henry Harpending - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Humans, chimpanzees and monkeys share DNA but not gene regulatory mechanisms [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- Surprising findings from NHLBI Exome Sequencing Project reported [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- New method helps link genomic variation to protein production [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- Ariosa Diagnostics to Present Clinical Data on the Harmonyâ„¢ Prenatal Test at American Society of Human Genetics Annual ... [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- ALEX JONES Talks To DAVID ICKE: Human Genetics, Election FRAUD [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- David Icke Exposes ROYAL PAEDOPHILES - Video [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- Alex Jones - David Icke: Human Genetics, The Religion Of Death - Video [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- David Icke - Infowars Election Coverage 2012 - Video [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- David Icke: Human Genetics, The Religion of Death - Video [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- Evening with the UC Davis Genome Center - Oct 6, 2012 - David Segal - Video [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- The Hidden - (Blood For The Blood God, I Must Feed) - Video [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- GHOST ISSUES (The Hidden) - Video [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- The Hidden - (Fart Grenades And Friendly Fire) - Video [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- GHOST ISLAND (The Hidden) - Video [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- Growth Hormone - Video [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- Social Anthropology And Human Origins - Alan Barnard - Video [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- Protein Structural Biology In Biomedical Research. Advances In Molecular And Cell Biology, Volume 22 - Video [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- Exome sequencing: Potential diagnostic assay for unexplained intellectual disability [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- Unexplained intellectual disability explained by state-of-the-art genetic analysis [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- DNA variants explain over 10 percent of inherited genetic risk for heart disease [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- Novel type 2 diabetes genetic study involves 5 major ancestry groups [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- Significant relationship between mortality and telomere length discovered [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- Alex Jones on David Icke 2001 - The Turd - Video [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- David Icke Human Genetics [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- BLINDNESS (The Hidden) - Video [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- Human Genetics, The Religion of Death : David Icke - Video [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- Alex Jones Show - David Icke: Human Genetics, Paedophile Gov., The Religion of Death - Video [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- Human Genetics - Video [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- DAVID ICKE: Human Genetics, The Religion of Death (11/6/2012) - Video [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- Human Genetics: The Basics - Ricki Lewis - Video [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- The Hidden - (Meat Shields Everywhere, Face Of Protection) - Video [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- Leading Genomic Services Company and Its Partners Raise More Than $150,000 in Support of Pediatric Genetics Research [Last Updated On: November 11th, 2012] [Originally Added On: November 11th, 2012]
- Verinata Health Announces New Findings At The American Society Of Human Genetics [Last Updated On: November 11th, 2012] [Originally Added On: November 11th, 2012]
- DAVID ICKE: Human Genetics, The Religion of Death! ALEX JONES [INFOWARS Nightly News] - Video [Last Updated On: November 11th, 2012] [Originally Added On: November 11th, 2012]
- ALEX-JONES-Talks-To-DAVID-ICKE--Human-Genetics,-Election-FRAUD-n-The-Religion-Of-DEATH - Video [Last Updated On: November 11th, 2012] [Originally Added On: November 11th, 2012]
- Illumina Bioninformatics Overview at ASHG 2012 - Video [Last Updated On: November 11th, 2012] [Originally Added On: November 11th, 2012]
- The Hidden - Fun With No Silence [Last Updated On: November 11th, 2012] [Originally Added On: November 11th, 2012]
- David Icke - Human Genetics, The Religion of Death [11/06/2012] - Video [Last Updated On: November 11th, 2012] [Originally Added On: November 11th, 2012]
- Genetics Center takes part in global meet [Last Updated On: November 12th, 2012] [Originally Added On: November 12th, 2012]
- Half Life 2 Mods: The Hidden | Part 4 | TO WIN, OR NOT TO WIN! - Video [Last Updated On: November 12th, 2012] [Originally Added On: November 12th, 2012]
- US-X - Video [Last Updated On: November 12th, 2012] [Originally Added On: November 12th, 2012]
- Personalized Medicine From Genomics and Bioinformatics Highlighted at UCSF Genetics Symposium [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]
- News in Brief: Highlights from the American Society of Human Genetics annual meeting [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]
- Star Visitors - Dr. Richard Boylan - Coast to Coast AM Classic - Video [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]
- Protein Structural Biology In Biomedical Research, Part A - C. Woodward - Video [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]