The Prometheus League
Breaking News and Updates
- Abolition Of Work
- Ai
- Alt-right
- Alternative Medicine
- Antifa
- Artificial General Intelligence
- Artificial Intelligence
- Artificial Super Intelligence
- Ascension
- Astronomy
- Atheism
- Atheist
- Atlas Shrugged
- Automation
- Ayn Rand
- Bahamas
- Bankruptcy
- Basic Income Guarantee
- Big Tech
- Bitcoin
- Black Lives Matter
- Blackjack
- Boca Chica Texas
- Brexit
- Caribbean
- Casino
- Casino Affiliate
- Cbd Oil
- Censorship
- Cf
- Chess Engines
- Childfree
- Cloning
- Cloud Computing
- Conscious Evolution
- Corona Virus
- Cosmic Heaven
- Covid-19
- Cryonics
- Cryptocurrency
- Cyberpunk
- Darwinism
- Democrat
- Designer Babies
- DNA
- Donald Trump
- Eczema
- Elon Musk
- Entheogens
- Ethical Egoism
- Eugenic Concepts
- Eugenics
- Euthanasia
- Evolution
- Extropian
- Extropianism
- Extropy
- Fake News
- Federalism
- Federalist
- Fifth Amendment
- Fifth Amendment
- Financial Independence
- First Amendment
- Fiscal Freedom
- Food Supplements
- Fourth Amendment
- Fourth Amendment
- Free Speech
- Freedom
- Freedom of Speech
- Futurism
- Futurist
- Gambling
- Gene Medicine
- Genetic Engineering
- Genome
- Germ Warfare
- Golden Rule
- Government Oppression
- Hedonism
- High Seas
- History
- Hubble Telescope
- Human Genetic Engineering
- Human Genetics
- Human Immortality
- Human Longevity
- Illuminati
- Immortality
- Immortality Medicine
- Intentional Communities
- Jacinda Ardern
- Jitsi
- Jordan Peterson
- Las Vegas
- Liberal
- Libertarian
- Libertarianism
- Liberty
- Life Extension
- Macau
- Marie Byrd Land
- Mars
- Mars Colonization
- Mars Colony
- Memetics
- Micronations
- Mind Uploading
- Minerva Reefs
- Modern Satanism
- Moon Colonization
- Nanotech
- National Vanguard
- NATO
- Neo-eugenics
- Neurohacking
- Neurotechnology
- New Utopia
- New Zealand
- Nihilism
- Nootropics
- NSA
- Oceania
- Offshore
- Olympics
- Online Casino
- Online Gambling
- Pantheism
- Personal Empowerment
- Poker
- Political Correctness
- Politically Incorrect
- Polygamy
- Populism
- Post Human
- Post Humanism
- Posthuman
- Posthumanism
- Private Islands
- Progress
- Proud Boys
- Psoriasis
- Psychedelics
- Putin
- Quantum Computing
- Quantum Physics
- Rationalism
- Republican
- Resource Based Economy
- Robotics
- Rockall
- Ron Paul
- Roulette
- Russia
- Sealand
- Seasteading
- Second Amendment
- Second Amendment
- Seychelles
- Singularitarianism
- Singularity
- Socio-economic Collapse
- Space Exploration
- Space Station
- Space Travel
- Spacex
- Sports Betting
- Sportsbook
- Superintelligence
- Survivalism
- Talmud
- Technology
- Teilhard De Charden
- Terraforming Mars
- The Singularity
- Tms
- Tor Browser
- Trance
- Transhuman
- Transhuman News
- Transhumanism
- Transhumanist
- Transtopian
- Transtopianism
- Ukraine
- Uncategorized
- Vaping
- Victimless Crimes
- Virtual Reality
- Wage Slavery
- War On Drugs
- Waveland
- Ww3
- Yahoo
- Zeitgeist Movement
-
Prometheism
-
Forbidden Fruit
-
The Evolutionary Perspective
Daily Archives: July 21, 2020
NASAs Mars Exploration Program
Posted: July 21, 2020 at 12:46 pm
Astrobiology is a relatively new field of study, where scientists from a variety of disciplines (astronomy, biology, geology, physics, etc.) work together to understand the potential for life to exist beyond Earth. However, the exploration of Mars has been intertwined with NASAs search for life from the beginning. The twin Viking landers of 1976 were NASAs first life detection mission, and although the results from the experiments failed to detect life in the Martian regolith, and resulted in a long period with fewer Mars missions, it was not the end of the fascination that the Astrobiology science community had for the red planet.
The field of Astrobiology saw a resurgence due to the controversy surrounding the possible fossil life in the ALH84001 meteorite, and from the outsized public response to this announcement, and subsequent interest from Congress and the White House, NASAs Astrobiology Program (https://astrobiology.nasa.gov/ )and one of its major programs, the NASA Astrobiology Institute (https://nai.nasa.gov/ ) were formed.
Also at this time, NASAs Mars Exploration Program began to investigate Mars with an increasing focus on missions to the Red Planet. The Pathfinder mission and Mars Exploration Rovers (Spirit and Opportunity) were sent to Mars to Follow the Water, recognizing that liquid water is necessary for life to exist on Earth. After establishing that Mars once had significant amount of water on its surface, the Mars Science Laboratory (which includes the Curiosity rover) was sent to Mars to determine whether Mars had the right ingredients in the rocks to host life, signaling a shift to the next theme of Explore Habitability. MEP is now developing the Mars 2020 rover mission (https://mars.jpl.nasa.gov/mars2020/ ) to determine whether life may have left telltale signatures in the rocks on Marss surface, a further shift to the current science theme Seek the Signs of Life.
Finding fossils preserved from early Mars might tell us that life once flourished on this planet. We can search for evidence of cells preserved in rocks, or at a much smaller scale: compounds called biosignatures are molecular fossils, specific compounds that give some indication of the organisms that created them. However, over hundreds of millions of years these molecular fossils on Mars are subject to being destroyed or transformed to the point where they may no longer be recognized as biosignatures. Future missions must either find surface regions where erosion from wind-blown sand has recently exposed very ancient material, or alternately samples must be obtained from a shielded region beneath the surface. This latter approach is being taken by the ExoMars rover (http://exploration.esa.int/mars/48088-mission-overview/ ) under development where drilled samples taken from a depth of up to 2 meters will be analyzed.
Read more:
Posted in Mars
Comments Off on NASAs Mars Exploration Program
Overview | Mars NASA Solar System Exploration
Posted: at 12:46 pm
The fourth planet from the Sun, Mars is a dusty, cold, desert world with a very thin atmosphere.
This dynamic planet has seasons, polar ice caps and weather and canyons and extinct volcanoes, evidence it was once an even more active past.
Mars is one of the most explored bodies in our solar system, and it's the only planet where we've sent rovers to roam the alien landscape. NASA currently has three spacecraft in orbit, one rover and one lander on the surface. India and ESA also have spacecraft in orbit above Mars. These robotic explorers have found lots of evidence that Mars was much wetter and warmer, with a thicker atmosphere, billions of years ago. NASA plans to send the next-generation Perseverance rover to Mars this summer.
Go farther. Explore Mars In Depth
Ten Things to Know About Mars
10 Need-to-Know Things About Mars
1
If the Sun were as tall as a typical front door, Earth would be the size of a dime, and Mars would be about as big as an aspirin tablet.
2
Mars orbits our Sun, a star. Mars is the fourth planet from the Sun at an average distance of about 228 million km (142 million miles) or 1.52 AU.
3
One day on Mars takes a little over 24 hours. Mars makes a complete orbit around the Sun (a year in Martian time) in 687 Earth days.
4
Mars is a rocky planet. Its solid surface has been altered by volcanoes, impacts, winds, crustal movement and chemical reactions.
5
Mars has a thin atmosphere made up mostly of carbon dioxide (CO2), argon (Ar), nitrogen (N2), and a small amount of oxygen and water vapor.
6
Mars has two moons named Phobos and Deimos.
7
There are no rings around Mars.
8
Several missions have visited this planet, from flybys and orbiters to rovers on the surface.The first true Mars mission success was the Mariner 4 flyby in 1965.
9
At this time, Mars' surface cannot support life as we know it. Current missions are determining Mars' past and future potential for life.
10
Mars is known as the Red Planet because iron minerals in the Martian soil oxidize, or rust, causing the soil and atmosphere to look red.
Humans to Mars
NASA's latest robotic mission to the Red Planet, Mars 2020, aims to help future astronauts brave that inhospitable landscape.
While the science goal of the Mars 2020 rover is to look for signs of ancient life it will be the first spacecraft to collect samples of the Martian surface, caching them in tubes that could be returned to Earth on a future mission the vehicle also includes technology that paves the way for human exploration of Mars.
Robotic explorers, like the Mars 2020 rover, have long served as pathfinders to get humans into space, to the Moon and, eventually, the the surface of the Red Planet.
Read More:
Pop Culture
No other planet has captured our collective imagination quite like Mars.
In the late 1800s when people first observed the canal-like features on Mars' surface, many speculated that an intelligent alien species resided there. This led to numerous stories about Martians, some of whom invade Earth, like in the 1938 radio drama, The War of the Worlds. According to an enduring urban legend, many listeners believed the story to be real news coverage of an invasion, causing widespread panic.
Countless stories since have taken place on Mars or explored the possibilities of its Martian inhabitants. Movies like Total Recall (1990 and 2012) take us to a terraformed Mars and a struggling colony running out of air. A Martian colony and Earth have a prickly relationship in The Expanse television series and novels.
And in the 2014 novel and and its 2015 movie adaptation, The Martian, botanist Mark Whatney is stranded alone on the planet and struggles to survive until a rescue mission can retrieve him.
Kid-Friendly Mars
Kid-Friendly Mars
Mars is a cold desert world. It is half the size of Earth. Mars is sometimes called the Red Planet. It's red because of rusty iron in the ground.
Like Earth, Mars has seasons, polar ice caps, volcanoes, canyons, and weather. It has a very thin atmosphere made of carbon dioxide, nitrogen, and argon.
There are signs of ancient floods on Mars, but now water mostly exists in icy dirt and thin clouds. On some Martian hillsides, there is evidence of liquid salty water in the ground.
Visit NASA SpacePlace for more kid-friendly facts.
Resources
More here:
Posted in Mars
Comments Off on Overview | Mars NASA Solar System Exploration
Mars Facts – Interesting Facts about Planet Mars
Posted: at 12:46 pm
Mars is the fourth planet from the Sun and is the second smallest planet in the solar system. Named after the Roman god of war, Mars is also often described as the Red Planet due to its reddish appearance. Mars is a terrestrial planet with a thin atmosphere composed primarily of carbon dioxide.
Mars has two small moons, Phobos and Deimos. They were discovered in 1877 by astronomer Asaph Hall, who named them for the Latin terms fear and panic. These moons are thought to be captured asteroids and are among the smallest natural satellites in the solar system.
Mars has the largest volcano in the solar system Olympus Mons. It measures some 600 kilometres across and rises nearly 27 kilometres above the surrounding terrain. It is a shield volcano built by the continuous action of flowing lava over millions and millions of years that began some 3 billion years ago.
Olympus Mons is part of a complex of volcanoes that lie along a volcanic plateau called the Tharsis Bulge. This entire region lies over a hotspot, a place in the planets crust that allows magma from deep inside to flow out to the surface.
The Valles Marineris is an extensive canyon system on the Mars equator. It is 4,200 kilometres long and, in places, is 7 kilometres deep. On Earth, it would span the entire North American continent and beyond.
Mars has has a very primitive form of plate tectonics, and the action of two plates past each other began splitting the surface some 3.5 billion years ago. That set the stage for the formation of the Valles Marineris.
Sources: https://solarsystem.nasa.gov/planets/mars/overview/ , https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html, https://astrogeology.usgs.gov/maps/mars-viking-hemisphere-point-perspectives First Published: June 2012Last Updated: May 2020Author: Chris Jones
See more here:
Posted in Mars
Comments Off on Mars Facts – Interesting Facts about Planet Mars
Mars Facts: Life, Water and Robots on the Red Planet | Space
Posted: at 12:46 pm
Mars is the fourth planet from the sun. Befitting the Red Planet's bloody color, the Romans named it after their god of war. In truth, the Romans copied the ancient Greeks, who also named the planet after their god of war, Ares. Other civilizations also typically gave the planet names based on its color for example, the Egyptians named it "Her Desher," meaning "the red one," while ancient Chinese astronomers dubbed it "the fire star."
The bright rust color Mars is known for is due toiron-rich mineralsin its regolith the loose dust and rock covering its surface. The soil of Earth is a kind of regolith, too, albeit one loaded with organic content. According to NASA, the iron minerals oxidize, or rust, causing the soil to look red.
Thecold, thin atmospheremeans liquid water likely cannot exist on the Martian surface for any length of time. Features called recurring slope lineae may have spurts of briny water flowing on the surface, but this evidence is disputed; some scientists argue the hydrogen spotted from orbit in this region may instead indicate briny salts. This means that although this desert planet is just half the diameter of Earth, it has the same amount of dry land.
The Red Planet is home to both the highest mountain and the deepest, longest valley in the solar system.Olympus Monsis roughly 17 miles (27 kilometers) high, about three times as tall as Mount Everest, while theValles Marineris system of valleys named after the Mariner 9 probe that discovered it in 1971 reaches as deep as 6 miles (10 km) and runs east-west for roughly 2,500 miles (4,000 km), about one-fifth of the distance around Mars and close to the width of Australia.
Scientists think the Valles Marineris formed mostly by rifting of the crust as it got stretched. Individual canyons within the system are as much as 60 miles (100 km) wide. The canyons merge in the central part of the Valles Marineris in a region as much as 370 miles (600 km) wide. Large channels emerging from the ends of some canyons and layered sediments within suggest the canyons might once have been filled with liquid water.
Mars also has the largest volcanoes in the solar system, Olympus Mons being one of them. The massive volcano, which is about 370 miles (600 km) in diameter, is wide enough to cover the state of New Mexico. Olympus Mons is a shield volcano, with slopes that rise gradually like those of Hawaiian volcanoes, and was created by eruptions of lavas that flowed for long distances before solidifying. Mars also has many other kinds of volcanic landforms, from small, steep-sided cones to enormous plains coated in hardened lava. Some minor eruptions might still occur on the planet.
Channels, valleys and gullies are found all over Mars, and suggest that liquid water might have flowed across the planet's surface in recent times. Some channels can be 60 miles (100 km) wide and 1,200 miles (2,000 km) long.Water may still lie in cracks and pores in underground rock. A study by scientists in 2018 suggested that salty water below the Martian surface could hold a considerable amount of oxygen, which would support microbial life. However, the amount of oxygen depends on temperature and pressure; temperature changes on Mars from time to time as the tilt of its rotation axis shifts.
Many regions of Mars are flat, low-lying plains. The lowest of the northern plains are among the flattest, smoothest places in the solar system, potentially created by water that once flowed across the Martian surface. The northern hemisphere mostly lies at a lower elevation than the southern hemisphere, suggesting the crust may be thinner in the north than in the south. This difference between the north and south might be due to a very large impact shortly after the birth of Mars.
The number of craters on Mars varies dramatically from place to place, depending on how old the surface is. Much of the surface of the southern hemisphere is extremely old, and so has many craters including the planet's largest, 1,400-mile-wide (2,300 km) Hellas Planitia while that of northern hemisphere is younger and so has fewer craters. Some volcanoes also have a few craters, which suggests they erupted recently, with the resulting lava covering up any old craters. Some craters have unusual-looking deposits of debris around them resembling solidified mudflows, potentially indicating that the impactor hit underground water or ice.
In 2018, the European Space Agency's Mars Express spacecraft detected what could be a slurry of water and grains underneath icy Planum Australe. (Some reports describe it as a "lake," but it's unclear how much regolith is inside the water.) This body of water is said to be about 12.4 miles (20 km) across. Its underground location is reminiscent of similar underground lakes in Antarctica, which have been found to host microbes. Late in the year, Mars Express also spied a huge, icy zone in the Red Planet's Korolev Crater.
Vast deposits of what appear to be finely layered stacks of water ice and dust extend from the poles to latitudes of about 80 degrees in both hemispheres. These were probably deposited by the atmosphere over long spans of time. On top of much of these layered deposits in both hemispheres are caps of water ice that remain frozen year-round.
Additional seasonal caps of frost appear in the wintertime. These are made of solid carbon dioxide, also known as "dry ice," which has condensed from carbon dioxide gas in the atmosphere. In the deepest part of the winter, this frost can extend from the poles to latitudes as low as 45 degrees, or halfway to the equator. Thedry ice layerappears to have a fluffy texture, like freshly fallen snow, according to a report in the Journal of Geophysical Research-Planets.
Mars is much colder than Earth, in large part due to its greater distance from the sun. Theaverage temperatureis about minus 80 degrees Fahrenheit (minus 60 degrees Celsius), although it can vary from minus 195 F (minus 125 C) near the poles during the winter to as much as 70 F (20 C) at midday near the equator.
The carbon-dioxide-rich atmosphere of Mars is also about 100 times less dense than Earth's on average, but it is nevertheless thick enough to support weather, clouds and winds. The density of the atmosphere varies seasonally, as winter forces carbon dioxide to freeze out of the Martian air. In the ancient past, the atmosphere was likely thicker and able to support water flowing on its surface. Over time, lighter molecules in the Martian atmosphere escaped under pressure from the solar wind, which affected the atmosphere because Mars does not have a global magnetic field. This process is being studied today by NASA's MAVEN (Mars Atmosphere and Volatile Evolution) mission.
NASA's Mars Reconnaissance Orbiter found the first definitive detections ofcarbon-dioxide snow clouds, making Mars the only body in the solar system known to host such unusual winter weather. The Red Planet also causes water-ice snow to fall from the clouds.
The dust storms on Mars are the largest in the solar system, capable of blanketing the entire Red Planet and lasting for months. One theory as to why dust storms can grow so big on Mars is because the airborne dust particles absorb sunlight, warming the Martian atmosphere in their vicinity. Warm pockets of air then flow toward colder regions, generating winds. Strong winds lift more dust off the ground, which, in turn, heats the atmosphere, raising more wind and kicking up more dust.
The axis of Mars, like Earth's, is tilted with relation to the sun. This means that like Earth, the amount of sunlight falling on certain parts of the Red Planet can vary widely during the year, giving Mars seasons.
Related: How Long Does It Take to Get to Mars
However, the seasons that Mars experiences are more extreme than Earth's because the Red Planet's elliptical, oval-shaped orbit around the sun is more elongated than that of any of the other major planets. When Mars is closest to the sun, its southern hemisphere is tilted toward the sun, giving it a short, very hot summer, while the northern hemisphere experiences a short, cold winter. When Mars is farthest from the sun, the northern hemisphere is tilted toward the sun, giving it a long, mild summer, while the southern hemisphere experiences a long, cold winter.
The tilt of the Red Planet's axis swings wildly over time because it's not stabilized by a large moon, such as Earth is. This led to different climates on the Martian surface throughout its history. A 2017 study suggests that the changing tilt also influenced therelease of methaneinto Mars' atmosphere, causing temporary warming periods that allowed water to flow.
Facts about Mars' orbit:
Average distance from the sun: 141,633,260 miles (227,936,640 km). By comparison: 1.524 times that of Earth.
Perihelion (closest): 128,400,000 miles (206,600,000 km). By comparison: 1.404 times that of Earth.
Aphelion (farthest): 154,900,000 miles (249,200,000 km). By comparison: 1.638 times that of Earth.
Atmospheric composition (by volume)
According to NASA, the atmosphere of Mars is 95.32 percent carbon dioxide, 2.7 percent nitrogen, 1.6 percent argon, 0.13 percent oxygen, 0.08 percent carbon monoxide, with minor amounts of water, nitrogen oxide, neon, hydrogen-deuterium-oxygen, krypton and xenon.
Magnetic field
Mars currently has no global magnetic field, but there are regions of its crust that can be at least 10 times more strongly magnetized than anything measured on Earth, which suggests those regions are remnants of an ancient global magnetic field.
Chemical composition
Mars likely has a solid core composed of iron, nickel and sulfur. The mantle of Mars is probably similar to Earth's in that it is composed mostly of peridotite, which is made up primarily of silicon, oxygen, iron and magnesium. The crust is probably largely made of the volcanic rock basalt, which is also common in the crusts of the Earth and the moon, although some crustal rocks, especially in the northern hemisphere, may be a form of andesite, a volcanic rock that contains more silica than basalt does.
Internal structure
Scientists think that on average, the Martian core is between 1,800 and 2,400 miles in diameter (3,000 and 4,000 km), its mantle is about 900 to 1,200 miles (5,400 to 7,200 km) wide and its crust is about 30 miles (50 km) thick.
The twomoons of Mars, Phobos and Deimos, were discovered by American astronomer Asaph Hall over the course of a week in 1877. Hall had almost given up his search for a moon of Mars, but his wife, Angelina, urged him on. He discovered Deimos the next night, and Phobos six days after that. He named the moons after the sons of the Greek war god Ares Phobos means "fear," while Deimos means "rout."
Both Phobos and Deimos are apparently made of carbon-rich rock mixed with ice and are covered in dust and loose rocks. They are tiny next to Earth's moon, and are irregularly shaped, since they lack enough gravity to pull themselves into a more circular form. The widestPhobosgets is about 17 miles (27 km), and the widest Deimos gets is roughly 9 miles (15 km).
Both moons are pockmarked with craters from meteor impacts. The surface of Phobos also possesses an intricate pattern of grooves, which may be cracks that formed after the impact created the moon's largest crater a hole about 6 miles (10 km) wide, or nearly half the width of Phobos. They always show the same face to Mars, just as our moon does to Earth.
It remains uncertain how Phobos andDeimoswere born. They may have been asteroids captured by Mars' gravitational pull, or they may have been formed in orbit around Mars the same time the planet came into existence.Ultraviolet lightreflected from Phobos provides strong evidence that the moon is a captured asteroid ,according to astronomers at the University of Padova in Italy.
Phobos is gradually spiraling toward Mars, drawing about 6 feet (1.8 meters) closer to the Red Planet each century. Within 50 million years, Phobos will either smash into Mars or break up and form a ring of debris around the planet.
The first person to watch Mars with a telescope wasGalileo Galilei. In the century following, astronomers discovered the planet's polar ice caps. In the 19th and 20th centuries, researchers believed they saw a network of long, straight canals on Mars, that hinted at possible civilization, although later these proved to be mistaken interpretations of dark regions they saw.
A number of martian rocks have fallen to the surface of Earth over the eons, providing scientists a rare opportunity to study Martian rocks without having to leave our planet. One of the most controversial finds was Allan Hills 84001 (ALH 84001) a Martian meteorite that in 1996, was said to contain shapes reminiscent of small fossils. The find garnered a lot of media attention at the time, but subsequent studies dismissed the idea. The debate was still ongoing in 2016, the 20th anniversary of the announcement. In 2018, a separate meteorite study found that organic molecules the building blocks of life, although not necessarily life itself could have formed on Mars through battery-like chemical reactions.
Robotic spacecraft began observing Mars in the 1960s, with the United States launchingMariner 4 in 1964 and Mariners 6 and 7 in 1969. The missions revealed Mars to be a barren world, without any signs of the life or civilizations people had imagined there. In 1971,Mariner 9orbited Mars, mapping about 80 percent of the planet and discovering its volcanoes and canyons.
The Soviet Union also launched numerous spacecraft in the 1960s and early 1970s, but most of those missions failed. Mars 2 (1971) and Mars 3 (1971) operated successfully, but were unable to map the surface due to dust storms. NASA'sViking 1lander touched down on the surface of Mars in 1976, the first successful landing on the Red Planet. The lander took the first close-up pictures of the Martian surface but found no strongevidence for life.
The next two craft to successfully reach Mars were the Mars Pathfinder, a lander, andMars Global Surveyor, an orbiter, both launched in 1996. A small robot onboard Pathfinder namedSojourner the first wheeled rover to explore the surface of another planet ventured over the planet's surface analyzing rocks.
In 2001, the NASA launched theMars Odysseyprobe, which discovered vast amounts of water ice beneath the Martian surface, mostly in the upper 3 feet (1 meter). It remains uncertain whether more water lies underneath, since the probe cannot see water any deeper.
In 2003, Mars passed closer to Earth than anytime in that past 60,000 years. That same year, NASA launched two rovers, nicknamedSpiritandOpportunity, which explored different regions of the Martian surface. Both rovers found signs that water once flowed on the planet's surface.
In 2008, NASA sent another mission, Phoenix, to land in the northern plains of Mars and search for water which it succeeded in doing.
In 2011, NASA's Mars Science Laboratory mission sent theMars Curiosity rover, to investigate Martian rocks and determine the geologic processes that created them. Among the mission's findings was thefirst meteoriteon the surface of the Red Planet. The rover has found complex organic molecules on the surface, as well as seasonal fluctuations in methane concentrations in the atmosphere.
NASA has two other orbiters working around the planet,Mars Reconnaissance OrbiterandMAVEN (Mars Atmosphere and Volatile Evolution). The European Space Agency (ESA) also has two spacecraft orbiting the planet:Mars Expressand the Trace Gas Orbiter.
In September 2014, India'sMars Orbiter Missionalso reached the Red Planet, making it the fourth nation to successfully enter orbit around Mars.
In November 2018, NASA sent a stationary lander called Mars InSight to the surface. InSight will examine the planet's geologic activity by burrowing a probe underground.
NASA plans to launch a successor rover mission to Curiosity, called Mars 2020. This mission will search for ancient signs of life and, depending on how promising its samples look, it may "cache" the results in safe spots on the Red Planet for a future rover to pick up.
ESA is working on its own ExoMars rover that should also launch in 2020, and will include a drill to go deep into the Red Planet, collecting soil samples from about 2 meters (6.5 feet) deep.
Mars is far from an easy planet to reach. NASA, Russia, the European Space Agency, China, Japan and the Soviet Union collectively lost many spacecraft in their quest to explore the Red Planet. Notable examples include:
1992 NASA's Mars Observer
1996 Russia's Mars 96
1998 NASA's Mars Climate Orbiter, Japan's Nozomi
1999 NASA's Mars Polar Lander
2003 ESA's Beagle 2 lander
2011 Russia's Fobus-Grunt mission to Phobos with the Chinese Yinghuo-1 orbiter
2016 ESA's Schiaparelli test lander
Robots aren't the only ones getting a ticket to Mars. A workshop group of scientists from government agencies, academia and industry have determined that aNASA-led manned mission to Marsshould be possible by the 2030s. However, in late 2017, the Trump administration directed NASA to send people back to the moon before going to Mars. NASA is now more focused on a concept called the Lunar Orbital Platform-Gateway that would be a moon-based space station and headquarters for further space exploration.
Robotic missions to the Red Planet have seen much success in the past few decades, but it remains a considerable challenge to get people to Mars. With current rocket technology, it would take several months for people to travel to Mars, and that means they would live for several months in microgravity, which has devastating effects on the human body. Performing activities in the moderate gravity on Mars could prove extremely difficult after many months in microgravity. Research on the effects of microgravity continues on the International Space Station.
NASA isn't the only one with Martian astronaut hopefuls. Elon Musk, the founder of SpaceX, has outlined multiple concepts to bring people to Mars. In November 2018, Musk rebranded SpaceX's future "Big Falcon Rocket" to "Starship". Other nations, including China and Russia, have also announced their goals for sending humans to Mars.
Additional resources:
This article was updated on Feb. 7, 2019, by Space.com contributor Elizabeth Howell.
Continued here:
Mars Facts: Life, Water and Robots on the Red Planet | Space
Posted in Mars
Comments Off on Mars Facts: Life, Water and Robots on the Red Planet | Space
NASA’s Mars Rover Drivers Need Your Help NASAs Mars …
Posted: at 12:46 pm
Using an online tool to label Martian terrain types, you can train an artificial intelligence algorithm that could improve the way engineers guide the Curiosity rover.
You may be able to help NASA's Curiosity rover drivers better navigate Mars. Using the online tool AI4Mars to label terrain features in pictures downloaded from the Red Planet, you can train an artificial intelligence algorithm to automatically read the landscape.
Is that a big rock to the left? Could it be sand? Or maybe it's nice, flat bedrock. AI4Mars, which is hosted on the citizen science website Zooniverse, lets you draw boundaries around terrain and choose one of four labels. Those labels are key to sharpening the Martian terrain-classification algorithm called SPOC (Soil Property and Object Classification).
Developed at NASA's Jet Propulsion Laboratory, which has managed all of the agency's Mars rover missions, SPOC labels various terrain types, creating a visual map that helps mission team members determine which paths to take. SPOC is already in use, but the system could use further training.
"Typically, hundreds of thousands of examples are needed to train a deep learning algorithm," said Hiro Ono, an AI researcher at JPL. "Algorithms for self-driving cars, for example, are trained with numerous images of roads, signs, traffic lights, pedestrians and other vehicles. Other public datasets for deep learning contain people, animals and buildings but no Martian landscapes."
Once fully up to speed, SPOC will be able to automatically distinguish between cohesive soil, high rocks, flat bedrock and dangerous sand dunes, sending images to Earth that will make it easier to plan Curiosity's next moves.
"In the future, we hope this algorithm can become accurate enough to do other useful tasks, like predicting how likely a rover's wheels are to slip on different surfaces," Ono said.
The Job of Rover Planners
JPL engineers called rover planners may benefit the most from a better-trained SPOC. They are responsible for Curiosity's every move, whether it's taking a selfie, trickling pulverized samples into the rover's body to be analyzed or driving from one spot to the next.
It can take four to five hours to work out a drive (which is now done virtually), requiring multiple people to write and review hundreds of lines of code. The task involves extensive collaboration with scientists as well: Geologists assess the terrain to predict whether Curiosity's wheels could slip, be damaged by sharp rocks or get stuck in sand, which trapped both the Spirit and Opportunity rovers.
Planners also consider which way the rover will be pointed at the end of a drive, since its high-gain antenna needs a clear line of sight to Earth to receive commands. And they try to anticipate shadows falling across the terrain during a drive, which can interfere with how Curiosity determines distance. (The rover uses a technique called visual odometry, comparing camera images to nearby landmarks.)
How AI Could Help
SPOC won't replace the complicated, time-intensive work of rover planners. But it can free them to focus on other aspects of their job, like discussing with scientists which rocks to study next.
"It's our job to figure out how to safely get the mission's science," said Stephanie Oij, one of the JPL rover planners involved in AI4Mars. "Automatically generating terrain labels would save us time and help us be more productive."
The benefits of a smarter algorithm would extend to planners on NASA's next Mars mission, the Perseverance rover, which launches this summer. But first, an archive of labeled images is needed. More than 8,000 Curiosity images have been uploaded to the AI4Mars site so far, providing plenty of fodder for the algorithm. Ono hopes to add images from Spirit and Opportunity in the future. In the meantime, JPL volunteers are translating the site so that participants who speak Spanish, Hindi, Japanese and several other languages can contribute as well.
For more, visit:
https://mars.nasa.gov/msl/home/
https://www.nasa.gov/mission_pages/msl/index.html
News Media ContactsAndrew GoodJet Propulsion Laboratory, Pasadena, Calif.818-393-2433andrew.c.good@jpl.nasa.gov
Grey Hautaluoma / Alana JohnsonNASA Headquarters, Washington202-358-0668 / 202-358-1501grey.hautaluoma-1@nasa.gov / alana.r.johnson@nasa.gov
Here is the original post:
Posted in Mars
Comments Off on NASA’s Mars Rover Drivers Need Your Help NASAs Mars …
Mars Mission From United Arab Emirates Embarks on 7-Month Journey – The New York Times
Posted: at 12:45 pm
Youll be hearing a lot about Mars in the weeks to come this summer. Three missions are launching toward the red planet, taking advantage of the way Earth and its neighbor get closer every 26 months or so, allowing a relatively short trip between the two worlds. If they launch successfully, the spacecraft will arrive at Mars early next year.
The first of the three missions, built by the United Arab Emirates, lifted off on Monday morning from a launch site in Japan (it was the end of Sunday afternoon in the United States). Carried into calm skies by a Mitsubishi H-IIA rocket, the spacecraft separated from the rocket about an hour later and began a journey to Mars that will last until February. The trip to the red planet begins a bold entry into interplanetary exploration by a small country that has previously only sent a few small satellites to orbit.
The Emirates Mars Mission, also known as Hope, is an orbiter that will study Mars from above the planet. It will join a fleet of six other spacecrafts studying the red planet from space, three operated by NASA, two by the European Space Agency (one shared with Russia) and one by India. Each contains different instruments to help further research of the Martian atmosphere and surface.
The Hope orbiter is carrying three instruments: an infrared spectrometer, an ultraviolet spectrometer and a camera. From its high orbit varying from 12,400 miles to 27,000 miles above the surface the spacecraft will give planetary scientists their first global view of Martian weather at all times of day. Over its two-year mission, it will investigate how dust storms and other weather phenomena near the Martian surface speed or slow the loss of the planets atmosphere into space.
The Emirates previously built and launched three earth observing satellites, gaining experience from a collaboration with a South Korean company. The country also has a nascent human spaceflight program. Last year, its first astronaut, Hazzaa al-Mansoori, who completed an eight-day stay at the International Space Station, was carried there aboard a Russian rocket.
For the Mars mission, the country took a similar approach to the earlier satellites by working with the Laboratory for Atmospheric and Space Physics at the University of Colorado, where Hope was built before being sent to Dubai for testing.
Emirati engineers worked side by side with their counterparts in Boulder, Colo., learning and doing as they designed and assembled the spacecraft.
Two other missions are headed to Mars in the weeks to come.
The next expected launch will be Chinas Tianwen-1, which could occur between later this week through early August.
The Chinese mission includes an orbiter, a lander and a rover that will study the Martian soils water and ice content, among other research targets. This will be Chinas second attempt to get to Mars. Its first, Yinghuo-1, failed to escape Earth in 2011 when the Russian rocket that was carrying it malfunctioned. In the years since that mission, China has completed a number of successful crewed missions in low earth orbit, and it landed a rover on the far side of the moon, the only spacecraft that has ever accomplished that feat.
On July 30, NASA is scheduled to launch Perseverance, a robotic rover that will be the fifth wheeled American vehicle to explore Mars. It will land in a crater called Jezero, seeking to find signs of ancient, extinct life that might have once thrived when the crater was a lake.
Early in its mission, Perseverance will release a small experimental helicopter, Ingenuity. It will attempt short flights in the thin Martian atmosphere, aiming to demonstrate that the technology can extend the reach of missions beyond the limited range of robotic rovers.
A fourth mission, the joint Russian-European Rosalind Franklin rover, was to launch this summer, too. But technical hurdles, aggravated by the coronavirus pandemic, could not be overcome in time to meet the launch window. It is now scheduled to launch in 2022.
More here:
Mars Mission From United Arab Emirates Embarks on 7-Month Journey - The New York Times
Posted in Mars
Comments Off on Mars Mission From United Arab Emirates Embarks on 7-Month Journey – The New York Times
3 Countries Are Scheduled To Send Spacecraft To Mars This Summer – NPR
Posted: at 12:45 pm
The United Arab Emirates' Hope probe will launch from Tanegashima Space Center in Japan and will reach Mars in February 2021. Mohammed Bin Rashid Space Centre hide caption
The United Arab Emirates' Hope probe will launch from Tanegashima Space Center in Japan and will reach Mars in February 2021.
If you're planning a trip to Mars, now is the time to go.
For a month or so, Earth and Mars line up in a way that makes it possible to go from one to the other. Miss that window, and you have to wait two years for the next opportunity. The United Arab Emirates, China and the United States all have missions scheduled for launch in July.
NASA's entry is a six-wheeled rover called Perseverance. It's aiming for Jezero crater, a spot on Mars that scientists think was once a lake where microbes could have lived. Landing is set for Feb. 18, 2021.
This map of Mars shows where NASA's Perseverance rover is scheduled to land in February 2021. Also shown are the locations where NASA's previous successful Mars missions touched down. NASA/JPL-Caltech hide caption
Kathryn Stack Morgan is the mission's deputy project scientist. Other rover missions have seen signals of carbon that could have been left behind by microbial life, but, she says, "We haven't been able to necessarily link the presence of that carbon to a particular pattern of texture that we see in the rock that we think could have been left behind by life."
Even if Perseverance detects carbon and sees a pattern in a rock that could have been left behind by life, the claim that there was once life on Mars would be extraordinary, and extraordinary claims require extraordinary proof.
"Very likely, we'll have to return those samples to Earth to make that definitive conclusion about whether these samples contain life in them," Morgan says.
Left: NASA's Perseverance rover gets prepared for encapsulation in the Atlas V rocket's payload fairing (nose cone) at Kennedy Space Center in Florida on June 18. Right: On July 7, the payload fairing containing the rover sits atop the motorized payload transporter that will carry it to Space Launch Complex 41 at Cape Canaveral, Florida. NASA/Christian Mangano; NASA/Kim Shiflett hide caption
Happily, that's just what Perseverance is designed to do. It won't actually bring back the samples, but it will collect rock samples, put them in containers and seal the containers so a future mission can bring them back to Earth.
"Our sampling system was particularly challenging in that we also had to keep it very, very clean," says Matthew Wallace, the rover's deputy project manager. "The reason we needed to do that is the science community is looking for trace signatures from billions of years ago. Trace chemical signatures. We don't want to confuse the search for those ancient signs of life [with material] we took with us to Mars and brought back."
It's going to be a while before the samples get back to Earth. If all goes well, it will happen in 2031.
At a recent news conference, NASA Administrator Jim Bridenstine said finding signs of life on Mars would be something, "but I'll tell you the thing that has me most excited as the NASA administrator is getting ready to watch a helicopter fly on another world," he said.
Perseverance is carrying a small camera-equipped helicopter that could be useful for exploring the landing site and finding interesting features for the rover to visit. It was a late addition to the mission, and while it makes the administrator's eyes light up, mission managers like Wallace seem to be trying to lower expectations.
NASA's Mars helicopter and its cruise stage are tested at the Kennedy Space Center on March 10. The helicopter will be attached to the rover Perseverance during its mission, which is part of NASA's Mars Exploration Program. NASA/Cory Huston hide caption
"We are not looking for an extensive and ambitious return from this technology," Wallace says. "We're trying to learn those first few things we need to learn."
So probably no dramatic tracking shots like in the movies.
Engineers test the solar panel deployment of the United Arab Emirates' Hope probe. At launch, the panels will be folded, and they'll deploy to charge the probe's batteries after the probe is released by the second stage of the launch platform. Mohammed Bin Rashid Space Centre hide caption
The United Arab Emirates has several reasons for its Mars mission, whose Hope probe will reach Mars in 2021.
"The UAE was established on Dec. 2, 1971,"says Sarah Al Amiri, deputy project manager and science lead for the Emirates Mars Mission. That makes 2021 the country's 50th birthday, so the Emirati leadership was eager to do something to celebrate.
"The purpose was not only to get to Mars by 2021 and have valid scientific data coming out of the mission that is unique in nature and no other mission has captured before," Al Amiri says. "But more importantly, it was about developing the capabilities and capacity of engineers in the country."
Al Amiri says that the Emirati leadership has been pushing the country to develop a more knowledge-based economy and that building a Mars probe provided a focus for expanding the country's technological capabilities.
Left: Sarah Al Amiri, the United Arab Emirates' minister for advanced sciences and the science lead for the Emirates Mars Mission. Right: Omran Sharaf, project director of the Emirates Mars Mission at the Mohammed Bin Rashid Space Centre. Siddharth Siva/Mohammed Bin Rashid Space Centre hide caption
Omran Sharaf is project director for the Mars mission. He says the UAE's engineers were building on technology that other countries had employed successfully to explore the solar system.
"The government want us to be smart about it," Sharaf says. "They said don't start from scratch start where others ended."
The Emirates Mars Mission's craft weighs around a ton and a half and is about the size of a small car. "When you have the solar panels deployed, it's going to be about 8 meters in width and about 3 meters in height," he says.
When it gets to Mars, it will go into an unusual orbit that will take it over essentially every point on Mars once a week. Science lead Al Amiri says that will give it a valuable perspective of the whole planet over time.
"It's providing us with full understanding of the changes of the weather of Mars throughout an entire Martian day and throughout all the seasons of Mars throughout an entire Martian year, which lasts roughly two Earth years," she says.
Collaborating on the mission is a team of scientists at the University of Colorado in Boulder. David Brain is the core science team lead.
He says the probe does fulfill the goal of collecting data about Mars that no other spacecraft has provided.
"The three instruments that are on the spacecraft will help us measure the atmosphere of Mars from the surface all the way to space, which hasn't really been done before with other missions," Brain says.
Details about China's Mars mission are scarce. It consists of an orbiter and a lander. The lander carries a rover that reportedly has ground-penetrating radar that can look for evidence of underground water.
The mission does have a name: Tianwen-1. According to the Xinhua News Agency, the name comes from a poem by that name meaning "heavenly questions" that was written more than 2,000 years ago by the poet Qu Yuan.
Originally posted here:
3 Countries Are Scheduled To Send Spacecraft To Mars This Summer - NPR
Posted in Mars
Comments Off on 3 Countries Are Scheduled To Send Spacecraft To Mars This Summer – NPR
Perseverance: the new mission to Mars | News – The Guardian
Posted: at 12:45 pm
Nasa plans to launch its latest mission to Mars this month, which aims to place the Perseverance rover on the surface of the planet in February 2021.
It is the latest attempt to explore a planet that has loomed large in the popular imagination for centuries. As the planetary scientist Sarah Stewart Johnson, author of The Sirens of Mars,tells Rachel Humphreys, there is a long history of hopes, theories and fictional representations of life on Mars. But so far none has been discovered.
The latest mission will search for habitable conditions on the planets surface and gather rocks for a future mission to bring back to Earth. It is just one of several different Mars missions to launch this month, all with one ultimate question in mind: are we alone in the universe?
Support The Guardian
The Guardian is editorially independent.And we want to keep our journalism open and accessible to all.But we increasingly need our readers to fund our work.
See the original post here:
Posted in Mars
Comments Off on Perseverance: the new mission to Mars | News – The Guardian
What will astronauts need to survive the dangerous journey to Mars? – Science News
Posted: at 12:45 pm
On movie missions to Mars, getting there is the easy part. The Martians Mark Watney was fine until a dust storm left him fending for himself. Douglas Quaids jaunt to the Red Planet in Total Recall was smooth sailing until he came under fire at Martian customs and immigration.
But in real life, just getting to Mars and back will be rife with dangers that have nothing to do with extreme weather or armed gunmen.
The mission to Mars is likely going to be four to six individuals [living] together in a can the size of a Winnebago for three years, says Leticia Vega, associate chief scientist for the NASA Human Research Program in Houston. Time on the planet will be sandwiched between a six- to nine-month journey there plus the same long trip back.
Once outside of Earths protective gravitational and magnetic fields, microgravity and radiation become big worries. Microgravity allows fluid buildup in the head, which can cause vision problems, and adventurers cruising through interplanetary space will be continually pelted with high-energy charged particles that zip right through the metal belly of a spacecraft. Researchers dont know just how harmful that radiation is, but lab experiments suggest it could raise astronauts risk of cancer and other diseases.
The length of the mission brings its own dangers. The moon was like a camping trip when you think about going to Mars, says Erik Antonsen, an emergency medicine physician and aerospace engineer at NASAs Johnson Space Center in Houston. Setting aside the social and psychological problems that could arise among people trapped together inside an interplanetary mobile home (SN: 11/29/14, p. 22), three years offers a lot more time and opportunity to get sick or injured than a dayslong Apollo mission. And Mars is about 600 times farther from Earth than the moon is. Even light-speed communications will take about 20 minutes to reach Earth from Mars. Phoning Houston for help in an emergency is not an option.
The reality is, when we do the first missions to Mars, theres a high likelihood that somebody may die, Antonsen says. If someone goes out and they get an abrasion on their eyeball and its not responding to whatever [is] on the vehicle, theyre coming back one-eyed Jack.
Despite those dangers, the United States, Russia, China and other nations have all voiced their intentions to send people to the Red Planet. NASA is gunning for a mission to Mars in the 2030s. With that deadline in mind, researchers are developing a suite of medical devices and medications to bring on a trip to Mars.
The items on this packing list are in the very early stages of development, and in some cases, still pretty impractical and unproven. Universal diagnostic wands are a distant dream. But researchers are devising artificial-gravity suits, anti-radiation medications and miniature medical tools that scientists hope will be ready in about a decade to keep the first travelers to Mars safe and healthy.
Scientists and journalists share a core belief in questioning, observing and verifying to reach the truth. Science News reports on crucial research and discovery across science disciplines. We need your financial support to make it happen every contribution makes a difference.
For something that looks so relaxing, floating in microgravity is surprisingly bad for you. When the body doesnt have to pull its own weight, muscles and bones weaken. This was a big problem in the early days of spaceflight. When the Soviet Soyuz 9 crew returned from a record 18 days in space in June 1970, one cosmonaut was so weak that he couldnt carry his own helmet when he stepped out of the landing capsule (SN: 6/27/70, p. 615). Today, astronauts on the International Space Station keep up their strength by exercising for a couple of hours each day. But other problems with life in microgravity remain unsolved.
In space, bodily fluids that Earths gravity normally keeps in the lower body drift toward the head, increasing intracranial pressure. If you were to sit down in a chair and put your head between your knees thats a bit what it feels like, says NASA astronaut Thomas Marshburn, who completed a five-month stint on the space station in 2013.
Researchers suspect that constant elevated pressure behind the eyes is to blame for vision problems, such as farsightedness, that about half of astronauts develop in space. I had a harder time reading the keys on the laptop, Marshburn recalls.
Weightlessness also confuses the gravity-sensing vestibular organs in the inner ear that play a role in balance and motor control. Upon returning to Earth, I could walk in a straight line pretty easily by the end of that day, but it took me a few days before I could start to walk around a corner without running into the wall, Marshburn says.
To make sure astronauts can walk straight and see what theyre doing on Mars, a spaceship could be outfitted with artificial-gravity machines. One such machine is a lower body negative pressure, or LBNP, chamber. The device applies vacuum pressure to the lower half of the body while a person is sealed in from the waist down. The vacuum re-creates the downward pull of gravity, planting the persons feet firmly on the floor of the chamber and drawing bodily fluids toward the legs.
In one experiment, 10 volunteers who already had medical devices implanted to measure intracranial pressure sealed their lower bodies inside an LBNP chamber. Participants had to lie down for the experiment to bring their intracranial pressure closer to what it would be like in space. When someone on Earth goes from standing to lying down, their intracranial pressure rises from around 0 millimeters of mercury to about 15 mmHg closer to what astronauts are thought to experience in space. As the researchers slowly increased the devices vacuum pressure, participants average intracranial pressure dropped from 15 to 9.4 mmHg, the researchers reported in 2019 in the Journal of Physiology.
We really dont know right now how much time [in LBNP] we need to protect the body from the harmful effects of fluid shifts in space, says Alan Hargens, a space physiologist at the University of California, San Diego. But in case LBNP becomes a significant part of the day, Hargens team built a prototype LBNP suit that can be worn during daily activity. The suit consists of a pair of overalls with built-in shoes and a seal around the waist. Vacuum pressure pulls the wearer down onto the shoe soles. These lower body negative pressure devices are an early form of artificial gravity, Hargens says. Such devices may be easier to send into space than alternatives being tested, such as centrifuges.
A centrifuge simulates gravity through centrifugal force the effect that keeps water in the bottom of a bucket when you swing it over your head. A centrifuge designed to help astronauts in microgravity looks sort of like a carousel, but with beds instead of ponies. The rider lies on a bed, head pointing toward the center of the carousel, which spins to exert a horizontal centrifugal force out toward the feet thats as strong as the downward pull of gravity. A room-sized centrifuge would be a lot harder to launch in a spaceship than an LBNP suit. But some researchers think the whole-body-centrifuge experience may combat microgravity issues that LBNP doesnt, such as the inner ear problems.
To investigate the effects of a centrifuge on sensorimotor control, Rachael Seidler, a motor control researcher at the University of Florida in Gainesville, and colleagues kept 24 volunteers in bed for 60 days to mimic life in microgravity. Sixteen of the participants spun in a centrifuge for a total of 30 minutes each day, while the other eight got no centrifugation. Before and after bed rest, participants were tested on their balance and were put through an obstacle course. Weve just had a very preliminary peek at the data, Seidler says, but it does look like the artificial gravity was helpful for motor control.
Life in microgravity may be a problem for a Mars crew, but at least its a familiar challenge to astronauts. Chronic exposure to deep space radiation, on the other hand, is a hazard that no space traveler has faced before.
The solar system is awash in charged particles called galactic cosmic rays that travel at nearly the speed of light. These particles tear through metal like its tissue paper and can kill cells or create mutations in the DNA within. Astronauts on the space station, like folks on Earth, are largely protected from these tiny wrecking balls by Earths magnetic field. But a Mars-bound crew will be totally exposed. En route to the Red Planet, astronauts are expected to receive almost two millisieverts of radiation daily roughly equal to getting a full-body CT scan every six days.
The only people ever fully immersed in deep space radiation were those who went to the moon, but they were exposed for less than two weeks. On a Mars mission, we really dont know exactly whats going to happen to humans when they get these types of exposures, says Emmanuel Urquieta, a space medicine researcher at Baylor College of Medicine in Houston. But judging by lab animal and cell experiments, this radiation wont be giving astronauts any superpowers.
In tests on animals and in human tissue, beams of particles designed to mimic space radiation degrade heart and blood vessel tissue, suggesting a Mars crew may be at higher risk for cardiovascular diseases, according to a 2018 report in Nature Reviews Cardiology. Similarly, observations of rodents exposed to radiation suggest that space radiation impairs cognitive function, researchers reported in a review article in the May 2019 Life Sciences in Space Research.
Theres also a good amount of data on radiations ability to induce cancer in the lungs, liver and brain, says Peter Guida, a researcher at Brookhaven National Laboratory in Upton, N.Y., who studies the biological effects of radiation.
Scary radiation effects seen in lab animals or cell cultures should be taken with a grain of salt. A mouse is not a person, and brain cells in a dish do not make a brain. Also, animals and cells typically get the entire Mars missionlevel dose of radiation in a single session or in a series of radiation exposures over weeks or months, which is not the same thing as getting constant, low-level exposure. But the warning signs from these experiments are worrying enough that researchers are testing various anti-radiation medications.
The biggest and most promising field for countermeasure development is antioxidants, Guida says. High-energy charged particles can cause damage by splintering water molecules in the body into toxic compounds called reactive oxygen species. Priming the body with antioxidants could help neutralize some of those reactive oxygen species and curb their effects. Options include vitamins A and E, as well as selenomethionine, an ingredient found in some dietary supplements. All these have shown at various levels to decrease the negative effects of radiation, he says.
Even harnessing the natural antioxidant powers of berries might help. In one experiment, rats fed food laced with freeze-dried blueberry powder for four weeks seemed to perform slightly better on a memory test after exposure to high-energy charged particles than rats fed normal chow before exposure. In the test, the rats were shown two objects: one they had seen before radiation exposure and one they had not. Blueberry-fed rats spent almost 70 percent of their time exploring the new object, as expected of animals that recognized the old object. But the other rats spent about half their time exploring each object, suggesting that theyd forgotten the object theyd seen before, researchers reported in 2017 in Life Sciences in Space Research.
Antioxidants, on their own, may not be enough protection, says Marjan Boerma, a radiation biologist at the University of Arkansas for Medical Sciences in Little Rock. Boerma and colleagues are testing whether aspirin and other anti-inflammatories, including a form of vitamin E called gamma-tocotrienol, can help reduce cell damage from high-energy particles. It may take a medley of pharmaceuticals or perhaps a carefully blended smoothie. Scientists are still far from hammering out the exact ingredients of that anti-radiation regimen, she says.
Pulling shifts in artificial gravity and swallowing antioxidants may become part of an astronauts daily routine. But Mars visitors will also have to deal with any unexpected illnesses and injuries without mission control to talk them through an emergency.
A Mars crew may include a physician. But that person could also get sick, Urquieta says, and that physician is not going to be board-certified in 10 different specialties. Ideally, the Mars spaceship would be equipped with artificial intelligence that could consider an astronauts symptoms, recommend medical tests, make diagnoses and assign treatments. But a reliable Dr. AI is nowhere close to reality.
Right now, the most sophisticated symptom checkers are tools like VisualDx, diagnostic software used by health care workers in hospitals and clinics. The user answers questions about a patient, such as symptoms and demographic features, to winnow down possible diagnoses. For skin conditions, VisualDx can also analyze photos of a patients skin; its now being expanded to help users assess ultrasound scans.
Art Papier, a dermatologist and chief executive officer at VisualDx, and colleagues designed a version of the system for use in deep space that works on a laptop without internet. The software doesnt have to account for every possible diagnosis, like infectious diseases from the tropics. Instead, the focus is on medical conditions that astronauts have a fairly high chance of developing, like rashes or kidney stones.
To help walk astronauts through first aid and medical exams, spaceflight physiologist and space medicine scientist Douglas Ebert of KBR, Inc. in Houston and colleagues are developing a tool called the Autonomous Medical Officer Support, or AMOS, system. An early version of the software uses pictures and videos to teach novices how to perform an eye exam, for example, or insert a breathing tube.
The researchers tested an AMOS prototype with about 30 nonphysicians, who learned how to perform several medical procedures. Those people came back three to nine months later to do the procedures again, using the software for guidance as necessary, to mimic how an astronaut would use AMOS for preflight training and in-the-moment support during an emergency.
Around 80 percent of participants accurately performed eye exams and ultrasounds and about 70 percent correctly inserted an IV. When it came to a tougher task inserting a breathing tube just about half pulled it off, Ebert and colleagues reported in January in Galveston, Texas, at the NASA Human Research Program Investigators Workshop. In April, astronauts on board the space station successfully used the software to perform kidney and bladder ultrasound scans without help from ground control.
When performing medical exams, astronauts wont have the starship Enterprises sick bay at their disposal. Theyll need miniature medical devices that fit on the spacecraft.
For medical imaging, space medicine researchers have their eyes on a new ultrasound device called the Butterfly iQ that replaces the variety of transducers usually needed to image different body parts with a single probe the size of an electric razor. Standard ultrasound machinery is around 15 times heavier than the Butterfly iQ, which displays images on a mobile app.
The company 1Drop Diagnostics, which is developing credit cardsized chips to detect chemical markers of different diseases in blood samples from a finger prick, is working on portable blood tests for astronauts.
The medical kit that astronauts use to patch each other up will have to be lightweight and compact. To decide what goes in a spaceship first aid kit, researchers use NASAs Integrated Medical Model, which forecasts which health problems the astronauts on a particular mission are most likely to have.
Researchers plug in mission details, like where the crew is headed and astronauts genders and preexisting conditions. The model then runs thousands of mission simulations to gauge the risks of that specific crew having anything from constipation to a heart attack so that planners can prioritize medical kit supplies.
Ebert and colleagues have already used this system to build a preliminary first aid packing list for a crewed lunar flyby mission that NASA has planned for 2022. For this three-week trip, the first aid kit is pretty simple: medication for back pain, motion sickness and the like.
Packing for Mars is going to be a whole new ball game, Ebert says. But researchers still have at least a decade to shrink their equipment down to size and figure out what mix of medical supplies will give Mars astronauts the best chance of surviving their epic voyage.
See the rest here:
What will astronauts need to survive the dangerous journey to Mars? - Science News
Posted in Mars
Comments Off on What will astronauts need to survive the dangerous journey to Mars? – Science News
Why mastering the Moon is vital before missions to Mars – Flightglobal
Posted: at 12:45 pm
When Jan Woerner took over the director generals chair at the European Space Agency (ESA) in late 2015, he quickly took some flack for talking about a Moon village. The term perhaps unfortunately called up images of cafes and a church, and at the time Woerner even said he had had to field questions about who might be the lord mayor.
But Woerner, who is nothing if not careful with words, also stressed that village was chosen very specifically to suggest a place where people come together with ideas, a single place but with multiple uses and multiple users. He was looking beyond the International Space Station - at that time coming to the end of its planned service life, with partner nations still discussing an extension - and his notion of a permanent human presence on the Moon was to be a focal point for any spacefaring nation, or perhaps private venture, to participate in large or small ways in the next great international collaborative project.
The idea never translated into missions, hardware or budgets and NASA, at least publicly, barely acknowledged a key allys vision. At that time, ESAs US counterpart ritually batted away talk of the Moon as a distraction from the Barack Obama White Houses instruction to aim for Mars in the 2030s. None of the big budget ESA members embraced the Moon.
Five years later, however, the Moon is on everybodys space radar following President Donald Trumps decision to turn NASAs attention to returning US boots to the Moon. Woerner is too diplomatic to suggest he feels vindicated, but in an online FIA Connect conference session titled Why Mars: the out-of-this-world benefits of space exploration, he readily admitted to being happy that the USA is talking about a city on the Moon, and that even Elon Musk has spoken of having a Moon base Alpha.
As Woerner observes: The vision of the Moon village is gone. Its reality now. Indeed, he adds, NASAs conceptual architecture of a Gateway space station in cis-lunar space - as a jumping-off point for the surface and to host international research teams - is exactly the Moon village concept.
If remarks by other participants in the FIA webinar are any indication, there is palpable enthusiasm for missions to the Moon. Andrew Stanniland, chief executive of Thales Alenia Space UK, notes that the Apollo missions 50 years ago left lots of unfinished business on the Moon, where there remains a strong argument for technology development. And, he adds, going to and operating on the Moon is hard, and some of industry has forgotten that, some never learned.
Will Whitehorn, the former president of Virgin Galactic who now heads British trade association UKspace, agrees that the Moon is hard, and contends that as a private, public, international venture it is a glorious opportunity to learn what needs to be done to go to Mars and beyond.
UK Space Agency head Graham Turnock stresses that work on the Moon is needed to learn how to operate in deep space, for extended stays away from Earth. For example, he underscores the need to learn how to protect people from radiation, and to crack water into the hydrogen - and oxygen - that will be needed for any sustainable life-support system.
Woerner adds that the Moon remains scientifically very interesting; there is water and minerals, and an observatory on the far side could provide unparalleled views of the Universe. However, he is clear that he is not against going back to the Moon: I am strongly against it because we should not copy what was done 50 years ago, in a race in space. This time, we should go there together, on an international and also a commercial and public basis.
Therefore I always say, lets not go back to the Moon, as the Americans are saying. Lets go forward to the Moon.
Original post:
Why mastering the Moon is vital before missions to Mars - Flightglobal
Posted in Mars
Comments Off on Why mastering the Moon is vital before missions to Mars – Flightglobal