Daily Archives: July 21, 2016

Victimless Crime Constitutes 86% of The Federal Prison …

Posted: July 21, 2016 at 2:24 am

When we talk about the war on drugs, which is increasingly turning into areal war, we often overlook the fact that the criminals involved in the drug trade arent actually violating anyones rights. When a drug dealer is hauled before a judge, there is no victim standing behind the prosecutor claiming damages. Everyone participating in the drug trade does so voluntarily.However, there area lot more crimesfor which this is also true. Millions upon millions of Americans have been thrown into cages without a victim ever claiming damages. It is important to look at the burden this mass level of incarceration places upon our society.

In light of that, let us review some statistics which demonstrate just how destructive the mass incarceration of victimless criminals has become to our society.The 2011 federal prison population consisted of:

Drug offenses are self-explanatory as being victimless, but so too are public-order offenses, which also fall under the victimless crimes category. Public order offenses include such things as immigration, weapons charges, publicdrunkenness,selling lemonade without a license,dancing in public,feeding the homeless without a permitetc..

The United States has the highest prison population rate in the world. Presently756 per 100,000of the national population is behind bars. This is in contrast to an average world per-capita prison population rate of145 per 100,000(158 per 100,000 if set against a world prison population of 10.65 million), based on 2008 U.N. population data. In other words, the U.S. incarcerates its citizens at a rate that is 5 times the world average.

In 2008, according to the Department of Justice, there were 7,308,200 persons in the US corrections system, of whom 4,270,917 were on probation, 828,169 were on parole, 785,556 were in jails, and 1,518,559 were in state and federal prisons. This means that the U.S. alone is responsible for holding roughly 15% of all the prisoners in the world.

In other words, 1 in 42 Americans is under correctional supervision. This constitutes over 2% of the entire U.S. population. That percentage jumps up drastically if we limit the comparison to working aged adult males, of which there are around 100 million. Over 5% of the adult male population is under some form of correctional supervision, alternatively stated, 1 in 20 adult males are under correctional supervision in the U.S.

According to 2006 statistics, 1 in 36 adult Hispanic men are behind bars, as are 1 in 15 adult black men. If we limit the data to black males between the ages 20 to 34,1 in 9 are behind bars. Keep in mind that 86% of those men in federal prisons are there for victimless crimes. They have not stolen any property, damaged any property or harmed anyone directly by their actions. Of course, if you are reading this and live in the US, you are paying for all those people to subsist on a daily basis. Roughly34% of all prisoners in the U.S. are incarcerated for victimless crimes.

In California in 2009 it cost an average of $47,102 a year to incarcerate an inmate in state prison. In 2005 it cost an average of $23,876 per state prisoner nationally. In 2007, $228 billion was spent on police, corrections and the judiciary. That constitutes around 1.6% of total U.S. GDP.

Of course, being the good economists that we are, we must not just look at the cost to incarcerate and police, but also at the opportunity cost to society that putting all those able-bodied men behind bars creates. When a man is put behind bars he is obviously incapable of contributing anything to society. He becomes a complete burden to society while producing nothing in return for the expenses he creates. He becomes a black void of resource destruction. Its important to remember that moneys value is directly related to the consumer goods that a society produces. If a society produces nothing of value, the money it uses will also be worth nothing of value. If a huge portion of able bodied workers is locked behind bars, society is effectively penalized twice once for the resources that are diverted into the prison industry and it is penalized again for the opportunity cost of the lost labor of those prisoners.

I find some dark humor in the fact that those who engage in victimless crime dont create any real victims until they are put behind bars, at which point they cause the State to steal $47,000 a year from the tax paying public. In our justice system today, victims are victimized twice; once by the perpetrator of the crime against them, and the other by the State which then forces the victim to pay for the punishment of their assailant. Clearly our societys notion of justice is logically ridiculous. Its apparently not OK for someone to steal from you, but its perfectly acceptable for the State to steal from you if the State is going to use that money to punish the person who stole from you. what kind of asinine system of justice is that?

What is justice? Isnt justice making a victim whole once again? Isnt justice punishing a criminal for the damages he imposed upon his victims?I propose that the only real justice that can be enacted in a free society is monetary punishment in the form of taking the perpetrators property and handing it to their victim, or ostracism by defamation of character.

I know some people will cry that under such a system violent criminals will be left free to roam the streets, but isnt that what our system is doing now? Consider that if a man commits a violent crime today, he is put behind bars for some arbitrary length of time with hundreds of other violent criminals, after which he is released back on to the streets. Do you think that criminal is going to be more dangerous to society after spending years locked in a cage with other violent criminals or less dangerous? Numerous studiesshow that prison eitherincreases, or has no impact on, recidivism. Thus, it all comes down to punishment. Isnt being branded a criminal, along with monetary punishment to make a victim whole once again, enough? How difficult do you think your life would be if you were convicted of murder, everyone knew about it and half your assets and income were being handed to your victims family? The rest of your life would be a living hell.

Putting people behind bars does nothing but squander resources. It deprives society of able-bodied workers and costs society massive amounts of resources which are stolen from the general public through the coercive theft of taxation. Consider how much richer American society would be today if it had an additional 5% of the male population working to produce goods and services in the private sector labor force.

Economist David Friedman has put together a fantastic presentation on how society could be organized in such a way as to eliminate all victimless crime while simultaneously eliminating the necessity of the State to steal from the victims of crimes to pay for their assailants punishment. After youre done watching Friedmanspresentation, check out thisfantastic comicput together by the Real Cost of Prisons project.

If you are interested in learning more about private law and private defense, listen to thisseries of essaysby economist Robert Murphy andthis lectureby economist Hans Hoppe.

The statistics cited in this article can be verified atDrug War Facts.org

Originally posted here:

Victimless Crime Constitutes 86% of The Federal Prison ...

Posted in Victimless Crimes | Comments Off on Victimless Crime Constitutes 86% of The Federal Prison …

Atlas Shrugged – Kindle edition by Ayn Rand. Literature …

Posted: at 2:24 am

I want to say from the beginning that one does not need to agree with a philosophy to appreciate it. Obviously most of the critics and some of the supporters have never read this work. One need not approve of communism to give the Communist Manifesto a high rating but it is certainly a must read.

Ayn Rand's philosophy is known as objectivism. It is essentially having a objective reason and purpose for every action you commit.

Atlas Shrugged is one of two major novels that outlines her entire philosophy while trying to show how it would be applied. That is why this book deserves a 5 star rating. Any philosopher can give generic ideas with no application. Rand puts it all on the line to show exactly how she means her philosophy to be interpreted.

The student of philosophy will be able to understand her philosophy quite clearly after reading this. If you agree with her philosophy you should encourage others to read this book. If this book is so clearly wrong then you should encourage others to read it so they will see how clearly wrong it is. Those that want it burned or object to others reading it know that she offers some very strong arguments for a position they clearly do not want to be true.

This book takes place probably around the 1950s. It is centered around the industrial sector of the U.S., the only government that has not become a People's State. The main character in this book is Dagny Taggart. She is a no-nonsense VP of Operations for the largest railroad in the world. She is intelligent and is solely driven to keeping her RR as the best.

The times are dim and getting dimmer. In the beginning the country is in a recession of sorts and it is up to Taggart and others like her to save the country.

Read more from the original source:

Atlas Shrugged - Kindle edition by Ayn Rand. Literature ...

Posted in Atlas Shrugged | Comments Off on Atlas Shrugged – Kindle edition by Ayn Rand. Literature …

Libertarian Johnson defends Melania Trump on speech

Posted: at 2:24 am

Libertarian presidential candidate Gary Johnson defended Melania Trump during a stop in Chicago Tuesday, saying he could understand how the wife of soon-to-be Republican nominee Donald Trump could have mistakenly plagiarized parts of the speech she delivered to the GOP convention Monday night.

A few sentences of the address Melania Trump delivered in Cleveland were nearly identical to passages of first lady Michelle Obama's speech to the Democratic National Convention in 2008, a revelation that dominated coverage of the presidential race Tuesday.

And while Johnson has sought to appeal to middle-of-the-road voters fed up with Trump and presumptive Democratic nominee Hillary Clinton, he did not seek to capitalize on the latest Trump flub following an appearance before the Chicago Tribune Editorial Board.

"Here's what I make of it, and it's a defense of Melania: She's brought into this, make a few comments, Melania, make it from the heart and I don't know what the circumstances are," said Johnson, a former two-term Republican governor of New Mexico. "But maybe she got online and 'what did Michelle do' ... or some staff did for her. Anyway, no stones cast on my part."

Asked if the mistake reflected poorly on the campaign and Trump's leadership, Johnson punted. "There will be others to do that. I'll refrain. I just can see how it could happen," he said, before starting to laugh. "Whoever did it, should have done a better job of paraphrasing as opposed to (using) just the exact lines."

Johnson was joined by his running mate, former Massachusetts Republican Gov. Bill Weld, as the two tried to make the case for their third-party campaign. They positioned their ticket as the campaign of the center conservative on fiscal matters but liberal on social issues.

"I'm maintaining in this cycle that most people are Libertarian, it's just that they don't know it," said Johnson, who noted he first identified himself philosophically as a Libertarian in 1971, though he later ran for office as a Republican. It was that year when he read a short book on what it meant to be a Libertarian and decided he was one.

The name of the book or author? "I can't even remember."

But Johnson said he did remember voting Libertarian for the first time in 1984, when he said he cast a ballot for David Bergland over Republican President Ronald Reagan, because "Reagan had blown the lid off the deficits."

During the hourlong session with the Tribune Editorial Board, Johnson often took a back seat to Weld, who spoke more and jumped to answer many of the questions as the presidential nominee looked on.

If elected, the two said they'd cut federal spending by 20 percent in their first budget and would eliminate the Department of Education, Department of Commerce and Department of Housing and Urban Development. They said they'd place states in charge of Medicare and Medicaid and allow them the autonomy to determine their own eligibility rules. And they said they'd cut back on unnecessary military spending and try to close unneeded bases.

Johnson said Clinton and Trump had their "heads in the sand" on Social Security and vowed to reform the system by increasing the retirement age and making income a factor in whether individuals qualify for assistance.

And Johnson said he was the highest-ranking elected official in the country calling for the legalization of marijuana back in 1999, a position he's still pushing today.

As for his opponents, Johnson said the Trump agenda is fascism, calling his vows to round up and deport illegal immigrants "horrible" and "incendiary."

Added Weld: "There has to be a change in tone. Mr. Trump is very much a part of the problem and not part of the solution. I make a point of saying in a Johnson-Weld White House, you're not going to get any bullying and you're not going to get any bluffing, you're not going to get any sanctimonious lectures."

Johnson said Clinton's agenda is one of being beholden, predicting higher taxes and a mantra of "just give us the money, we'll take on more of the problems."

Much of Johnson and Weld's work right now is to convince voters their ticket has legitimacy. There are a lot of what-ifs.

The federal debate commission requires candidates to receive at least 15 percent support in polls to be included in this fall's televised debate, a policy Johnson's campaign has challenged in court. Still, the two projected they'd reach the 15 percent threshold anyway, noting a recent CNN poll that had them receiving 13 percent of the vote. The Real Clear Politics average has Johnson receiving 8.5 percent.

Weld said "it's possible" former Republican presidential nominee Mitt Romney will endorse their campaign. He also noted the campaign's fundraising could rise as high as $50 million to $100 million if they get that valuable debate airtime.

"If we get in the presidential debates," Weld said, "we're going to be dangerous to the other two parties."

bruthhart@chicagotribune.com

Twitter @BillRuthhart

Go here to read the rest:

Libertarian Johnson defends Melania Trump on speech

Posted in Libertarian | Comments Off on Libertarian Johnson defends Melania Trump on speech

Libertarian Party of Illinois

Posted: at 2:24 am

On Monday June 27th, the Libertarian Party of Illinois turned in 53,000 signatures on 4,500 pages. More than twice the required amount for third parties and more than 10 times what is required of a Republican or Democrat in Illinois. As of Tuesday, July 5th, the window for issuing a challenge has officially closed meaning we are on the ballot this November!

Some interesting statistics:

These are more than interesting facts, they represent the lengths (no pun intended) that we as a party must go to in order to secure our place on the ballot. A place we must fight tooth and nail for every single time because the entrenched powers that be make the rules that keep them in power. This year, people are waking up to the options that are out there. The only reason we are on the ballot is the hard work and dedication of volunteers who sacrificed time, money, sleep, and nights better spent with family to make the future a better place for them. The volunteers who came from out of state on their own who collected. The donors who reached into their wallets to fund the work of petitioners. The crew who drove down on the last weekend to bind and validate the last push of petitions. The endless phone calls fielded by our long-suffering ballot access director and state chair. We couldn't have gotten there without you!

The 2016 campaign season is now in full swing! Visit our campaign page to meet the Libertarians who are seeking election.

Libertarians are traversing the state, looking to meet you. As supporters of the smallest minority: The Individual, we have been looking to touch base with as many of Illinois citizens as possible, from the Shawnee to Chicago.

The message we are sharing says: Enough of the establishments robbing Peter to pay Paul. We need to get the government out of the business of playing one group of people against another. It is time for policies of peace that protect every individuals rights to life, liberty and the pursuit of happiness.

The Libertarian Party is the third-largest and fastestgrowing political party in America. There are libertarian chapters in all 50 states and currently over 140 elected Libertarian officials six of them right here in Illinois.

Americans want, and deserve, a political system which respects them as unique individuals, as people who can make their own plans, who take responsibility for themselves, who are compassionate, and who can generally solve their own problems.

Libertarians are practical we know we cant make the world perfect but it can be a lot better.

The Libertarian Party is the only political party that is working to dramatically reduce unrestrained government spending, taxes, debt, regulations, bureaucracies, and wars, both foreign and domestic.

Illinois has the largest pension liability, the worst credit rating, and the most units of government in all the 50 states.

The states foreclosure and unemployment rates are consistently among the worst in the nation.

Meanwhile, establishment politicians make time to control your life, banning incandescent light bulbs and worrying about e-cigarettes and big gulps.

Its time for a change in Illinois politics.

We believe Illinois is ready for a fresh approach. If you do:

Contact us and let us know what interests you about liberty

A fire cannot burn without fuel.

Likewise, nothing happens in the world of politics without money.

Click below to donate an amount of your choosing. Every donation is very much appreciated.

If you wish to make a monthly pledge, visit our donate page for more options.

The next election season is coming up in 2016. We are currently accepting and reviewing candidate applications.

The most recent round of elections were held for municipal offices in April 2015. To see current Illinois Libertarians, visit our candidate page.

If you think that people have the right to control their own lives as long as they do not initiate the use of force or fraud against others, you are a Libertarian.

Join the Party.

Read this article:

Libertarian Party of Illinois

Posted in Libertarian | Comments Off on Libertarian Party of Illinois

A Brief History of Space Exploration | The Aerospace …

Posted: at 2:17 am

Into Orbit

Humans have dreamed about spaceflight since antiquity. The Chinese used rockets for ceremonial and military purposes centuries ago, but only in the latter half of the 20th century were rockets developed that were powerful enough to overcome the force of gravity to reach orbital velocities that could open space to human exploration.

As often happens in science, the earliest practical work on rocket engines designed for spaceflight occurred simultaneously during the early 20th century in three countries by three key scientists: in Russia, by Konstantin Tsiolkovski; in the United States, by Robert Goddard; and in Germany, by Hermann Oberth.

In the 1930s and 1940s Nazi Germany saw the possibilities of using long-distance rockets as weapons. Late in World War II, London was attacked by 200-mile-range V-2 missiles, which arched 60 miles high over the English Channel at more than 3,500 miles per hour.

After World War II, the United States and the Soviet Union created their own missile programs. On October 4, 1957, the Soviets launched the first artificial satellite, Sputnik 1, into space. Four years later on April 12, 1961, Russian Lt. Yuri Gagarin became the first human to orbit Earth in Vostok 1. His flight lasted 108 minutes, and Gagarin reached an altitude of 327 kilometers (about 202 miles).

The first U.S. satellite, Explorer 1, went into orbit on January 31, 1958. In 1961 Alan Shepard became the first American to fly into space. On February 20, 1962, John Glenns historic flight made him the first American to orbit Earth.

Landing a man on the moon and returning him safely to Earth within a decade was a national goal set by President John F. Kennedy in 1961. On July 20, 1969, Astronaut Neil Armstrong took a giant step for mankind as he stepped onto the moon. Six Apollo missions were made to explore the moon between 1969 and 1972.

During the 1960s unmanned spacecraft photographed and probed the moon before astronauts ever landed. By the early 1970s orbiting communications and navigation satellites were in everyday use, and the Mariner spacecraft was orbiting and mapping the surface of Mars. By the end of the decade, the Voyager spacecraft had sent back detailed images of Jupiter and Saturn, their rings, and their moons.

Skylab, Americas first space station, was a human-spaceflight highlight of the 1970s, as was the Apollo Soyuz Test Project, the worlds first internationally crewed (American and Russian) space mission.

In the 1980s satellite communications expanded to carry television programs, and people were able to pick up the satellite signals on their home dish antennas. Satellites discovered an ozone hole over Antarctica, pinpointed forest fires, and gave us photographs of the nuclear power-plant disaster at Chernobyl in 1986. Astronomical satellites found new stars and gave us a new view of the center of our galaxy.

Space Shuttle

In April 1981 the launch of the space shuttle Columbia ushered in a period of reliance on the reusable shuttle for most civilian and military space missions. Twenty-four successful shuttle launches fulfilled many scientific and military requirements until January 1986, when the shuttle Challenger exploded after launch, killing its crew of seven.

The Challenger tragedy led to a reevaluation of Americas space program. The new goal was to make certain a suitable launch system was available when satellites were scheduled to fly. Today this is accomplished by having more than one launch method and launch facility available and by designing satellite systems to be compatible with more than one launch system.

The Gulf War proved the value of satellites in modern conflicts. During this war allied forces were able to use their control of the high ground of space to achieve a decisive advantage. Satellites were used to provide information on enemy troop formations and movements, early warning of enemy missile attacks, and precise navigation in the featureless desert terrain. The advantages of satellites allowed the coalition forces to quickly bring the war to a conclusion, saving many lives.

Space systems will continue to become more and more integral to homeland defense, weather surveillance, communication, navigation, imaging, and remote sensing for chemicals, fires and other disasters.

International Space Station

The International Space Station is a research laboratory in low Earth orbit. With many different partners contributing to its design and construction, this high-flying laboratory has become a symbol of cooperation in space exploration, with former competitors now working together.

And while the space shuttle will likely continue to carry out important space missions, particularly supporting the International Space Station, the Columbia disaster in 2003 signaled the need to step up the development of its replacement. Future space launch systems will be designed to reduce costs and improve dependability, safety, and reliability. In the meantime most U.S. military and scientific satellites will be launched into orbit by a family of expendable launch vehicles designed for a variety of missions. Other nations have their own launch systems, and there is strong competition in the commercial launch market to develop the next generation of launch systems

Go here to see the original:

A Brief History of Space Exploration | The Aerospace ...

Posted in Space Exploration | Comments Off on A Brief History of Space Exploration | The Aerospace …

Space Exploration: Crazy Far – Pictures, More From …

Posted: at 2:17 am

On the edge of a parking lot at the Marshall Space Flight Center in Huntsville, Alabama, stands a relic from a time when our future as a spacefaring species looked all but inevitable, as clear and grand as a rocket ascending over Cape Canaveral.

This is not a model, NASA physicist Les Johnson says as we gaze at the 35-foot-tall assemblage of pipes, nozzles, and shielding. This is an honest-to-goodness nuclear rocket engine. Once upon a time, NASA proposed to send a dozen astronauts to Mars in two spaceships, each powered by three of these engines. Marshall director Wernher von Braun presented that plan in August 1969, just two weeks after his Saturn V rocket delivered the first astronauts to the moon. He suggested November 12, 1981, as a departure date for Mars. The nuclear engines had already passed every test on the ground. They were ready to fly.

Thirty years after the Mars landing that never was, on a humid June morning, Johnson looks wistfully at the 40,000-pound engine in front of us. He heads a small team that assesses the feasibility of advanced concepts in space technologyand NERVA, the old nuclear engine, just might qualify. If were going to send people to Mars, this should be considered again, Johnson says. You would only need half the propellant of a conventional rocket. NASA is now designing a conventional rocket to replace the Saturn V, which was retired in 1973, not long after the last manned moon landing. It hasnt decided where the new rocket will go. The NERVA project ended in 1973 too, without a flight test. Since then, during the space shuttle era, humans havent ventured more than 400 miles from Earth.

All of which might seem to make the question Johnson and I have spent the morning discussingwill humans ever travel to the stars?sound a little out of touch.

Why did it seem more reasonable half a century ago? Of course we were crazy in a way, says physicist Freeman Dyson of the Institute for Advanced Study in Princeton. In the late 1950s Dyson worked on Project Orion, which aimed to build a manned spacecraft that could go to Mars and the moons of Saturn. Instead of using nuclear reactors to spew superheated hydrogen, as NERVA did, the Orion spacecraft would have dropped small nuclear bombs out the back every quarter of a second or so and surfed on the fireballs. It would have been enormously risky, says Dyson, who planned to go to Saturn himself. We were prepared for that. The mood then was totally different. The idea of a risk-free adventure just didnt make sense. A few years after Orion ended, Dyson outlined in Physics Today how a bomb-powered spacecraft might travel to a star.

These days its easier to outline why well never go. Stars are too far away; we dont have the money. The reasons why we might go anyway are less obviousbut theyre getting stronger. Astronomers have detected planets around many nearby stars; soon theyre bound to find one thats Earthlike and in the sweet spot for life, and in that instant theyll create a compelling destination. Our technology too is far more capable than it was in the 1960s; atom bombs arent cutting-edge anymore. In his office that morning, Les Johnson handed me what looked like a woven swatch of cobwebs. It was actually a carbon-fiber fabric sample for a giant spaceship sailone that might carry a probe beyond Pluto on rays of sunlight or laser beams. Be very careful with it, Johnson said. This is a material that might help us get there.

To get to the stars, well need many new materials and engines but also a few of the old intangibles. They havent vanished. In fact, they almost seem to be bursting forth again in the imaginative space vacated by the space shuttle, which in 2011 joined the Saturn V as a museum exhibit. In the conversation of certain dreamer-nerds, especially outside NASA, you can now hear echoes of the old aspiration and adventurousnessof the old craziness for space.

Last spring, three weeks before I met with Johnson, SpaceX, a private company based near Los Angeles, used one of its own rockets to launch an unmanned capsule that docked with the International Space Station. SpaceX leads several other companies in the race to replace the shuttle as the space stations supply ship. A month before that, a company called Planetary Resources, backed by billionaire investors such as Googles Larry Page and Eric Schmidt, announced plans to use robotic spacecraft to mine asteroids for precious metals. Working with Virgin Galactic, a company whose main business is space tourism, Planetary Resources expects within the next year or two to launch a lightweight telescope into low Earth orbit. We hope by the end of the decade that we will have identified our initial targets and begun prospecting, says Peter Diamandis, the firms co-founder.

Were going to look back at this decade as the dawn of the commercial space age, says Mason Peck, NASAs chief technologist. Its about companies large and small finding ways to make a market out of space. The energy we see nowthe economic motivation to go into spacewe havent seen that before.

Economics has long spurred exploration on Earth. Medieval merchants risked the hazards of the Silk Road to reach the markets of China; Portuguese caravels in the 15th century sailed beyond the bounds of the known world, searching less for knowledge than for gold and spices. Historically, the driver for opening frontiers has always been the search for resources, says Diamandis. Science and curiosity are weak drivers compared with wealth generation. The only way to really open up space is to create an economic engine, and that engine is resource extraction.

One resource he and co-founder Eric Anderson have their eyes on is platinum, so rare on Earth that it currently fetches $1,600 an ounce. Sending robots a million miles or more to extract and refine ore on asteroids in near-zero gravity, or to tow an asteroid closer to Earth, will require technology that doesnt yet exist. Theres a significant probability that we may fail, Anderson said at the press conference in April. But we believe that attempting this and moving the needle for space is important. Of course we hope to make a lot of money.

Elon Musk, the 41-year-old founder of PayPal, Tesla Motors, and SpaceX, has already made a lot of money, and he is devoting a sizable portion of that fortune to his own space program. The new rocket SpaceX is developing, the Falcon Heavy, will be capable of carrying twice the payload of the space shuttle, he says, for about one-fifth the price. His goal is to reduce launch costs by a further factor of 50 or 100, to $10 to $20 a pound, by developing the first fully reusable rockets. This is extremely difficult, and most people think its impossible, but I do not, Musk says. If airplanes had to be thrown away after every flight, no one would fly.

For Musk, its all part of a much grander plan: establishing a permanent human colony on Mars. NASA has had enormous success on Mars with unmanned rovers, most recently Curiosity, but has repeatedly pushed back a manned mission. Musk thinks SpaceX could land astronauts on Mars within 20 yearsand then keep landing them for decades after that.

The real thing thats needed is not to send one little mission to Mars, he says. Its ultimately to take millions of people and millions of tons of equipment to Mars to make it a self-sustaining civilization. It will be the hardest thing humanity has ever done, and its far from certain that it will occur.

I should emphasize this is not about escaping Earth. Its about making life multiplanetary. Its about getting out there and exploring the stars.

The fastest spacecraft ever builtthe Helios 2 probe, launched in 1976 to monitor the sunattained a top speed of 157,000 miles an hour. At that rate, a spacecraft headed to Proxima Centauri, the nearest star, would take more than 17,000 years to make the 24-trillion-mile journey, a temporal span equal to the one that separates us from Cro-Magnon cave painters. Those inescapable facts lead even some of the staunchest advocates of human spaceflight to conclude that interstellar travel, aside from robotic probes, will remain forever in the realm of science fiction. Its Mars or nowhere, says Louis Friedman, an astronautics engineer and one of the founders of the Planetary Society, a space-exploration advocacy group.

Some scientists, however, find the prospect of eternal confinement to two small planets in a vast galaxy just too depressing to contemplate. If we start now, and we have started, I believe we can achieve some form of interstellar exploration within a hundred years, says Andreas Tziolas. A physicist and former NASA researcher, Tziolas is a leader of Icarus Interstellar, a nonprofit organization that aims, as its mission statement says, to realize interstellar flight before the year 2100. It is now collaborating with former shuttle astronaut Mae Jemison. In early 2012 the Defense Advanced Research Projects Agency (DARPA) awarded her $500,000 for something called the 100 Year Starship project. Our task is not to launch a starship but to make sure the technologies and abilities exist within the next hundred years to do that, Jemison says.

Tziolas thinks we could develop a starship engine that harnesses nuclear fusion, the energy source of stars and hydrogen bombs. When the nuclei of small atoms such as hydrogen fuse, they release enormous energymuch more than is released by the nuclear fission of large atoms such as uranium, the energy source of nuclear power plants and of the old NERVA. While physicists have built fusion reactors, they havent yet found a way to make one that yields more energy than it consumes. I have faith in our ingenuity, Tziolas says. Only seven decades elapsed between the discovery of subatomic particles and NERVA, he points out; by 2100, he thinks, we should be able to create a fusion engine that could propel a starship to a top speed of 15 to 20 percent of the speed of light.

That would allow it to reach the nearest star in another few decadesif its machinery could last that long. Twenty years is getting near the upper limit for how long you can design a spacecraft to reliably operate, says Les Johnson. NASA asked Johnson to look into a 20-year mission, not to a star but to the edge of interstellar spaceto the region known as the heliopause, several times as far as Pluto, where the suns influence is balanced by that of other stars. The thought was, you dont want to immediately start talking about going to the nearest star, says Johnson. Its over four light-years away. Its just ... daunting, unfathomable. Johnsons task was to plan a realistic mission with a technology thats at least close to existinga first small step toward the stars.

Right now, fusion engines arent close to existing; a nuclear engine like NERVA would be too expensive; chemical rockets might reach the heliopause but could never carry enough fuel to reach a star in a reasonable amount of time. (The Voyager spacecraft, were it headed the right way, would drift by Proxima Centauri in 74,000 years.) In the end Johnsons team settled on the most evocative technology: a solar sail. Sunlight, like all light, consists of particles called photons, which exert pressure on everything they touch. At Earths distance from the sun, the pressure is only about a tenth of an ounce spread over a football field. But a large, thin sheet of reflective fabric, unfurled in the vacuum of space, will feel this gentle force and will slowly accelerate.

NASA launched a 110-square-foot light sail in 2010 that survived for several months in low Earth orbit. It hopes to launch a sail in 2014 that measures a bit under a third of an acre and weighs just 70 pounds. Movable vanes on the corners will allow ground control to maneuver the Sunjammer, which on its yearlong mission will tack some two million miles upwind toward the sun. A 16-billion-mile mission to the heliopause would require a disk-shaped sail 1,500 feet in diameter. After a year or two of sailing, the spacecraft would exceed 100,000 miles an hour.

Proxima Centauri lies 1,500 times farther still. To sail to another star, Johnson says, well need a sail the size of Alabama and Mississippi combined. We dont know how to build that yet. Whats more, sunlight alone couldnt push the sail to the star within a human lifetime, or even many lifetimes; youd need powerful space-based lasers. If you take the total energy output of humanity and put it in a laser on a satellite, says Johnson, then you could get trip times of a few decades to Proxima Centauri. And thats to send a robot the size of Johnsons desk.

What about humans, with their need for 24/7 life support? Johnson throws up his hands. When you start thinking about what it takes to supply people, he says, and how big the spacecraft would have to be and how much energy it would have to have, you enter the realm of science fiction.

To build a starship, you first have to build a future that converts fiction into fact, and that takes a lot more than rocket science. The task isnt figuring out right now how to design a starship; its continuing to build the civilization that will one day build a starship. Framed like that, more expansively, it begins to seem less impossible. But its a 100-year project or maybe a 500-year project, depending on your craziness level. Johnsons level is lowish.

I dont know what the world will be like in 500 years, he says. If we have fusion power plants, and space-based solar panels beaming energy down, and were mining the moon and have an industrial base in low Earth orbitmaybe a civilization like that could do it. Well have to be a civilization that spans the solar system before we can think about taking an interstellar voyage.

View post:

Space Exploration: Crazy Far - Pictures, More From ...

Posted in Space Exploration | Comments Off on Space Exploration: Crazy Far – Pictures, More From …

Space Exploration – National Archives and Records …

Posted: at 2:17 am

Information about the United States space flight programs, including NASA missions and the astronauts who participate in the efforts to explore space.

Stellar cluster taken by Hubble Space Telescope. (Courtesy of the Hubble Heritage Team)

NARA Resources Finding Aids for NARA Records on Space Exploration

Mars taken by Hubble Space Telescope. (Courtesy of NASA and the Hubble Heritage Team)

Presidential Libraries

The Dwight D. Eisenhower Library And Museum: Space Sources

John F. Kennedy Library & Museum: Space Sources

Lyndon Baines Johnson Library and Museum: Space Resources

Richard Nixon Library: Space Resources

Gerald R. Ford Library and Museum: Space Resources

Picture of the Trifid Nebula taken by Gemini North 8-meter Telescope. (Courtesy of the Gemini Observatory/GMOS Image)

Jimmy Carter Library and Museum: Space Resources

Ronald Reagan Presidential Library: Space Resources

George Bush Presidential Library and Museum: Space Resources

William J. Clinton Presidential Library: Space Resources

Top of Page

Neptune taken by Voyager spacecraft. (Courtesy of NASA, JPL, and CALTech)

Top of Page

General Space Exploration Resources

Jupiters red spot taken by Voyager spacecraft. (Courtesy of NASA, JPL, and CALTech)

Fireworks at star formation taken by Hubble Space Telescope. (Courtesy of NASA and the Hubble Heritage Team)

Top of Page

Original post:

Space Exploration - National Archives and Records ...

Posted in Space Exploration | Comments Off on Space Exploration – National Archives and Records …

Space exploration – Wikipedia for Schools

Posted: at 2:17 am

Background Information

The articles in this Schools selection have been arranged by curriculum topic thanks to SOS Children volunteers. A quick link for child sponsorship is http://www.sponsor-a-child.org.uk/

Space exploration is the discovery and exploration of outer space by means of space technology. Physical exploration of space is conducted both by human spaceflights and by robotic spacecraft.

While the observation of objects in space, known as astronomy, predates reliable recorded history, it was the development of large and relatively efficient rockets during the early 20th century that allowed physical space exploration to become a reality. Common rationales for exploring space include advancing scientific research, uniting different nations, ensuring the future survival of humanity and developing military and strategic advantages against other countries. Various criticisms of space exploration are sometimes made.

Space exploration has often been used as a proxy competition for geopolitical rivalries such as the Cold War. The early era of space exploration was driven by a "Space Race" between the Soviet Union and the United States, the launch of the first man-made object to orbit the Earth, the USSR's Sputnik 1, on 4 October 1957, and the first Moon landing by the American Apollo 11 craft on 20 July 1969 are often taken as the boundaries for this initial period. The Soviet space program achieved many of the first milestones, including the first living being in orbit in 1957, the first human spaceflight (Yuri Gagarin aboard Vostok 1) in 1961, the first spacewalk (by Aleksei Leonov) on 18 March 1965, the first automatic landing on another celestial body in 1966, and the launch of the first space station ( Salyut 1) in 1971.

After the first 20 years of exploration, focus shifted from one-off flights to renewable hardware, such as the Space Shuttle program, and from competition to cooperation as with the International Space Station (ISS).

With the substantial completion of the ISS following STS-133 in March 2011, plans for space exploration by the USA remain in flux. Constellation, a Bush Administration program for a return to the Moon by 2020 was judged inadequately funded and unrealistic by an expert review panel reporting in 2009. The Obama Administration proposed a revision of Constellation in 2010 to focus on the development of the capability for crewed missions beyond low earth orbit (LEO), envisioning extending the operation of the ISS beyond 2020, transferring the development of launch vehicles for human crews from NASA to the private sector, and developing technology to enable missions to beyond LEO, such as Earth/Moon L1, the Moon, Earth/Sun L2, near-earth asteroids, and Phobos or Mars orbit. As of March 2011, the US Senate and House of Representatives are still working towards a compromise NASA funding bill, which will probably terminate Constellation and fund development of a heavy lift launch vehicle (HLLV).

In the 2000s, the People's Republic of China initiated a successful manned spaceflight program, while the European Union, Japan, and India have also planned future manned space missions. China, Russia, Japan, and India have advocated manned missions to the Moon during the 21st century, while the European Union has advocated manned missions to both the Moon and Mars during the 21st century. From the 1990s onwards, private interests began promoting space tourism and then private space exploration of the Moon (see Google Lunar X Prize).

The first steps of putting a man-made object into space were taken by German scientists during World War II while testing the V-2 rocket, which became the first human-made object in space on 3 October 1942 with the launching of the A-4. After the war, the U.S. used German scientists and their captured rockets in programs for both military and civilian research. The first scientific exploration from space was the cosmic radiation experiment launched by the U.S. on a V-2 rocket on 10 May 1946. The first images of Earth taken from space followed the same year while the first animal experiment saw fruit flies lifted into space in 1947, both also on modified V-2s launched by Americans. Starting in 1947, the Soviets, also with the help of German teams, launched sub-orbital V-2 rockets and their own variant, the R-1, including radiation and animal experiments on some flights. These suborbital experiments only allowed a very short time in space which limited their usefulness.

The first successful orbital launch was of the Soviet unmanned Sputnik 1 ("Satellite 1") mission on 4 October 1957. The satellite weighed about 83kg (184 pounds), and is believed to have orbited Earth at a height of about 250km (160mi). It had two radio transmitters (20 and 40MHz), which emitted "beeps" that could be heard by radios around the globe. Analysis of the radio signals was used to gather information about the electron density of the ionosphere, while temperature and pressure data was encoded in the duration of radio beeps. The results indicated that the satellite was not punctured by a meteoroid. Sputnik 1 was launched by an R-7 rocket. It burned up upon re-entry on 3 January 1958.

This success led to an escalation of the American space program, which unsuccessfully attempted to launch a Vanguard satellite into orbit two months later. On 31 January 1958, the U.S. successfully orbited Explorer 1 on a Juno rocket. In the meantime, the Soviet dog Laika became the first animal in orbit on 3 November 1957.

The first successful human spaceflight was Vostok 1 ("East 1"), carrying 27 year old Russian cosmonaut Yuri Gagarin on 12 April 1961. The spacecraft completed one orbit around the globe, lasting about 1 hour and 48 minutes. Gagarin's flight resonated around the world; it was a demonstration of the advanced Soviet space program and it opened an entirely new era in space exploration: human spaceflight.

The U.S. first launched a person into space within a month of Vostok 1 with Alan Shepard's suborbital flight in Mercury-Redstone 3. Orbital flight was achieved by the United States when John Glenn's Mercury-Atlas 6 orbited the Earth on 20 February 1962.

Valentina Tereshkova, the first woman in space, orbited the Earth 48 times aboard Vostok 6 on 16 June 1963.

China first launched a person into space 42 years after the launch of Vostok 1, on 15 October 2003, with the flight of Yang Liwei aboard the Shenzhou 5 (Spaceboat 5) spacecraft.

The first artificial object to reach another celestial body was Luna 2 in 1959. The first automatic landing on another celestial body was performed by Luna 9 in 1966. Luna 10 became the first artificial satellite of the Moon.

The first manned landing on another celestial body was performed by Apollo 11 in its lunar landing on 20 July 1969.

The first successful interplanetary flyby was the 1962 Mariner 2 flyby of Venus (closest approach 34,773 kilometers). Flybys for the other planets were first achieved in 1965 for Mars by Mariner 4, 1973 for Jupiter by Pioneer 10, 1974 for Mercury by Mariner 10, 1979 for Saturn by Pioneer 11, 1986 for Uranus by Voyager 2, and 1989 for Neptune by Voyager 2.

The first interplanetary surface mission to return at least limited surface data from another planet was the 1970 landing of Venera 7 on Venus which returned data to earth for 23 minutes. In 1971 the Mars 3 mission achieved the first soft landing on Mars returning data for almost 20 seconds. Later much longer duration surface missions were achieved, including over 6 years of Mars surface operation by Viking 1 from 1975 to 1982 and over 2 hours of transmission from the surface of Venus by Venera 13 in 1982, the longest ever Soviet planetary surface mission.

The dream of stepping into the outer reaches of the Earth's atmosphere was driven by the fiction of Jules Verne and H.G.Wells, and rocket technology was developed to try to realise this vision. The German V-2 was the first rocket to travel into space, overcoming the problems of thrust and material failure. During the final days of World War II this technology was obtained by both the Americans and Soviets as were its designers. The initial driving force for further development of the technology was a weapons race for intercontinental ballistic missiles ( ICBMs) to be used as long-range carriers for fast nuclear weapon delivery, but in 1961 when USSR launched the first man into space, the U.S. declared itself to be in a "Space Race" with the Soviets.

Other key people included:

While the Sun will probably not be physically explored in the close future, one of the reasons for going into space is to know more about the Sun. Once above the atmosphere in particular and the Earth's magnetic field, this gives access to the Solar wind and infrared and ultraviolet radiations that cannot reach the surface of the Earth. The Sun generates most space weather, which can affect power generation and transmission systems on Earth and interfere with, and even damage, satellites and space probes.

Mercury remains the least explored of the inner planets. As of May 2011, the Mariner 10 and MESSENGER missions have been the only missions that have made close observations of Mercury. MESSENGER entered orbit around Mercury in March 2011, to further investigate the observations made by Mariner 10 in 1975 (Munsell, 2006b).

A third mission to Mercury, scheduled to arrive in 2020, BepiColombo is to include two probes. BepiColombo is a joint mission between Japan and the European Space Agency. MESSENGER and BepiColombo are intended to gather complementary data to help scientists understand many of the mysteries discovered by Mariner 10's flybys.

Flights to other planets within the Solar System are accomplished at a cost in energy, which is described by the net change in velocity of the spacecraft, or delta-v. Due to the relatively high delta-v to reach Mercury and its proximity to the Sun, it is difficult to explore and orbits around it are rather unstable.

Venus was the first target of interplanetary flyby and lander missions and, despite one of the most hostile surface environments in the solar system, has had more landers sent to it (nearly all from the Soviet Union) than any other planet in the solar system. The first successful Venus flyby was the American Mariner 2 spacecraft, which flew past Venus in 1962. Mariner 2 has been followed by several other flybys by multiple space agencies often as part of missions using a Venus flyby to provide a gravitational assist en route to other celestial bodies. In 1967 Venera 4 became the first probe to enter and directly examine the atmosphere of Venus. In 1970 Venera 7 became the first successful lander to reach the surface of Venus and by 1985 it had been followed by eight additional successful Soviet Venus landers which provided images and other direct surface data. Starting in 1975 with the Soviet orbiter Venera 9 some ten successful orbiter missions have been sent to Venus, including later missions which were able to map the surface of Venus using radar to pierce the obscuring atmosphere.

Space exploration has been used as a tool to understand the Earth as a celestial object in its own right. Orbital missions can provide data for the Earth that can be difficult or impossible to obtain from a purely ground-based point of reference.

For example, the existence of the Van Allen belts was unknown until their discovery by the United States' first artificial satellite, Explorer 1. These belts contain radiation trapped by the Earth's magnetic fields, which currently renders construction of habitable space stations above 1000km impractical. Following this early unexpected discovery, a large number of Earth observation satellites have been deployed specifically to explore the Earth from a space based perspective. These satellites have significantly contributed to the understanding of a variety of earth based phenomena. For instance, the hole in the ozone layer was found by an artificial satellite that was exploring Earth's atmosphere, and satellites have allowed for the discovery of archeological sites or geological formations that were difficult or impossible to otherwise identify.

Earth's Moon was the first celestial body to be the object of space exploration. It holds the distinctions of being the first remote celestial object to be flown by, orbited, and landed upon by spacecraft, and the only remote celestial object ever to be visited by humans.

In 1959 the Soviets obtained the first images of the far side of the Moon, never previously visible to humans. The U.S. exploration of the Moon began with the Ranger 4 impactor in 1962. Starting in 1966 the Soviets successfully deployed a number of landers to the Moon which were able to obtain data directly from the Moon's surface; just four months later, Surveyor 1 marked the debut of a successful series of U.S. landers. The Soviet unmanned missions culminated in the Lunokhod program in the early '70s which included the first unmanned rovers and also successfully returned lunar soil samples to the Earth for study. This marked the first (and to date the only) automated return of extraterrestrial soil samples to the Earth. Unmanned exploration of the Moon continues with various nations periodically deploying lunar orbiters, and in 2008 the Indian Moon Impact Probe.

Manned exploration of the Moon began in 1968 with the Apollo 8 mission that successfully orbited the Moon, the first time any extraterrestrial object was orbited by humans. In 1969 the Apollo 11 mission marked the first time humans set foot upon another world. Manned exploration of the Moon did not continue for long, however. The Apollo 17 mission in 1972 marked the most recent human visit to another world, and there is no further planned human exploration of an extraterrestrial body, though robotic missions are still pursued vigorously.

The exploration of Mars has been an important part of the space exploration programs of the Soviet Union (later Russia), the United States, Europe, and Japan. Dozens of robotic spacecraft, including orbiters, landers, and rovers, have been launched toward Mars since the 1960s. These missions were aimed at gathering data about current conditions and answering questions about the history of Mars. The questions raised by the scientific community are expected to not only give a better appreciation of the red planet but also yield further insight into the past, and possible future, of Earth.

The exploration of Mars has come at a considerable financial cost with roughly two-thirds of all spacecraft destined for Mars failing before completing their missions, with some failing before they even began. Such a high failure rate can be attributed to the complexity and large number of variables involved in an interplanetary journey, and has led researchers to jokingly speak of The Great Galactic Ghoul which subsists on a diet of Mars probes. This phenomenon is also informally known as the Mars Curse.

The Russian space mission Fobos-Grunt, which launched on 9 November 2011 experienced a failure leaving it stranded in low Earth orbit. It was to begin exploration of the Phobos and Martian circumterrestrial orbit, and study whether the moons of Mars, or at least Phobos, could be a "trans-shipment point" for spaceships travelling to Mars.

Until the advent of space travel, objects in the asteroid belt were merely pinpricks of light in even the largest telescopes, their shapes and terrain remaining a mystery. Several asteroids have now been visited by probes, the first of which was Galileo, which flew past two: 951 Gaspra in 1991, followed by 243 Ida in 1993. Both of these lay near enough to Galileo's planned trajectory to Jupiter that they could be visited at acceptable cost. The first landing on an asteroid was performed by the NEAR Shoemaker probe in 2000, following an orbital survey of the object. The dwarf planet Ceres and the asteroid 4 Vesta, two of the three largest asteroids, are targets of NASA's Dawn mission, launched in 2007.

While many comets have been closely studied from Earth sometimes with centuries-worth of observations, only a few comets have been closely visited. In 1985, the International Cometary Explorer conducted the first comet fly-by ( 21P/Giacobini-Zinner) before joining the Halley Armada studying the famous comet. The Deep Impact probe smashed into 9P/Tempel to learn more about its structure and composition while the Stardust mission returned samples of another comet's tail. The Philae lander will attempt to land on a comet in 2014.

Hayabusa was an unmanned spacecraft developed by the Japan Aerospace Exploration Agency to return a sample of material from a small near-Earth asteroid named 25143 Itokawa to Earth for further analysis. Hayabusa was launched on 9 May 2003 and rendezvoused with Itokawa in mid-September 2005. After arriving at Itokawa, Hayabusa studied the asteroid's shape, spin, topography, colour, composition, density, and history. In November 2005, it landed on the asteroid to collect samples. The spacecraft returned to Earth on 13 June 2010.

The exploration of Jupiter has consisted solely of a number of automated NASA spacecraft visiting the planet since 1973. A large majority of the missions have been "flybys", in which detailed observations are taken without the probe landing or entering orbit; the Galileo spacecraft is the only one to have orbited the planet. As Jupiter is believed to have only a relatively small rocky core and no real solid surface, a landing mission is nearly impossible.

Reaching Jupiter from Earth requires a delta-v of 9.2km/s, which is comparable to the 9.7km/s delta-v needed to reach low Earth orbit. Fortunately, gravity assists through planetary flybys can be used to reduce the energy required at launch to reach Jupiter, albeit at the cost of a significantly longer flight duration.

Jupiter has over 60 known moons, many of which have relatively little known information about them.

Saturn has been explored only through unmanned spacecraft launched by NASA, including one mission ( CassiniHuygens) planned and executed in cooperation with other space agencies. These missions consist of flybys in 1979 by Pioneer 11, in 1980 by Voyager 1, in 1982 by Voyager 2 and an orbital mission by the Cassini spacecraft which entered orbit in 2004 and is expected to continue its mission well into 2012.

Saturn has at least 62 satellites, although the exact number is debatable since Saturn's rings are made up of vast numbers of independently orbiting objects of varying sizes. The largest of the moons is Titan. Titan holds the distinction of being the only moon in the solar system with an atmosphere denser and thicker than that of the Earth. As a result of the deployment from the Cassini spacecraft of the Huygens probe and its successful landing on Titan, Titan also holds the distinction of being the only moon (apart from Earth's own Moon) to be successfully explored with a lander.

The exploration of Uranus has been entirely through the Voyager 2 spacecraft, with no other visits currently planned. Given its axial tilt of 97.77, with its polar regions exposed to sunlight or darkness for long periods, scientists were not sure what to expect at Uranus. The closest approach to Uranus occurred on 24 January 1986. Voyager 2 studied the planet's unique atmosphere and magnetosphere. Voyager 2 also examined its ring system and the moons of Uranus including all five of the previously known moons, while discovering an additional ten previously unknown moons.

Images of Uranus proved to have a very uniform appearance, with no evidence of the dramatic storms or atmospheric banding evident on Jupiter and Saturn. Great effort was required to even identify a few clouds in the images of the planet. The magnetosphere of Uranus, however, proved to be completely unique and proved to be profoundly affected by the planet's unusual axial tilt. In contrast to the bland appearance of Uranus itself, striking images were obtained of the moons of Uranus, including evidence that Miranda had been unusually geologically active.

The exploration of Neptune began with the 25 August 1989 Voyager 2 flyby, the sole visit to the system as of 2012. The possibility of a Neptune Orbiter has been discussed, but no other missions have been given serious thought.

Although the extremely uniform appearance of Uranus during Voyager 2's visit in 1986 had led to expectations that Neptune would also have few visible atmospheric phenomena, Voyager 2 found that Neptune had obvious banding, visible clouds, auroras, and even a conspicuous anticyclone storm system rivaled in size only by Jupiter's small Spot. Neptune also proved to have the fastest winds of any planet in the solar system, measured as high as 2,100km/h. Voyager 2 also examined Neptune's ring and moon system. It discovered 900 complete rings and additional partial ring "arcs" around Neptune. In addition to examining Neptune's three previously known moons, Voyager 2 also discovered five previously unknown moons, one of which, Proteus, proved to be the last largest moon in the system. Data from Voyager further reinforced the view that Neptune's largest moon, Triton, is a captured Kuiper belt object.

The dwarf planet Pluto (considered a planet until the IAU redefined "planet" in October 2006) presents significant challenges for spacecraft because of its great distance from Earth (requiring high velocity for reasonable trip times) and small mass (making capture into orbit very difficult at present). Voyager 1 could have visited Pluto, but controllers opted instead for a close flyby of Saturn's moon Titan, resulting in a trajectory incompatible with a Pluto flyby. Voyager 2 never had a plausible trajectory for reaching Pluto.

Pluto continues to be of great interest, despite its reclassification as the lead and nearest member of a new and growing class of distant icy bodies of intermediate size, in mass between the remaining eight planets and the small rocky objects historically termed asteroids (and also the first member of the important subclass, defined by orbit and known as " Plutinos"). After an intense political battle, a mission to Pluto dubbed New Horizons was granted funding from the US government in 2003. New Horizons was launched successfully on 19 January 2006. In early 2007 the craft made use of a gravity assist from Jupiter. Its closest approach to Pluto will be on 14 July 2015; scientific observations of Pluto will begin five months prior to closest approach and will continue for at least a month after the encounter.

In the 2000s, several plans for space exploration were announced; both government entities and the private sector have space exploration objectives. China has announced plans to have a 60-ton multi-module space station in orbit by 2020.

The NASA Authorization Act of 2010 provides objectives for American space exploration. NASA proposes to move forward with the development of the Space Launch System (SLS), which will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment, and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a back up for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle program and the Constellation program in order to take advantage of proven hardware and reduce development and operations costs. The first developmental flight is targeted for the end of 2017.

The research that is conducted by national space exploration agencies, such as NASA and Roscosmos, is one of the reasons supporters cite to justify government expenses. Economic analyses of the NASA programs often showed ongoing economic benefits (such as NASA spin-offs), generating many times the revenue of the cost of the program.

Another claim is that space exploration is a necessity to mankind and that staying on Earth will lead to extinction. Some of the reasons are lack of natural resources, comets, nuclear war, and worldwide epidemic. Stephen Hawking, renowned British theoretical physicist, said that "I don't think the human race will survive the next thousand years, unless we spread into space. There are too many accidents that can befall life on a single planet. But I'm an optimist. We will reach out to the stars."

NASA has produced a series of public service announcement videos supporting the concept of space exploration.

Overall, the public remains largely supportive of both manned and unmanned space exploration. According to an Associated Press Poll conducted in July 2003, 71% of U.S. citizens agreed with the statement that the space program is "a good investment", compared to 21% who did not.

Arthur C. Clarke (1950) presented a summary of motivations for the human exploration of space in his non-fiction semi-technical monograph Interplanetary Flight. He argued that humanity's choice is essentially between expansion off the Earth into space, versus cultural (and eventually biological) stagnation and death.

Spaceflight is the use of space technology to achieve the flight of spacecraft into and through outer space.

Spaceflight is used in space exploration, and also in commercial activities like space tourism and satellite telecommunications. Additional non-commercial uses of spaceflight include space observatories, reconnaissance satellites and other earth observation satellites.

A spaceflight typically begins with a rocket launch, which provides the initial thrust to overcome the force of gravity and propels the spacecraft from the surface of the Earth. Once in space, the motion of a spacecraftboth when unpropelled and when under propulsionis covered by the area of study called astrodynamics. Some spacecraft remain in space indefinitely, some disintegrate during atmospheric reentry, and others reach a planetary or lunar surface for landing or impact.

Satellites are used for a large number of purposes. Common types include military (spy) and civilian Earth observation satellites, communication satellites, navigation satellites, weather satellites, and research satellites. Space stations and human spacecraft in orbit are also satellites.

Current examples of the commercial use of space include satellite navigation systems, satellite television and satellite radio. Space tourism is the recent phenomenon of space travel by individuals for the purpose of personal pleasure.

Astrobiology is the interdisciplinary study of life in the universe, combining aspects of astronomy, biology and geology. It is focused primarily on the study of the origin, distribution and evolution of life. It is also known as exobiology (from Greek: , exo, "outside"). The term "Xenobiology" has been used as well, but this is technically incorrect because its terminology means "biology of the foreigners". Astrobiologists must also consider the possibility of life that is chemically entirely distinct from any life found on earth. In the Solar System some of the prime locations for current or past astrobiology are on Enceladus, Europa, Mars, and Titan.

Space colonization, also called space settlement and space humanization, would be the permanent autonomous (self-sufficient) human habitation of locations outside Earth, especially of natural satellites or planets such as the Moon or Mars, using significant amounts of in-situ resource utilization.

To date, the longest human occupation of space is the International Space Station which has been in continuous use for 700112000000000000012years, 7002143000000000000143days. Valeri Polyakov's record single spaceflight of almost 438 days aboard the Mir space station has not been surpassed. Long-term stays in space reveal issues with bone and muscle loss in low gravity, immune system suppression, and radiation exposure.

Many past and current concepts for the continued exploration and colonization of space focus on a return to the Moon as a "stepping stone" to the other planets, especially Mars. At the end of 2006 NASA announced they were planning to build a permanent Moon base with continual presence by 2024.

Beyond the technical factors that could make living in space more widespread, it has been suggested that the lack of private property, the inability or difficulty in establishing property rights in space, has been an impediment to the development of space for human habitation. Since the advent of space technology in the latter half of the twentieth century, the ownership of property in space has been murky, with strong arguments both for and against. In particular, the making of national territorial claims in outer space and on celestial bodies has been specifically proscribed by the Outer Space Treaty, which had been, as of 2012, ratified by all spacefaring nations.

Follow this link:

Space exploration - Wikipedia for Schools

Posted in Space Exploration | Comments Off on Space exploration – Wikipedia for Schools

Space exploration New World Encyclopedia

Posted: at 2:17 am

Space exploration is the physical exploration of outer space, by both human spaceflights and robotic spacecraft. Although the observation of objects in space (that is, astronomy) predates reliable recorded history, space exploration became a practical possibility only after the development of large, liquid-fueled rocket engines during the early twentieth century. Common rationales for exploring space include advancing scientific research, uniting different nations, and ensuring the future survival of humanity.

Space exploration has often been used as a proxy competition for geopolitical rivalries, particularly the Cold War. The early era of space exploration was driven by a space race between the Soviet Union and the United States. The launch of the first human-made object to orbit the Earth, the USSR's Sputnik 1, on October 4, 1957, and the first Moon landing by the American Apollo 11 craft on July 20, 1969, are often taken as the boundaries for this initial period. After the first 20 years of exploration, focus shifted from one-off flights to renewable hardware, such as the Space Shuttle program, and from competition to cooperation, as with the International Space Station. From the 1990s onward, private interests began promoting space tourism. Larger government programs have advocated manned missions to the Moon and possibly Mars sometime after 2010.

Space exploration programs have received various criticisms, on cost or safety grounds, but there are many advocates as well, and public opinion in many countries is usually supportive of these programs. In any case, space missions have resulted in a variety of important discoveries, including the effects of low gravity on humans, the presence of Van Allen belts around the Earth, images of the far side of the Moon, and the absence of intelligent life on Mars. Current discussions revolve around the possibility of space colonizationthat is, the establishment of human settlements on extraterrestrial objects.

The first successful orbital launch was of the Soviet unmanned Sputnik 1 (Satellite I) mission on October 4, 1957. The satellite weighed about 83 kg (184 pounds), and is believed to have orbited Earth at a height of about 250 km (150 miles). It had two radio transmitters (20 and 40 MHz), which emitted "beeps" that could be heard by any radio around the globe. Analysis of the radio signals was used to gather information about the electron density of the ionosphere, while temperature and pressure data was encoded in the duration of radio beeps. The results indicated that the satellite was not punctured by a meteoroid. Sputnik 1 was launched by an R-7 rocket. It incinerated upon re-entry on January 3, 1958.

This success led to an escalation of the American space program, which unsuccessfully attempted to launch Vanguard 1 into orbit two months later. On January 31, 1958, the U.S. successfully orbited Explorer 1 on a Juno rocket. In the meantime, the Soviet dog Laika became the first animal in orbit on November 3, 1957.

The first human spaceflight was Vostok 1 (Sunrise 1) , carrying 27 year old cosmonaut Yuri Gagarin on April 12, 1961. The spacecraft completed one orbit around the globe, lasting about 1 hour and 48 minutes. Gagarin's flight was a demonstration of the advanced Soviet space program, and it opened an entirely new era in space exploration: Manned space flights.

The U.S. launched its first man into space within a month of Gagarin's flight, with the first Mercury flight by Alan Shepard. Orbital flight was achieved by the United States when John Glenn's Mercury-Atlas 6 orbited the Earth on February 20, 1962.

Valentina Tereshkova, the first woman in space, orbited the Earth 48 times aboard Vostok 6 on June 16, 1963.

China launched its first taikonaut into space 42 years later, with the flight of Colonel Yang Liwei aboard the Shenzhou 5 (Spaceboat 5) spacecraft.

The dream of stepping into the outer reaches of the Earth's atmosphere was driven by rocket technology. The German V2 was the first rocket to travel into space, overcoming the problems of thrust and material failure. During the final days of World War II, this technology was obtained by both the Americans and Soviets as were its designers. The initial driving force for further development of the technology was a weapons race for inter-continental ballistic missiles (ICBMs) to be used as long-range carriers for fast nuclear weapon delivery. In 1961, when the USSR launched the first man into space, the U.S. declared itself to be in a "Space Race" with Russia.

Other key people included:

The earliest discoveries included the fact that humans could survive in zero gravity. Once the Russians had progressed to flights that were longer than a few hours, space adaptation syndrome appeared; where the sickness and disorientation due to the removal of gravity caused physical symptoms.

In space stations, the effects of zero gravity on bones and skeletal muscles has become more evident, where the human body becomes progressively more optimized for zero-gravity to the extent that return to the Earth becomes problematic and humans become progressively more adapted to the weightless environment.

Americans were the first to discover the existence of the Van Allen belts around the Earth. These belts contain radiation trapped by the Earth's magnetic fields, which currently prevent habitable space stations from being placed above 1,000 km.

Russians were the first to take pictures of the far side of the moon, which had never been visible to humans. It was discovered that the far side was somewhat different, more heavily cratered.

U.S. Apollo missions returned rocks from the Moon, supporting the theory that the Moon was once part of the Earth.

Contrary to fanciful early reports from astronomers viewing Mars, no canals, and certainly no advanced lifeforms are present on the surface of that planet, but the presence of microscopic organisms has not been ruled out.

Space colonization, also called space settlement or space humanization, implies the permanent, autonomous (self-sufficient) human habitation of locations beyond Earth, especially on natural satellites such as the Moon or planets such as Mars. It would rely on significant amounts of In-Situ Resource Utilization.

Many past and current concepts for the continued exploration and colonization of space focus on a return to the Moon as a "stepping stone" to the other planets, especially Mars. Traditional concepts also called for the construction of orbital shipyards for the construction of inter-planetary vessels. Unfortunately, such concepts were prohibitively expensive, with estimated costs of $450 billion or more.

During the 1990s, however, aerospace engineer Robert Zubrin developed the "Mars Direct" plan, emphasizing the utilization of Martian resources. In his widely acclaimed book Mars Direct, Zubrin explained how human beings could be sent to Mars within 10 years, using existing or foreseeable technologies, at a cost of between 20-30 billion dollars.

Other efforts have included the Ansari X Prize, which offered a 10 million dollar prize to any private, non-government organization that could develop a spacecraft capable of launching three human beings into space, returning them safely to Earth, and repeating the feat within 2 weeks. The X-prize was a resounding success with the launch of Space Ship One, which was developed from scratch for only 25 million dollars, a tiny fraction of the cost of a single space shuttle launch. This development was accompanied by other prize incentives, and plans for routine space tourist flights.

Although only the United States, Soviet Union/Russian, and Chinese space programs have launched humans into orbit, a number of other countries have space agencies that design and launch satellites, conduct space research and coordinate national astronaut programs.

Did you know?

Critics of space exploration usually point out the costs, limitations, and risks of human spaceflight. It is more expensive to perform certain tasks in space by humans rather than by robots or other machines. People need large spacecraft that contain provisions such as a hermetic and temperature-controlled cabin, production of breathable air, food and drink storage, waste disposal, communications systems, and safety features such as crew escape systems and medical facilities. There is also the question of the security of the spacecraft as whole; losing a robot is nowhere near as tragic as human loss, so overall safety of non-human missions is not as much of an issue.

All the extra costs have to be weighed against the benefits of having humans aboard. Some critics argue that those few instances where human intervention is essential do not justify the enormous extra costs of having humans aboard. However, others argue that many tasks can be more effectively accomplished by human beings.

Some, including the late physicist and Nobel prize winner Richard Feynman, have contended that space missions have not achieved any major scientific breakthroughs. However, others have argued that, besides the large (and otherwise unavailable) amount of planetary data returned by spacecraft, there have been many indirect scientific achievements, including development of the modern computer, lasers, and so forth.

The results of research carried out by space exploration agencies, such as NASA, is one of the reasons supporters justify government expenses. Some even claim that space exploration is a necessity to humankind and that staying in its home planet will lead humanity to oblivion. Some of the reasons are lack of natural resources, comets, nuclear war, and worldwide epidemic. Stephen Hawking, renowned British theoretical physicist, said that "I don't think the human race will survive the next thousand years, unless we spread into space. There are too many accidents that can befall life on a single planet. But I'm an optimist. We will reach out to the stars."[1]

Some critics contend that in light of the huge distances in space, human space travel will involve no more than visiting earth's closest neighbors in the Solar System, barring any actualization of the theoretical concept of faster-than-light travel. Even such limited travel would consume large amounts of money and require complex spacecraft accommodating only a handful of people. Supporters of human space travel state that this is irrelevant, because its real value lies in providing a focal point for national prestige, patriotism, and international cooperation. They suggest the Clinton administration's close cooperation with Russia on the International Space Station (ISS) gave Russia something to take pride in, becoming a stabilizing factor in post-communist Russia. From this point of view, the ISS was a justifiable cash outlay.

Some people also have moral objections to the huge costs of space travel, and say that even a fraction of the space travel budget would make a huge difference in fighting disease and hunger in the world. However, compared to much more costly endeavors, like military actions, space exploration itself receives a very small percentage of total government spending (nearly always under 0.5 percent), and space-exploration advocates frequently point out that long-term benefits could outweigh short-term costs. In addition, the successful launches of Space Ship One, a privately constructed, reusable space plane developed for only $25 million, has diminished the impact of cost-based criticisms.

Overall, the public remains largely supportive of both manned and unmanned space exploration. According to an Associated Press Poll conducted in July 2003, 71 percent of U.S. citizens agreed with the statement that the space program is "a good investment," compared to 21 percent who did not.[2] NASA has produced a series of Public Service Announcement videos supporting the concept of space exploration.[3]

This is not to say that space exploration advocates do not criticize existing programs. Some supporters of space explorations, such as Robert Zubrin, have criticized on-orbit assembly of spacecraft as unnecessary and expensive, and argue for a direct approach for human exploration, such as Mars Direct.

Twenty-first century space advocates continue to work towards more advanced spacecraft, rotating space stations, lunar bases, and colonies on Mars. Some of these visions may come true, though significant obstacles remain.

All links retrieved October 14, 2015.

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

Note: Some restrictions may apply to use of individual images which are separately licensed.

The rest is here:

Space exploration New World Encyclopedia

Posted in Space Exploration | Comments Off on Space exploration New World Encyclopedia

Articles about Space Exploration – latimes

Posted: at 2:17 am

SCIENCE

July 18, 2013 | By Louis Sahagun

More than a hundred explorers, scientists and government officials will gather at Long Beach's Aquarium of the Pacific on Friday to draft a blueprint to solve a deep blue problem: About 95% of the world's oceans remains unexplored. The invitation-only forum , hosted by the aquarium and the National Oceanic and Atmospheric Administration, aims to identify priorities, technologies and collaborative strategies that could advance understanding of the uncharted mega-wilderness that humans rely on for oxygen, food, medicines, commerce and recreation.

SCIENCE

June 12, 2013 | By Brad Balukjian

Dancer , rapper , and, oh yeah, Man on the Moon Buzz Aldrin is talking, but are the right people listening? One of the original moonwalkers (Michael Jackson always did it backwards! Aldrin complained) challenged the United States to pick up the space slack Tuesday evening, mere hours after China sent three astronauts into orbit. Speaking in front of a friendly crowd of 880 at the Richard Nixon Presidential Library and Museum in Yorba Linda, Aldrin criticized the U.S. for not adequately leading the international community in space exploration, and suggested that we bump up our federal investment in space while still encouraging the private sector's efforts.

ENTERTAINMENT

February 2, 2013 | By Holly Myers

It will come as news to many, no doubt, that there is a Warhol on the moon. And a Rauschenberg and an Oldenburg - a whole "Moon Museum," in fact, containing the work of six artists in all, in the form of drawings inscribed on the surface of a ceramic chip roughly the size of a thumbprint. Conceived by the artist Forrest Myers in 1969, the chip was fabricated in collaboration with scientists at Bell Laboratories and illicitly slipped by a willing engineer between some sheets of insulation on the Apollo 12 lander module.

WORLD

January 29, 2013 | By Patrick J. McDonnell and Ramin Mostaghim, This post has been updated. See the note below for details.

BEIRUT - U.S. officials are not exactly welcoming Iran's revelation this week that the Islamic Republic has sent a monkey into space and brought the creature back to Earth safely. The report by Iranian media recalled for many the early days of space flight, when both the United States and the Soviet Union launched animal-bearing spacecraft as a prelude to human space travel. But State Department spokeswoman Victoria Nuland told reporters in Washington on Monday that the reported mission raises concerns about possible Iranian violations of a United Nations ban on development of ballistic missiles capable of delivering nuclear weapons.

CALIFORNIA | LOCAL

December 22, 2012 | By Scott Gold, Los Angeles Times

WATERTON CANYON, Colo. - The concrete-floored room looks, at first glance, like little more than a garage. There is a red tool chest, its drawers labeled: "Hacksaws. " "Allen wrenches. " There are stepladders and vise grips. There is also, at one end of the room, a half-built spaceship, and everyone is wearing toe-to-fingertip protective suits. "Don't. Touch. Anything. " Bruce Jakosky says the words politely but tautly, like a protective father - which, effectively, he is. Jakosky is the principal investigator behind NASA's next mission to Mars, putting him in the vanguard of an arcane niche of science: planetary protection - the science of exploring space without messing it up. PHOTOS: Stunning images of Earth at night As NASA pursues the search for life in the solar system, the cleanliness of robotic explorers is crucial to avoid contaminating other worlds.

SCIENCE

December 6, 2012 | By Amina Khan and Rosie Mestel, Los Angeles Times

Years of trying to do too many things with too little money have put NASA at risk of ceding leadership in space exploration to other nations, according to a new report that calls on the space agency to make wrenching decisions about its long-term strategy and future scope. As other countries - including some potential adversaries - are investing heavily in space, federal funding for NASA is essentially flat and under constant threat of being cut. Without a clear vision, that fiscal uncertainty makes it all the more difficult for the agency to make progress on ambitious goals like sending astronauts to an asteroid or Mars while executing big-ticket science missions, such as the $8.8-billion James Webb Space Telescope, says the analysis released Wednesday by the National Research Council.

Read more:

Articles about Space Exploration - latimes

Posted in Space Exploration | Comments Off on Articles about Space Exploration – latimes