Daily Archives: February 1, 2016

Singularities and Black Holes (Stanford Encyclopedia of …

Posted: February 1, 2016 at 7:44 pm

General relativity, Einstein's theory of space, time, and gravity, allows for the existence of singularities. On this nearly all agree. However, when it comes to the question of how, precisely, singularities are to be defined, there is widespread disagreement Singularties in some way signal a breakdown of the geometry itself, but this presents an obvious difficulty in referring to a singulary as a thing that resides at some location in spacetime: without a well-behaved geomtry, there can be no location. For this reason, some philosopers and physicists have suggested that we should not speak of singularities at all, but rather of singular spacetimes. In this entry, we shall generally treat these two formulations as being equivalent, but we will highlight the distinction when it becomes significant.

Singularities are often conceived of metaphorically as akin to a tear in the fabric of spacetime. The most common attempts to define singularities center on one of two core ideas that this image readily suggests.

The first is that a spacetime has a singularity just in case it contains an incomplete path, one that cannot be continued indefinitely, but draws up short, as it were, with no possibility of extension. (Where is the path supposed to go after it runs into the tear? Where did it come from when it emerged from the tear?). The second is that a spacetime is singular just in case there are points missing from it. (Where are the spacetime points that used to be or should be where the tear is?) Another common thought, often adverted to in discussion of the two primary notions, is that singular structure, whether in the form of missing points or incomplete paths, must be related to pathological behavior of some sort on the part of the singular spacetime's curvature, that is, the fundamental deformation of spacetime that manifests itself as the gravitational field. For example, some measure of the intensity of the curvature (the strength of the gravitational field) may increase without bound as one traverses the incomplete path. Each of these three ideas will be considered in turn below.

There is likewise considerable disagreement over the significance of singularties. Many eminent physicists believe that general relativity's prediction of singular structure signals a serious deficiency in the theory; singularities are an indication that the description offered by general relativity is breaking down. Others believe that singularities represent an exciting new horizon for physicists to aim for and explore in cosmology, holding out the promise of physical phenomena differing so radically from any that we have yet experienced as to ensure, in our attempt to observe, quantify and understand them, a profound advance in our comprehension of the physical world.

While there are competing definitions of spacetime singularities, the most central, and widely accepted, criterion rests on the possibility that some spacetimes contain incomplete paths. Indeed, the rival definitions (in terms of missing points or curvature pathology) still make use of the notion of path incompleteness.

(The reader unfamiliar with general relativity may find it helpful to review the Hole Argument entry's Beginner's Guide to Modern Spacetime Theories, which presents a brief and accessible introduction to the concepts of a spacetime manifold, a metric, and a worldline.)

A path in spacetime is a continuous chain of events through space and time. If I snap my fingers continually, without pause, then the collection of snaps forms a path. The paths used in the most important singularity theorems represent possible trajectories of particles and observers. Such paths are known as world-lines; they consist of the events occupied by an object throughout its lifetime. That the paths be incomplete and inextendible means, roughly speaking, that, after a finite amount of time, a particle or observer following that path would run out of world, as it wereit would hurtle into the tear in the fabric of spacetime and vanish. Alternatively, a particle or observer could leap out of the tear to follow such a path. While there is no logical or physical contradiction in any of this, it appears on the face of it physically suspect for an observer or a particle to be allowed to pop in or out of existence right in the middle of spacetime, so to speakif that does not suffice for concluding that the spacetime is singular, it is difficult to imagine what else would. At the same time, the ground-breaking work predicting the existence of such pathological paths produced no consensus on what ought to count as a necessary condition for singular structure according to this criterion, and thus no consensus on a fixed definition for it.

In this context, an incomplete path in spacetime is one that is both inextendible and of finite proper length, which means that any particle or observer traversing the path would experience only a finite interval of existence that in principle cannot be continued any longer. However, for this criterion to do the work we want it to, we'll need to limit the class of spacetimes under discussion. Specifically, we shall be concerned with spacetimes that are maximally extended (or just maximal). In effect, this condition says that one's representation of spacetime is as big as it possibly can bethere is, from the mathematical point of view, no way to treat the spacetime as being a proper subset of a larger, more extensive spacetime.

If there is an incomplete path in a spacetime, goes the thinking behind the requirement, then perhaps the path is incomplete only because one has not made one's model of spacetime big enough. If one were to extend the spacetime manifold maximally, then perhaps the previously incomplete path could be extended into the new portions of the larger spacetime, indicating that no physical pathology underlay the incompleteness of the path. The inadequacy would merely reside in the incomplete physical model we had been using to represent spacetime.

An example of a non-maximally extended spacetime can be easily had, along with a sense of why they intuitively seem in some way or other deficient. For the moment, imagine spacetime is only two-dimensional, and flat. Now, excise from somewhere on the plane a closed set shaped like Ingrid Bergman. Any path that had passed through one of the points in the removed set is now incomplete.

In this case, the maximal extension of the resulting spacetime is obvious, and does indeed fix the problem of all such incomplete paths: re-incorporate the previously excised set. The seemingly artificial and contrived nature of such examples, along with the ease of rectifying them, seems to militate in favor of requiring spacetimes to be maximal.

Once we've established that we're interested in maximal spacetimes, the next issue is what sort of path incompleteness is relevant for singularities. Here we find a good deal of controversy. Criteria of incompleteness typically look at how some parameter naturally associated with the path (such as its proper length) grows. One generally also places further restrictions on the paths that are worth considering (for example, one rules out paths that could only be taken by particles undergoing unbounded acceleration in a finite period of time). A spacetime is said to be singular if it possesses a path such that the specified parameter associated with that path cannot increase without bound as one traverses the entirety of the maximally extended path. The idea is that the parameter at issue will serve as a marker for something like the time experienced by a particle or observer,
and so, if the value of that parameter remains finite along the whole path then we've run out of path in a finite amout of time, as it were. We've hit and edge or a tear in spacetime.

For a path that is everywhere timelike (i.e., that does not involves speeds at or above that of light), it is natural to take as the parameter the proper time a particle or observer would experience along the path, that is, the time measured along the path by a natural clock, such as one based on the natural vibrational frequency of an atom. (There are also fairly natural choices that one can make for spacelike paths (i.e., those that consist of points at a single time) and null paths (those followed by light signals). However, because the spacelike and null cases add yet another level of difficulty, we shall not discuss them here.) The physical interpretation of this sort of incompleteness for timelike paths is more or less straightforward: a timelike path incomplete with respect to proper time in the future direction would represent the possible trajectory of a massive body that would, say, never age beyond a certain point in its existence (an analogous statement can be made, mutatis mutandis, if the path were incomplete in the past direction).

We cannot, however, simply stipulate that a maximal spacetime is singular just in case it contains paths of finite proper length that cannot be extended. Such a criterion would imply that even the flat spacetime described by special relativity is singular, which is surely unacceptable. This would follow because, even in flat spacetime, there are timelike paths with unbounded acceleration which have only a finite proper length (proper time, in this case) and are also inextendible.

The most obvious option is to define a spacetime as singular if and only if it contains incomplete, inextendible timelike geodesics, i.e., paths representing the trajectories of inertial observers, those in free-fall experiencing no acceleration other than that due to gravity. However, this criterion seems too permissive, in that it would count as non-singular some spacetimes whose geometry seems quite pathological. For example, Geroch (1968) demonstrates that a spacetime can be geodesically complete and yet possess an incomplete timelike path of bounded total accelerationthat is to say, an inextendible path in spacetime traversable by a rocket with a finite amount of fuel, along which an observer could experience only a finite amount of proper time. Surely the intrepid astronaut in such a rocket, who would never age beyond a certain point but who also would never necessarily die or cease to exist, would have just cause to complain that something was singular about this spacetime.

We therefore want a definition that is not restricted to geodesics when deciding whether a spacetime is singular. However, we need some way of overcoming the fact that non-singular spacetimes include inextendible paths of finite proper length. The most widely accepted solution to this problem makes use of a slightly different (and slightly technical) notion of length, known as generalized affine length.[1] Unlike proper length, this generalized affine length depends on some arbitrary choices (roughly speaking, the length will vary depending on the coordinates one chooses). However, if the length is infinite for one such choice, it will be infinite for all other choices. Thus the question of whether a path has a finite or infinite generalized affine length is a perfectly well-defined question, and that is all we'll need.

The definition that has won the most widespread acceptance leading Earman (1995, p. 36) to dub this the semiofficial definition of singularities is the following:

To say that a spacetime is singular then is to say that there is at least one maximally extended path that has a bounded (generalized affine) length. To put it another way, a spacetime is nonsingular when it is complete in the sense that the only reason any given path might not be extendible is that it's already infinitely long (in this technical sense).

The chief problem facing this definition of singularities is that the physical significance of generalized affine length is opaque, and thus it is unclear what the relevance of singularities, defined in this way, might be. It does nothing, for example, to clarify the physical status of the spacetime described by Geroch; it seems as though the new criterion does nothing more than sweep the troubling aspects of such examples under the rug. It does not explain why we ought not take such prima facie puzzling and troubling examples as physically pathological; it merely declares by fiat that they are not.

So where does this leave us? The consensus seems to be that, while it is easy in specific examples to conclude that incomplete paths of various sorts represent singular structure, no entirely satisfactory, strict definition of singular structure in their terms has yet been formulated. For a philosopher, the issues offer deep and rich veins for those contemplating, among other matters, the role of explanatory power in the determination of the adequacy of physical theories, the role of metaphysics and intuition, questions about the nature of the existence attributable to physical entities in spacetime and to spacetime itself, and the status of mathematical models of physical systems in the determination of our understanding of those systems as opposed to in the mere representation our knowledge of them.

We have seen that one runs into difficulties if one tries to define singularities as things that have locations, and how some of those difficulties can be avoided by defining singular spacetimes in terms of incomplete paths. However, it would be desirable for many reasons to have a characterization of a spacetime singularity in general relativity as, in some sense or other, a spatiotemporal place. If one had a precise characterization of a singularity in terms of points that are missing from spacetime, one might then be able to analyze the structure of the spacetime locally at the singularity, instead of taking troublesome, perhaps ill-defined limits along incomplete paths. Many discussions of singular structure in relativistic spacetimes, therefore, are premised on the idea that a singularity represents a point or set of points that in some sense or other is missing from the spacetime manifold, that spacetime has a hole or tear in it that we could fill in or patch by the appendage of a boundary to it.

In trying to determine whether an ordinary web of cloth has a hole in it, for example, one would naturally rely on the fact that the web exists in space and time. In this case one can, so to speak, point to a hole in the cloth by specifying points of space at a particular moment of time not currently occupied by any of the cloth but which would, as it were, complete the cloth were they so occupied. When trying to conceive of a singular spacetime, however, one does not have the luxury of imagining it embedded in a larger space with respect to which one can say there are points missing from it. In any event, the demand that the spacetime be maximal rules out the possibility of embedding the spacetime manifold in any larger spacetime manifold of any ordinary sort. It would seem, then, that making precise the idea that a singularity is a marker of missing points ought to devolve upon some idea of intrinsic structural incompleteness in the spacetime manifold rather than extrinsic incompleteness with respect to an external structure.

Force of analogy suggests that one define a spacetime to have points missing from it if and only if it contains incomplete, inext
endible paths, and then try to use these incomplete paths to construct in some fashion or other new, properly situated points for the spacetime, the addition of which will make the previously inextendible paths extendible. These constructed points would then be our candidate singularities. Missing points on this view would correspond to a boundary for a singular spacetimeactual points of an extended spacetime at which paths incomplete in the original spacetime would terminate. (We will, therefore, alternate between speaking of missing points and speaking of boundary points, with no difference of sense intended.) The goal then is to construct this extended space using the incomplete paths as one's guide.

Now, in trivial examples of spacetimes with missing points such as the one offered before, flat spacetime with a closed set in the shape of Ingrid Bergman excised from it, one does not need any technical machinery to add the missing points back in. One can do it by hand, as it were. Many spacetimes with incomplete paths, however, do not allow missing points to be attached in any obvious way by hand, as this example does. For this program to be viable, which is to say, in order to give substance to the idea that there really are points that in some sense ought to have been included in the spacetime in the first place, we require a physically natural completion procedure based on the incomplete paths that can be applied to incomplete paths in arbitrary spacetimes.

Several problems with this program make themselves felt immediately. Consider, for example, an instance of spacetime representing the final state of the complete gravitational collapse of a spherically symmetric body resulting in a black hole. (See 3 below for a description of black holes.) In this spacetime, any timelike path entering the black hole will necessarily be extendible for only a finite amount of proper timeit then runs into the singularity at the center of the black hole. In its usual presentation, however, there are no obvious points missing from the spacetime at all. It is, to all appearances, as complete as the Cartesian plane, excepting only for the existence of incomplete curves, no class of which indicates by itself a place in the manifold to add a point to it to make the paths in the class complete. Likewise, in our own spacetime every inextendible, past-directed timelike path is incomplete (and our spacetime is singular): they all run into the Big Bang. Insofar as there is no moment of time at which the Big Bang occurred (there is no moment of time at which time began, so to speak), there is no point to serve as the past endpoint of such a path.

The reaction to the problems faced by these boundary constructions is varied, to say the least, ranging from blithe acceptance of the pathology (Clarke 1993), to the attitude that there is no satisfying boundary construction currently available without ruling out the possibility of better ones in the future (Wald 1984), to not even mentioning the possibility of boundary constructions when discussing singular structure (Joshi 1993), to rejection of the need for such constructions at all (Geroch, Can-bin and Wald, 1982).

Nonetheless, many eminent physicists seem convinced that general relativity stands in need of such a construction, and have exerted extraordinary efforts in the service of trying to devise such constructions. This fact raises several fascinating philosophical problems. Though physicists offer as strong motivation the possibility of gaining the ability to analyze singular phenomena locally in a mathematically well-defined manner, they more often speak in terms that strongly suggest they suffer a metaphysical, even an ontological, itch that can be scratched only by the sharp point of a localizable, spatiotemporal entity serving as the locus of their theorizing. However, even were such a construction forthcoming, what sort of physical and theoretical status could accrue to these missing points? They would not be idealizations of a physical system in any ordinary sense of the term, insofar as they would not represent a simplified model of a system formed by ignoring various of its physical features, as, for example, one may idealize the modeling of a fluid by ignoring its viscosity. Neither would they seem necessarily to be only convenient mathematical fictions, as, for example, are the physically impossible dynamical evolutions of a system one integrates over in the variational derivation of the Euler-Lagrange equations, for, as we have remarked, many physicists and philosophers seem eager to find such a construction for the purpose of bestowing substantive and clear ontic status on singular structure. What sorts of theoretical entities, then, could they be, and how could they serve in physical theory?

While the point of this project may seem at bottom identical to the path incompleteness account discussed in 1.1, insofar as singular structure will be defined by the presence of incomplete, inextendible paths, there is a crucial semantic and logical difference between the two. Here, the existence of the incomplete path is not taken itself to constitute the singular structure, but rather serves only as a marker for the presence of singular structure in the sense of missing points: the incomplete path is incomplete because it runs into a hole in the spacetime that, were it filled, would allow the path to be continued; this hole is the singular structure, and the points constructed to fill it compose its locus.

Currently, however, there seems to be even less consensus on how (and whether) one should define singular structure in terms of missing points than there is regarding definitions in terms of path incompleteness. Moreover, this project also faces even more technical and philosophical problems. For these reasons, path incompleteness is generally considered the default definition of singularities.

While path incompleteness seems to capture an important aspect of the intuitive picture of singular structure, it completely ignores another seemingly integral aspect of it: curvature pathology. If there are incomplete paths in a spacetime, it seems that there should be a reason that the path cannot go farther. The most obvious candidate explanation of this sort is something going wrong with the dynamical structure of the spacetime, which is to say, with the curvature of the spacetime. This suggestion is bolstered by the fact that local measures of curvature do in fact blow up as one approaches the singularity of a standard black hole or the big bang singularity. However, there is one problem with this line of thought: no species of curvature pathology we know how to define is either necessary or sufficient for the existence of incomplete paths. (For a discussion of defining singularities in terms of curvature pathologies, see Curiel 1998.)

To make the notion of curvature pathology more precise, we will use the manifestly physical idea of tidal force. Tidal force is generated by the differential in intensity of the gravitational field, so to speak, at neighboring points of spacetime. For example, when you stand, your head is farther from the center of the Earth than your feet, so it feels a (practically negligible) smaller pull downward than your feet. (For a diagram illustrating the nature of tidal forces, see Figure 9 of the entry on Inertial Frames.) Tidal forces are a physical manifestation of spacetime curvature, and one gets direct observational access to curvature by measuring these forces. For our purposes, it is important that in regions of extreme curvature, tidal forces can grow without bound.

It is perhaps surprising that the state of
motion of the observer as it traverses an incomplete path (e.g. whether the observer is accelerating or spinning) can be decisive in determining the physical response of an object to the curvature pathology. Whether the object is spinning on its axis or not, for example, or accelerating slightly in the direction of motion, may determine whether the object gets crushed to zero volume along such a path or whether it survives (roughly) intact all the way along it, as in examples offered by Ellis and Schmidt (1977). The effect of the observer's state of motion on his or her experience of tidal forces can be even more pronounced than this. There are examples of spacetimes in which an observer cruising along a certain kind of path would experience unbounded tidal forces and so be torn apart, while another observer, in a certain technical sense approaching the same limiting point as the first observer, accelerating and decelerating in just the proper way, would experience a perfectly well-behaved tidal force, though she would approach as near as one likes to the other fellow who is in the midst of being ripped to shreds.[2]

Things can get stranger still. There are examples of incomplete geodesics contained entirely within a well-defined area of a spacetime, each having as its limiting point an honest-to-goodness point of spacetime, such that an observer freely falling along such a path would be torn apart by unbounded tidal forces; it can easily be arranged in such cases, however, that a separate observer, who actually travels through the limiting point, will experience perfectly well-behaved tidal forces.[3] Here we have an example of an observer being ripped apart by unbounded tidal forces right in the middle of spacetime, as it were, while other observers cruising peacefully by could reach out to touch him or her in solace during the final throes of agony. This example also provides a nice illustration of the inevitable difficulties attendant on attempts to localize singular structure.

It would seem, then, that curvature pathology as standardly quantified is not in any physical sense a well-defined property of a region of spacetime simpliciter. When we consider the curvature of four-dimensional spacetime, the motion of the device that we use to probe a region (as well as the nature of the device) becomes crucially important for the question of whether pathological behavior manifests itself. This fact raises questions about the nature of quantitative measures of properties of entities in general relativity, and what ought to count as observable, in the sense of reflecting the underlying physical structure of spacetime. Because apparently pathological phenomena may occur or not depending on the types of measurements one is performing, it does not seem that this pathology reflects anything about the state of spacetime itself, or at least not in any localizable way. What then may it reflect, if anything? Much work remains to be done by both physicists and by philosophers in this area, the determination of the nature of physical quantities in general relativity and what ought to count as an observable with intrinsic physical significance. See Bergmann (1977), Bergmann and Komar (1962), Bertotti (1962), Coleman and Kort (1992), and Rovelli (1991, 2001, 2002a, 2002b) for discussion of many different topics in this area, approached from several different perspectives.

When considering the implications of spacetime singularities, it is important to note that we have good reasons to believe that the spacetime of our universe is singular. In the late 1960s, Hawking, Penrose, and Geroch proved several singularity theorems, using the path-incompleteness definition of singularities (see, e.g., Hawking and Ellis 1973). These theorems showed that if certain reasonable premises were satisfied, then in certain circumstances singularities could not be avoided. Notable among these conditions was the positive energy condition that captures the idea that energy is never negative. These theorems indicate that our universe began with an initial singularity, the Big Bang, 13.7 billion years ago. They also indicate that in certain circumstances (discussed below) collapsing matter will form a black hole with a central singularity.

Should these results lead us to believe that singularities are real? Many physicists and philosophers resist this conclusion. Some argue that singularities are too repugnant to be real. Others argue that the singular behavior at the center of black holes and at the beginning of time points to a the limit of the domain of applicability of general relativity. However, some are inclined to take general relativity at its word, and simply accept its prediction of singularities as a surprising, but perfectly consistent account of the geometry of our world.

As we have seen, there is no commonly accepted, strict definition of singularity, no physically reasonable definition of missing point, and no necessary connection of singular structure, at least as characterized by the presence of incomplete paths, to the presence of curvature pathology. What conclusions should be drawn from this state of affairs? There seem to be two primary responses, that of Clarke (1993) and Earman (1995) on the one hand, and that of Geroch, Can-bin and Wald (1982), and Curiel (1998) on the other. The former holds that the mettle of physics and philosophy demands that we find a precise, rigorous and univocal definition of singularity. On this view, the host of philosophical and physical questions surrounding general relativity's prediction of singular structure would best be addressed with such a definition in hand, so as better to frame and answer these questions with precision in its terms, and thus perhaps find other, even better questions to pose and attempt to answer. The latter view is perhaps best summarized by a remark of Geroch, Can-bin and Wald (1982): The purpose of a construction [of singular points], after all, is merely to clarify the discussion of various physical issues involving singular space-times: general relativity as it stands is fully viable with no precise notion of singular points. On this view, the specific physics under investigation in any particular situation should dictate which definition of singularity to use in that situation, if, indeed, any at all.

In sum, the question becomes the following: Is there a need for a single, blanket definition of singularity or does the urge for one bespeak only an old Platonic, essentialist prejudice? This question has obvious connections to the broader question of natural kinds in science. One sees debates similar to those canvassed above when one tries to find, for example, a strict definition of biological species. Clearly part of the motivation for searching for a single exceptionless definition is the impression that there is some real feature of the world (or at least of our spacetime models) which we can hope to capture precisely. Further, we might hope that our attempts to find a rigorous and exceptionless definition will help us to better understand the feature itself. Nonetheless, it is not entirely clear why we shouldn't be happy with a variety of types of singular structure, and with the permissive attitude that none should be considered the right definition of singularities.

Even without an accepted, strict definition of singularity for relativistic spacetimes, the question can be posed of what it may mean to ascribe existence to singular structure under any of the available open possibilities. It is not farfetched to think that answers to this question may bear on the larger question of the existence of spacetime points in general.

It would be difficult to argue that an incomplete path in a maximal relativistic spacetime does not exist in at least some sense of the term. It is not hard to convince oneself, however, that the incompleteness of the path does not exist at any particular point of the spacetime in the same way, say, as this glass of beer at this moment exists at this point of spacetime. If there were a point on the manifold where the incompleteness of the path could be localized, surely that would be the point at which the incomplete path terminated. But if there were such a point, then the path could be extended by having it pass through that point. It is perhaps this fact that lies behind much of the urgency surrounding the attempt to define singular structure as missing points.

The demand that singular structure be localized at a particular place bespeaks an old Aristotelian substantivalism that invokes the maxim, To exist is to exist in space and time (Earman 1995, p. 28). Aristotelian substantivalism here refers to the idea contained in Aristotle's contention that everything that exists is a substance and that all substances can be qualified by the Aristotelian categories, two of which are location in time and location in space. One need not consider anything so outr as incomplete, inextendible paths, though, in order to produce examples of entities that seem undeniably to exist in some sense of the term or other, and yet which cannot have any even vaguely determined location in time and space predicated of them. Indeed, several essential features of a relativistic spacetime, singular or not, cannot be localized in the way that an Aristotelian substantivalist would demand. For example, the Euclidean (or non-Euclidean ) nature of a space is not something with a precise location. Likewise, various spacetime geometrical structures (such as the metric, the affine structure, etc.) cannot be localized in the way that the Aristotelian would demand. The existential status of such entities vis--vis more traditionally considered objects is an open and largely ignored issue. Because of the way the issue of singular structure in relativistic spacetimes ramifies into almost every major open question in relativistic physics today, both physical and philosophical, it provides a peculiarly rich and attractive focus for these sorts of questions.

At the heart of all of our conceptions of a spacetime singularity is the notion of some sort of failing: a path that disappears, points that are torn out, spacetime curvature that becomes pathological. However, perhaps the failing lies not in the spacetime of the actual world (or of any physically possible world), but rather in the theoretical description of the spacetime. That is, perhaps we shouldn't think that general relativity is accurately describing the world when it posits singular structure.

Indeed, in most scientific arenas, singular behavior is viewed as an indication that the theory being used is deficient. It is therefore common to claim that general relativity, in predicting that spacetime is singular, is predicting its own demise, and that classical descriptions of space and time break down at black hole singularities and at the Big Bang. Such a view seems to deny that singularities are real features of the actual world, and to assert that they are instead merely artifices of our current (flawed) physical theories. A more fundamental theory presumably a full theory of quantum gravity will be free of such singular behavior. For example, Ashtekar and Bojowald (2006) and Ashtekar, Pawlowski and Singh (2006) argue that, in the context of loop quantum gravity, neither the big bang singularity nor black hole singularities appear.

On this reading, many of the earlier worries about the status of singularities become moot. Singularties don't exist, nor is the question of how to define them, as such, particularly urgent. Instead, the pressing question is what indicates the borders of the domain of applicability of general relativity? We pick up this question below in Section 5 on quantum black holes, for it is in this context that many of the explicit debates play out over the limits of general relativity.

The simplest picture of a black hole is that of a body whose gravity is so strong that nothing, not even light, can escape from it. Bodies of this type are already possible in the familiar Newtonian theory of gravity. The escape velocity of a body is the velocity at which an object would have to travel to escape the gravitational pull of the body and continue flying out to infinity. Because the escape velocity is measured from the surface of an object, it becomes higher if a body contracts down and becomes more dense. (Under such contraction, the mass of the body remains the same, but its surface gets closer to its center of mass; thus the gravitational force at the surface increases.) If the object were to become sufficiently dense, the escape velocity could therefore exceed the speed of light, and light itself would be unable to escape.

This much of the argument makes no appeal to relativistic physics, and the possibility of such classical black holes was noted in the late 18th Century by Michel (1784) and Laplace (1796). These Newtonian black holes do not precipitate quite the same sense of crisis as do relativistic black holes. While light hurled ballistically from the surface of the collapsed body cannot escape, a rocket with powerful motors firing could still gently pull itself free.

Taking relativistic considerations into account, however, we find that black holes are far more exotic entities. Given the usual understanding that relativity theory rules out any physical process going faster than light, we conclude that not only is light unable to escape from such a body: nothing would be able to escape this gravitational force. That includes the powerful rocket that could escape a Newtonian black hole. Further, once the body has collapsed down to the point where its escape velocity is the speed of light, no physical force whatsoever could prevent the body from continuing to collapse down further for this would be equivalent to accelerating something to speeds beyond that of light. Thus once this critical amount of collapse is reached, the body will get smaller and smaller, more and more dense, without limit. It has formed a relativistic black hole; at its center lies a spacetime singularity.

For any given body, this critical stage of unavoidable collapse occurs when the object has collapsed to within its so-called Schwarzschild radius, which is proportional to the mass of the body. Our sun has a Schwarzschild radius of approximately three kilometers; the Earth's Schwarzschild radius is a little less than a centimeter. This means that if you could collapse all the Earth's matter down to a sphere the size of a pea, it would form a black hole. It is worth noting, however, that one does not need an extremely high density of matter to form a black hole if one has enough mass. Thus for example, if one has a couple hundred million solar masses of water at its standard density, it will be contained within its Schwarzschild radius and will form a black hole. Some supermassive black holes at the centers of galaxies are thought to be even more massive than this, at several billion solar masses.

The event horizon of a black hole is the point of no return. That is, it comprises the last events in the spacetime around the singularity at which a light signal can still escape to the external universe. For a standard (uncharged, non-rotating) black hole, the event horizon lies at the Schwarzschild radius. A flash of light that originates at an event ins
ide the black hole will not be able to escape, but will instead end up in the central singularity of the black hole. A light flash originating at an event outside of the event horizon will escape, but it will be red-shifted strongly to the extent that it is near the horizon. An outgoing beam of light that originates at an event on the event horizon itself, by definition, remains on the event horizon until the temporal end of the universe.

General relativity tells us that clocks running at different locations in a gravitational field will generally not agree with one another. In the case of a black hole, this manifests itself in the following way. Imagine someone falls into a black hole, and, while falling, she flashes a light signal to us every time her watch hand ticks. Observing from a safe distance outside the black hole, we would find the times between the arrival of successive light signals to grow larger without limit. That is, it would appear to us that time were slowing down for the falling person as she approached the event horizon. The ticking of her watch (and every other process as well) would seem to go slower and slower as she got closer and closer to the event horizon. We would never actually see the light signals she emits when she crosses the event horizon; instead, she would seem to be eternally frozen just above the horizon. (This talk of seeing the person is somewhat misleading, because the light coming from the person would rapidly become severely red-shifted, and soon would not be practically detectable.)

From the perspective of the infalling person, however, nothing unusual happens at the event horizon. She would experience no slowing of clocks, nor see any evidence that she is passing through the event horizon of a black hole. Her passing the event horizon is simply the last moment in her history at which a light signal she emits would be able to escape from the black hole. The concept of an event horizon is a global concept that depends on how the events on the event horizon relate to the overall structure of the spacetime. Locally there is nothing noteworthy about the events at the event horizon. If the black hole is fairly small, then the tidal gravitational forces there would be quite strong. This just means that gravitational pull on one's feet, closer to the singularity, would be much stronger than the gravitational pull on one's head. That difference of force would be great enough to pull one apart. For a sufficiently large black hole the difference in gravitation at one's feet and head would be small enough for these tidal forces to be negligible.

As in the case of singularties, alternative definitions of black holes have been explored. These definitions typically focus on the one-way nature of the event horizon: things can go in, but nothing can get out. Such accounts have not won widespread support, however, and we have not space here to elaborate on them further.[4]

One of the most remarkable features of relativistic black holes is that they are purely gravitational entities. A pure black hole spacetime contains no matter whatsoever. It is a vacuum solution to the Einstein field equations, which just means that it is a solution of Einstein's gravitational field equations in which the matter density is everywhere zero. (Of course, one can also consider a black hole with matter present.) In pre-relativistic physics we think of gravity as a force produced by the mass contained in some matter. In the context of general relativity, however, we do away with gravitational force, and instead postulate a curved spacetime geometry that produces all the effects we standardly attribute to gravity. Thus a black hole is not a thing in spacetime; it is instead a feature of spacetime itself.

A careful definition of a relativistic black hole will therefore rely only on the geometrical features of spacetime. We'll need to be a little more precise about what it means to be a region from which nothing, not even light, can escape. First, there will have to be someplace to escape to if our definition is to make sense. The most common method of making this idea precise and rigorous employs the notion of escaping to infinity. If a particle or light ray cannot travel arbitrarily far from a definite, bounded region in the interior of spacetime but must remain always in the region, the idea is, then that region is one of no escape, and is thus a black hole. The boundary of the region is called the event horizon. Once a physical entity crosses the event horizon into the hole, it never crosses it again.

Second, we will need a clear notion of the geometry that allows for escape, or makes such escape impossible. For this, we need the notion of the causal structure of spacetime. At any event in the spacetime, the possible trajectories of all light signals form a cone (or, more precisely, the four-dimensional analog of a cone). Since light travels at the fastest speed allowed in the spacetime, these cones map out the possible causal processes in the spacetime. If an occurence at an event A is able to causally affect another occurence at event B, there must be a continuous trajectory in spacetime from event A to event B such that the trajectory lies in or on the lightcones of every event along it. (For more discussion, see the Supplementary Document: Lightcones and Causal Structure.)

Figure 1 is a spacetime diagram of a sphere of matter collapsing down to form a black hole. The curvature of the spacetime is represented by the tilting of the light cones away from 45 degrees. Notice that the light cones tilt inwards more and more as one approaches the center of the black hole. The jagged line running vertically up the center of the diagram depicts the black hole central singularity. As we emphasized in Section 1, this is not actually part of the spacetime, but might be thought of as an edge of space and time itself. Thus, one should not imagine the possibility of traveling through the singularity; this would be as nonsensical as something's leaving the diagram (i.e., the spacetime) altogether.

What makes this a black hole spacetime is the fact that it contains a region from which it is impossible to exit while traveling at or below the speed of light. This region is marked off by the events at which the outside edge of the forward light cone points straight upward. As one moves inward from these events, the light cone tilts so much that one is always forced to move inward toward the central singularity. This point of no return is, of course, the event horizon; and the spacetime region inside it is the black hole. In this region, one inevitably moves towards the singularity; the impossibility of avoiding the singularity is exactly like the impossibility of preventing ourselves from moving forward in time.

Notice that the matter of the collapsing star disappears into the black hole singularity. All the details of the matter are completely lost; all that is left is the geometrical properties of the black hole which can be identified with mass, charge, and angular momentum. Indeed, there are so-called no-hair theorems which make rigorous the claim that a black hole in equilibrium is entirely characterized by its mass, its angular momentum, and its electric charge. This has the remarkable consequence that no matter what the particulars may be of any body that collapses to form a black holeit may be as intricate, complicated and Byzantine as one likes, composed of the most exotic materialsthe final result after the system has settled down to equilibrium will be identical in every respect to a black hole that formed from the collapse of any other body having the same
total mass, angular momentum and electric charge. For this reason Chandrasekhar (1983) called black holes the most perfect objects in the universe.

While spacetime singularities in general are frequently viewed with suspicion, physicists often offer the reassurance that we expect most of them to be hidden away behind the event horizons of black holes. Such singularities therefore could not affect us unless we were actually tojump into the black hole. A naked singularity, on the other hand, is one that is not hidden behind an event horizon. Such singularities appear much more threatening because they are uncontained, accessible to vast areas of spacetime.

The heart of the worry is that singular structure would seem to signify some sort of breakdown in the fundamental structure of spacetime to such a profound depth that it could wreak havoc on any region of universe that it were visible to. Because the structures that break down in singular spacetimes are required for the formulation of our known physical laws in general, and of initial-value problems for individual physical systems in particular, one such fear is that determinism would collapse entirely wherever the singular breakdown were causally visible. As Earman (1995, pp. 65-6) characterizes the worry, nothing would seem to stop the singularity from disgorging any manner of unpleasant jetsam, from TVs showing Nixon's Checkers Speech to old lost socks, in a way completely undetermined by the state of spacetime in any region whatsoever, and in such a way as to render strictly indeterminable all regions in causal contact with what it spews out.

One form that such a naked singularity could take is that of a white hole, which is a time-reversed black hole. Imagine taking a film of a black hole forming, and various astronauts, rockets, etc. falling into it. Now imagine that film being run backwards. This is the picture of a white hole: one starts with a naked singularity, out of which might appear people, artifacts, and eventually a star bursting forth. Absolutely nothing in the causal past of such a white hole would determine what would pop out of it (just as items that fall into a black hole leave no trace on the future). Because the field equations of general relativity do not pick out a preferred direction of time, if the formation of a black hole is allowed by the laws of spacetime and gravity, then white holes will also be permitted by these laws.

Roger Penrose famously suggested that although naked singularties are comaptible with general relativity, in physically realistic situations naked singularities will never form; that is, any process that results in a singularity will safely deposit that singularity behind an event horizon. This suggestion, titled the Cosmic Censorship Hypothesis, has met with a fair degree of success and popularity; however, it also faces several difficulties.

Penrose's original formulation relied on black holes: a suitably generic singularity will always be contained in a black hole (and so causally invisible outside the black hole). As the counter-examples to various ways of articulating the hypothesis in terms of this idea have accumulated over the years, it has gradually been abandoned.

More recent approaches either begin with an attempt to provide necessary and sufficient conditions for cosmic censorship itself, yielding an indirect characterization of a naked singularity as any phenomenon violating those conditions, or else they begin with an attempt to provide a characterization of a naked singularity and so conclude with a definite statement of cosmic censorship as the absence of such phenomena. The variety of proposals made using both approaches is too great to canvass here; the interested reader is referred to Joshi (2003) for a review of the current state of the art, and to Earman (1995, ch. 3) for a philosophical discussion of many of the proposals.

The challenge of uniting quantum theory and general relativity in a successful theory of quantum gravity has arguably been the greatest challenge facing theoretical physics for the past eighty years. One avenue that has seemed particularly promising here is the attempt to apply quantum theory to black holes. This is in part because, as completely gravitational entities, black holes present an especially pure case to study the quantization of gravity. Further, because the gravitational force grows without bound as one nears a standard black hole singularity, one would expect quantum gravitational effects (which should come into play at extremely high energies) to manifest themselves in black holes.

Studies of quantum mechanics in black hole spacetimes have revealed several surprises that threaten to overturn our traditional views of space, time, and matter. A remarkable parallel between the laws of black hole mechanics and the laws of thermodynamics indicates that spacetime and thermodynamics may be linked in a fundamental (and previously unimagined) way. This linkage hints at a fundamental limitation on how much entropy can be contained in a spatial region. A further topic of foundational importance is found in the so-called information loss paradox, which suggests that standard quantum evolution will not hold when black holes are present. While many of these suggestions are somewhat speculative, they nevertheless touch on deep issues in the foundations of physics.

In the early 1970s, Bekenstein argued that the second law of thermodynamics requires one to assign a finite entropy to a black hole. His worry was that one could collapse any amount of highly entropic matter into a black hole which, as we have emphasized, is an extremely simple object leaving no trace of the original disorder. This seems to violate the second law of thermodynamics, which asserts that the entropy (disorder) of a closed system can never decrease. However, adding mass to a black hole will increase its size, which led Bekenstein to suggest that the area of a black hole is a measure of its entropy. This conviction grew when, in 1972, Hawking proved that the surface area of a black hole, like the entropy of a closed system, can never decrease.

The similarity between black holes and thermodynamic systems was considerably strengthened when Bardeen, Carter, and Hawking (1973) proved three other laws of black hole mechanics that parallel exactly the first, third, and zeroth laws of thermodynamics. Although this parallel was extremely suggestive, taking it seriously would require one to assign a non-zero temperature to a black hole, which all then agreed was absurd: All hot bodies emit thermal radiation (like the heat given off from a stove). However, according to general relativity, a black hole ought to be a perfect sink for energy, mass, and radiation, insofar as it absorbs everything (including light), and emits nothing (including light). The only temperature one might be able to assign it would be absolute zero.

This obvious fact was overthrown when Hawking (1974, 1975) demonstrated that black holes are not completely black after all. His analysis of quantum fields in black hole spacetimes revealed that the black holes will emit particles: black holes generate heat at a temperature that is inversely proportional to their mass and directly proportional to their so-called surface gravity. It glows like a lump of smoldering coal even though light should not be able to escape from it! The temperature of this Hawking effect radiation is extremely low for stellar-scale black holes, but for very small black holes the temperatures would be quite high. This means that a very small black hole should rapidly evaporate away, as all of its mass-en
ergy is emitted in high-temperature Hawking radiation.

These results were taken to establish that the parallel between the laws of black hole mechanics and the laws of thermodynamics was not a mere fluke: it seems they really are getting at the same deep physics. The Hawking effect establishes that the surface gravity of a black hole can indeed be interpreted as a physical temperature. Further, mass in black hole mechanics is mirrored by energy in thermodynamics, and we know from relativity theory that mass and energy are actually equivalent. Connecting the two sets of laws also requires linking the surface area of a black hole with entropy, as Bekenstein had suggested. This black hole entropy is called its Bekenstein entropy, and is proportional to the area of the event horizon of the black hole.

In the context of thermodynamic systems containing black holes, one can construct apparent violations of the laws of thermodynamics, and of the laws of black hole mechanics, if one considers these laws to be independent of each other. So for example, if a black hole gives off radiation through the Hawking effect, then it will lose mass in apparent violation of the area increase theorem. Likewise, as Bekenstein argued, we could violate the second law of thermodynamics by dumping matter with high entropy into a black hole. However, the price of dropping matter into the black hole is that its event horizon will increase in size. Likewise, the price of allowing the event horizon to shrink by giving off Hawking radiation is that the entropy of the external matter fields will go up. We can consider a combinationof the two laws that stipulates that the sumof a black hole's area, and the entropy of the system, can never decrease. This is the generalized second law of (black hole) thermodynamics.

From the time that Bekenstein first proposed that the area of a black hole could be a measure of its entropy, it was know to face difficulties that appeared insurmountable. Geroch (1971) proposed a scenario that seems to allow a violation of the generalized second law. If we have a box full of energetic radiation with a high entropy, that box will have a certain weight as it is attracted by the gravitational force of a black hole. One can use this weight to drive an engine to produce energy (e.g., to produce electricity) while slowly lowering the box towards the event horizon of the black hole. This process extracts energy, but not entropy, from the radiation in the box; once the box reaches the event horizon itself, it can have an arbitrarily small amount of energy remaining. If one then opens the box to let the radiation fall into the black hole, the size of the event horizon will not increase any appreciable amount (because the mass-energy of the black hole has barely been increased), but the thermodynamic entropy outside the black hole has decreased. Thus we seem to have violated the generalized second law.

The question of whether we should be troubled by this possible violation of the generalized law touches on several issues in the foundations of physics. The status of the ordinary second law of thermodynamics is itself a thorny philosophical puzzle, quite apart from the issue of black holes. Many physicists and philosophers deny that the ordinary second law holds universally, so one might question whether we should insist on its validity in the presence of black holes. On the other hand, the second law clearly captures some significant feature of our world, and the analogy between black hole mechanics and thermodynamics seems too rich to be thrown out without a fight. Indeed, the generalized second law is our only law that joins together the fields of general relativity, quantum mechanics, and thermodynamics. As such, it seems the most promising window we have into the truly fundamental nature of the physical world.

In response to this apparent violation of the generalized second law, Bekenstein pointed out that one could never get all of the radiation in the box arbitrarily close to the event horizon, because the box itself would have to have some volume. This observation by itself is not enough to save the second law, however, unless there is some limit to how much entropy can be contained in a given volume of space. Current physics poses no such limit, so Bekenstein (1981) postulated that the limit would be enforced by the underlying theory of quantum gravity, which black hole thermodynamics is providing a glimpse of.

However, Unruh and Wald (1982) argue that there is a less ad hoc way to save the generalized second law. The heat given off by any hot body, including a black hole, will produce a kind of buoyancy force on any object (like our box) that blocks thermal radiation. This means that when we are lowering our box of high-entropy radiation towards the black hole, the optimal place to release that radiation will not be just above the event horizon, but rather at the floating point for the container. Unruh and Wald demonstrate that this fact is enough guarantee that the decrease in outside entropy will be compensated by an increase in the area of the event horizon. It therefore seems that there is no reliable way to violate the generalized second law of black hole thermodynamics.

There is, however, a further reason that one might think that black hole thermodynamics implies a fundamental bound on the amount of entropy that can be contained in a region. Suppose that there were more entropy in some region of space than the Bekenstein entropy of a black hole of the same size. Then one could collapse that entropic matter into a black hole, which obviously could not be larger than the size of the original region (or the mass-energy would have already formed a black hole). But this would violate the generalized second law, for the Bekenstein entropy of a the resulting black hole would be less than that of the matter that formed it. Thus the second law appears to imply a fundamental limit on how much entropy a region can contain. If this is right, it seems to be a deep insight into the nature of quantum gravity.

Arguments along these lines led t Hooft (1985) to postulate the Holographic Principle (though the title is due to Susskind). This principle claims that the number of fundamental degrees of freedom in any spherical region is given by the Bekenstein entropy of a black hole of the same size as that region. The Holographic Principle is notable not only because it postulates a well-defined, finite, number of degrees of freedom for any region, but also because this number grows as the area surrounding the region, and not as the volume of the region. This flies in the face of standard physical pictures, whether of particles or fields. According to that picture, the entropy is the number of possible ways something can be, and that number of ways increases as the volume of any spatial region. The Holographic Principle does get some support from a result in string theory known as the AdS/CFT correspondence. If the Principle is correct, then one spatial dimension can, in a sense, be viewed as superfluous: the fundamental physical story of a spatial region is actually a story that can be told merely about the boundary of the region.

In classical thermodynamics, that a system possesses entropy is often attributed to the fact that we in practice are never able to render to it a complete description. When describing a cloud of gas, we do not specify values for the position and velocity of every molecule in it; we rather describe it in terms of quantities, such as pressure and temperature, constructed as statistical measures over underlying, more finely grained quantities, such as the momentum and
energy of the individual molecules. The entropy of the gas then measures the incompleteness, as it were, of the gross description. In the attempt to take seriously the idea that a black hole has a true physical entropy, it is therefore natural to attempt to construct such a statistical origin for it. The tools of classical general relativity cannot provide such a construction, for it allows no way to describe a black hole as a system whose physical attributes arise as gross statistical measures over underlying, more finely grained quantities. Not even the tools of quantum field theory on curved spacetime can provide it, for they still treat the black hole as an entity defined entirely in terms of the classical geometry of the spacetime. Any such statistical accounting, therefore, must come from a theory that attributes to the classical geometry a description in terms of an underlying, discrete collection of micro-states. Explaining what these states are that are counted by the Bekenstein entropy has been a challenge that has been eagerly pursued by quantum gravity researchers.

In 1996, superstring theorists were able to give an account of how M-theory (which is an extension of superstring theory) generates a number of the string-states for a certain class of black holes, and this number matched that given by the Bekenstein entropy (Strominger and Vafa, 1996). A counting of black hole states using loop quantum gravity has also recovered the Bekenstein entropy (Ashtekar et al., 1998). It is philosophically noteworthy that this is treated as a significant success for these theories (i.e., it is presented as a reason for thinking that these theories are on the right track) even though Hawking radiation has never been experimentally observed (in part, because for macroscopic black holes the effect is minute).

Hawking's discovery that black holes give off radiation presented an apparent problem for the possibility of describing black holes quantum mechanically. According to standard quantum mechanics, the entropy of a closed system never changes; this is captured formally by the unitary nature of quantum evolution. Such evolution guarantees that the initial conditions, together with the quantum Schrdinger equation, will fix the future state of the system. Likewise, a reverse application of the Schrdinger equation will take us from the later state back to the original initial state. The states at each time are rich enough, detailed enough, to fix (via the dynamical equations) the states at all other times. Thus there is a sense in which the completeness of the state is maintained by unitary time evolution.

It is typical to characterize this feature with the claim that quantum evolution preserves information. If one begins with a system in a precisely known quantum state, then unitary evolution guarantees that the details about that system will evolve in such a way that one can infer the precise quantum state of the system at some later time (as long as one knows the law of evolution and can perform the relevant calculations), and vice versa. This quantum preservation of details implies that if we burn a chair, for example, it would in principle be possible to perform a complete set of measurements on all the outgoing radiation, the smoke, and the ashes, and reconstruct exactly what the chair looked like. However, if we were instead to throw the chair into a black hole, then it would be physically impossible for the details about the chair ever to escape to the outside universe. This might not be a problem if the black hole continued to exist for all time, but Hawking tells us that the black hole is giving off energy, and thus it will shrink down and presumably will eventually disappear altogether. At that point, the details about the chair will be irrevocably lost; thus such evolution cannot be described unitarily. This problem has been labeled the information loss paradox of quantum black holes.

(A brief technical explanation for those familiar with quantum mechanics: The argument is simply that the interior and the exterior of the black hole will generally be entangled. However, microcausality implies that the entangled degrees of freedom in the black hole cannot coherently recombine with the external universe. Thus once the black hole has completely evaporated away, the entropy of the universe will have increased in violation of unitary evolution.)

The attitude physicists adopted towards this paradox was apparently strongly influenced by their vision of which theory, general relativity or quantum theory, would have to yield to achieve a consistent theory of quantum gravity. Spacetime physicists tended to view non-unitary evolution as a fairly natural consequence of singular spacetimes: one wouldn't expect all the details to be available at late times if they were lost in a singularity. Hawking, for example, argued that the paradox shows that the full theory of quantum gravity will be a non-unitary theory, and he began working to develop such a theory. (He has since abandoned this position.)

However, particle physicists (such as superstring theorists) tended to view black holes as being just another quantum state. If two particles were to collide at extremely high (i.e., Planck-scale) energies, they would form a very small black hole. This tiny black hole would have a very high Hawking temperature, and thus it would very quickly give off many high-energy particles and disappear. Such a process would look very much like a standard high-energy scattering experiment: two particles collide and their mass-energy is then converted into showers of outgoing particles. The fact that all known scattering processes are unitary then seems to give us some reason to expect that black hole formation and evaporation should also be unitary.

These considerations led many physicists to propose scenarios that might allow for the unitary evolution of quantum black holes, while not violating other basic physical principles, such as the requirement that no physical influences be allowed to travel faster than light (the requirement of microcausality), at least not when we are far from the domain of quantum gravity (the Planck scale). Once energies do enter the domain of quantum gravity, e.g. near the central singularity of a black hole, then we might expect the classical description of spacetime to break down; thus, physicists were generally prepared to allow for the possibility of violations of microcausality in this region.

A very helpful overview of this debate can be found in Belot, Earman, and Ruetsche (1999). Most of the scenarios proposed to escape Hawking's argument faced serious difficulties and have been abandoned by their supporters. The proposal that currently enjoys the most wide-spread (though certainly not universal) support is known as black hole complementarity. This proposal has been the subject of philosophical controversy because it includes apparently incompatible claims, and then tries to escape the contradiction by making a controversial appeal to quantum complementarity or (so charge the critics) verificationism.

The challenge of saving information from a black hole lies in the fact that it is impossible to copy the quantum details (especially the quantum correlations) that are preserved by unitary evolution. This implies that if the details pass behind the event horizon, for example, if an astronaut falls into a black hole, then those details are lost forever. Advocates of black hole complementarity (Susskind et al. 1993), however, point out that an outside observer will never see the infalling astronaut pass through the event horizon. Instead, as we saw in Section 2, s
he will seem to hover at the horizon for all time. But all the while, the black hole will also be giving off heat, and shrinking down, and getting hotter, and shrinking more. The black hole complementarian therefore suggests that an outside observer should conclude that the infalling astronaut gets burned up before she crosses the event horizon, and all the details about her state will be returned in the outgoing radiation, just as would be the case if she and her belongings were incinerated in a more conventional manner; thus the information (and standard quantum evolution) is saved.

However, this suggestion flies in the face of the fact (discussed earlier) that for an infalling observer, nothing out of the ordinary should be experienced at the event horizon. Indeed, for a large enough black hole, one wouldn't even know that she was passing through an event horizon at all. This obviously contradicts the suggestion that she might be burned up as she passes through the horizon. The black hole complementarian tries to resolve this contradiction by agreeing that the infalling observer will notice nothing remarkable at the horizon. This is followed by a suggestion that the account of the infalling astronaut should be considered to be complementary to the account of the external observer, rather in the same way that position and momentum are complementary descriptions of quantum particles (Susskind et al. 1993). The fact that the infalling observer cannot communicate to the external world that she survived her passage through the event horizon is supposed to imply that there is no genuine contradiction here.

This solution to the information loss paradox has been criticized for making an illegitimate appeal to verificationism (Belot, Earman, and Ruetsche 1999). However, the proposal has nevertheless won wide-spread support in the physics community, in part because models of M-theory seem to behave somewhat as the black hole complementarian scenario suggests (for a philosophical discussion, see van Dongen and de Haro 2004). Bokulich (2005) argues that the most fruitful way of viewing black hole complementarity is as a novel suggestion for how a non-local theory of quantum gravity will recover the local behavior of quantum field theory when black holes are involved.

The physical investigation of spacetime singularities and black holes has touched on numerous philosophical issues. To begin, we were confronted with the question of the definition and significance of singularities. Should they be defined in terms of incomplete paths, missing points, or curvature pathology? Should we even think that there is a single correct answer to this question? Need we include such things in our ontology, or do they instead merely indicate the break-down of a particular physical theory? Are they edges of spacetime, or merely inadequate descriptions that will be dispensed with by a truly fundamental theory of quantum gravity?

This has obvious connections to the issue of how we are to interpret the ontology of merely effective physical descriptions. The debate over the information loss paradox also highlights the conceptual importance of the relationship between different effective theories. At root, the debate is over where and how our effective physical theories will break down: when can they be trusted, and where must they be replaced by a more adequate theory?

Black holes appear to be crucial for our understanding of the relationship between matter and spacetime. As discussed in Section 3, When matter forms a black hole, it is transformed into a purely gravitational entity. When a black hole evaporates, spacetime curvature is transformed into ordinary matter. Thus black holes offer an important arena for investigating the ontology of spacetime and ordinary objects.

Black holes were also seen to provide an important testing ground to investigate the conceptual problems underlying quantum theory and general relativity. The question of whether black hole evolution is unitary raises the issue of how the unitary evolution of standard quantum mechanics serves to guarantee that no experiment can reveal a violation of energy conservation or of microcausality. Likewise, the debate over the information loss paradox can be seen as a debate over whether spacetime or an abstract dynamical state space (Hilbert space) should be viewed as being more fundamental. Might spacetime itself be an emergent entity belonging only to an effective physical theory?

Singularities and black holes are arguably our best windows into the details of quantum gravity, which would seem to be the best candidate for a truly fundamental physical description of the world (if such a fundamental description exists). As such, they offer glimpses into deepest nature of matter, dynamical laws, and space and time; and these glimpses seem to call for a conceptual revision at least as great as that required by quantum mechanics or relativity theory alone.

Go here to read the rest:
Singularities and Black Holes (Stanford Encyclopedia of ...

Posted in The Singularity | Comments Off on Singularities and Black Holes (Stanford Encyclopedia of …

NATO Wikipedia ting Vit

Posted: at 7:43 pm

NATO l tn tt ca T chc Hip c Bc i Ty Dng (ting Anh: North Atlantic Treaty Organization; ting Php: Organisation du Trait de l'Atlantique Nord v vit tt l OTAN) l mt lin minh qun s thnh lp nm 1949 bao gm M v mt s nc chu u. Tr s chnh t ti Brussels, B,[3] v t chc thit lp mt lin minh phng th trong cc nc thnh vin thc hin phng th chung khi b tn cng bi bn ngoi.

Mc ch thnh lp ca NATO l ngn chn s pht trin nh hng ca ch ngha cng sn v Lin X lc ang trn pht trin rt mnh chu u c th gy phng hi n an ninh ca cc nc thnh vin. Vic thnh lp NATO dn n vic cc nc cng sn thnh lp khi Warszawa lm i trng. S knh ch v chy ua v trang ca hai khi qun s i ch ny l cuc i u chnh ca Chin tranh Lnh trong na cui th k 20.

Nhng nm u tin thnh lp, NATO ch l mt lin minh chnh tr. Tuy nhin, do cuc chin tranh Triu Tin tc ng, mt t chc qun s hp nht c thnh lp. Nghi ng rng lin kt ca cc nc chu u v M yu i cng nh kh nng phng th ca NATO trc kh nng m rng ca Lin X, Php rt khi NATO nm 1966. Nm 2009, vi s phiu p o ca quc hi di s lnh o ca chnh ph ca tng thng Nicolas Sarkozy, Php quay tr li NATO.

Sau khi bc tng Berlin sp nm 1989, t chc b li cun vo cuc phn chia nc Nam T, v ln u tin tham d qun s ti Bosna v Hercegovina t 1992 ti 1995 v sau th bom Serbia vo nm 1999 trong cuc ni chin Kosovo. T chc ngoi ra c nhng quan h tt p hn vi nhng nc thuc khi i u trc y trong nhiu nc tng thuc khi Warszawa gia nhp NATO t nm 1999 n 2004. Ngy 1 thng 4 nm 2009, s thnh vin ln n 28 vi s gia nhp ca Albania v Croatia.[4] T sau s kin 11 thng 9 nm 2001, NATO tp trung vo nhng th thch mi trong c a qun n Afghanistan v Iraq.

Chi ph qun s ca NATO chim 70% chi ph qun s th gii, ring M chim khong 50%, Anh, Php, c v gp li chim 15% chi ph qun s th gii.

Hy Lp v Th Nh K gia nhp t chc vo thng 2 nm 1952. Nm 1955 Cng ho Lin bang c (lc ch c phn Ty c) gia nhp, nm 1990 nc c thng nht m rng t cch thnh vin cho vng lnh th ng c tc Cng ho Dn ch c c. Ty Ban Nha gia nhp ngy 30 thng 5 nm 1982. Nm 1999, 3 nc thnh vin khi Warszawa c gia nhp NATO l Ba Lan, Cng ho Sc v Hungary.

Php l mt thnh vin NATO, nhng nm 1966 rt khi b ch huy qun s. Sau tng hnh dinh NATO chuyn t Paris n Bruxelles. Thng 4 nm 2009, Php quay tr li b ch huy qun s NATO, tr thnh thnh vin y , chm dt 43 nm vng bng. Iceland l thnh vin duy nht ca NATO khng c qun i ring v th lc lng qun i Hoa K thng trc ti Iceland m nhim vai tr Lc lng Phng v Iceland.

Ngy 29 thng 3 nm 2004, Slovenia, Slovakia, cc nc khi Warszawa c gm Bulgaria, Romania, cc nc vng Baltic thuc Lin X trc y l Estonia, Latvia v Litva chnh thc gia nhp NATO. Thng 4 cng nm, cc nc ny ln u tin d hp hi ng NATO.

Ngy 1 thng 4 nm 2009, Croatia v Albania chnh thc c kt np vo NATO sau 1 nm np n xin gia nhp.

Ngoi ra, NATO cn c chng trnh hnh ng thnh vin (MAP). Hin ti MAP gm Macedonia, Bosnia-Herzegovina v Montenegro.

Bn Chin lc An ninh Quc gia, do Tng thng Putin k hm th Nm 31/12/2015, m t vic m rng ca Nato l mt mi e da i vi nc Nga. Chin lc An ninh Quc gia Nga c cp nht su nm mt ln. Phng vin chuyn v ngoi giao ca BBC, Bridget Kendall, ni rng ng Putin ang tm kim nhng n by nhm lm suy yu mi quan h ca chu u vi Hoa K, vi hy vng l s n mt ngy nc Nga tr thnh i tc chin lc chnh ca chu u. [5]

c thm Early period

c thm Late Cold War period

c thm Post Cold War period

c thm General histories

c thm Other Issues

Visit link:
NATO Wikipedia ting Vit

Posted in NATO | Comments Off on NATO Wikipedia ting Vit

NATO – Wikipedija

Posted: at 7:43 pm

Organizacija Sjevernoatlantskog ugovora, naziva se jo i Sjevernoatlantski savez, poznatiji po kratici NATO (od engleskog naziva North Atlantic Treaty Organisation, francuski Organisation du Trait de l'Atlantique Nord - OTAN), meunarodna je organizacija vojno-politike prirode, osnovana je 1949. godine potpisivanjem Sjevernoatlantskog ugovora (Washingtonski ugovor) izmeu dvanaest drava tadanjeg zapadnog bloka.

Kljuna odredba u Sjevernoatlantskom ugovoru glasi:

()

Osnova Sjevernoatlantskog saveza Ugovor je drava lanica, koji je po svojoj prirodi meunarodni ugovor. Ugovor priznaje i podrava njihova pojedinana prava, kao i njihove meunarodne obveze u skladu s Poveljom Ujedinjenih Naroda. Obvezuje svaku dravu lanicu da sudjeluje u rizicima i odgovornostima, uspostavlja sustav zajednike obrane te zahtijeva od svake od njih da ne prihvaa nikakve meunarodne obveze koje bi mogle biti u suprotnosti s Ugovorom.

Politiko sredite Organizacije i trajno sjedite Sjevernoatlantskog vijea je u Bruxellesu (Belgija).

Neposredno nakon okonanja Drugog svjetskog rata Europa se nala raspolovljena na dva ideoloka bloka, kapitalistiki, i komunistiki pod utjecajem Sovjetskog Saveza. I dok se Moskva tijekom 1945. i 1946. djelomino suzdravala od otvorenog politikog djelovanja, u dravama u kojima je imala utjecaj, tijekom 1947., a posebno 1948., postalo je jasno da se sovjetska vojska, ne samo nema namjeru povui, ve da ima namjeru krenuti i dalje.

U ratom razruenoj Europi irenje komunistike ideologije moglo se ostvariti na dva naina. Prvi je bio izazivanje "spontanih" revolucija nezadovoljnih radnikih masa, predvoenih komunistikim partijama. Iako je bilo nekoliko pokuaja, najvei je uspjeh ostvaren u Grkoj, gdje je 1946. zapoeo graanski rat, predvoen tamonjom komunistikom partijom. Iako su grke snage do kraja 1949. uspjele uguiti pobunu, bilo je oito kako bi se u osiromaenoj Europi ideje komunizma lako mogle proiriti. Zbog toga je u srpnju 1947. pokrenut Plan europske obnove, poznatiji kao Marshallov plan. U naredne e etiri godine Sjedinjene Amerike Drave europskim dravama dati pomo u vrijednosti oko 13 milijardi amerikih dolara.

Drugi nain irenja komunizma bio je znatno opasniji. Naime, neposredno nakon okonanja Drugog svjetskog rata, SAD-e i skoro sve europske drave, barem one koje nisu pale pod sovjetski utjecaj, provele su masovnu demobilizaciju vojnih snaga i otkazale narudbe oruja i vojne opreme. S druge strane, Sovjetski Savez nije izvrio smanjivanje oruanih snaga, ve ih je nastavio intenzivno jaati, kako brojano tako i tehniki. Nakon to su uvrstili okupacije istonoeuropskih drava, 24. lipnja 1948. zapoela je blokada zapadnog Berlina. Bio je to poetak najvee politike krize od okonanja Drugog svjetskog rata i trajat e sve do 11. svibnja 1949. Berlinska blokada s jedne je strane ubrzala stvaranje Savezne Republike Njemake, a s druge, formiranje velikog obrambenog saveza koji e Zapadnu Europu tititi od sovjetske najezde.

Svojevrstan poetak bio je Briselski sporazum kojem su 17. oujka pristupile Belgija, Francuska, Luksemburg, Nizozemska i Velika Britanija. Cilj je bio razvijanje zajednikih sustava obrane i jaanje meusobnih veza kako bi se zajedniki oduprle ideolokim, politikim i vojnim prijetnjama nacionalnoj sigurnosti. Znajui da njihovi gospodarski i vojni kapaciteti nisu dostatni da ih obrane od sovjetske prijetnje, ove su drave odmah zapoele i pregovore sa Sjedinjenim Amerikim Dravama i Kanadom s ciljem stvaranja novog vojnog saveza, utemeljenog na zajednikim obvezama i sigurnosnim jamstvima Europe i Sjeverne Amerike. Drave potpisnice Briselskog sporazuma pozvale su Dansku, Island, Italiju i Portugal da se ukljue u taj proces. Dvanaest drava s obje strane Atlantskog oceana 4. travnja 1949. godine u Washingtonu su potpisale Sjevernoatlantski ugovor, uspostavivi savez kako bi se suprotstavile prijetnjama iz komunistikog dijela svijeta, te sprjeavanje irenja komunizma na ostali dio Europe. Drave potpisnice obvezale su se na meusobnu obranu u sluaju vojne agresije na bilo koju dravu lanicu. Tako je stvorena Organizacija Sjevernoatlantskog ugovora (NATO).

S vremenom je sve vie zemalja pristupalo Savezu, prepoznajui u njemu mogunost obrane slobode te ouvanja stabilnosti i napretka.

Tako se NATO-u 1952. godine pridruuju Grka i Turska, tri godine kasnije, 1955., i Savezna Republika Njemaka, a 1982. panjolska. Sigurnost koju jami NATO savez omoguila je mir i stabilnost kojima se, kao temeljnim preduvjetima, stvarao temelj europske ekonomske suradnje i integracije.

Ne elei svoje oruane snage, a prije svega nuklearno oruje, staviti pod nadzor NATO saveza, francuski je predsjednik Charles de Gaulle u veljai 1966. povukao Francusku iz zajednikog zapovjednitva NATO saveza, te od tada nije sudjelovala u akcijama planiranja, obuke i voenja zajednikih operacija. Ostala je tek u politikim strukturama (Sjevernoatlantsko vijee). Bio je odraz de Gaulleve elje da Francuska ima sredinje mjesto u formiranju europske politike, kako se vie nikad ne bi ponovila 1914. i 1939. godina. Meutim, zbog promjena politikih odnosa u Europi, ali i u svijetu temeljito drukijih u odnosu na ezdesete godine prolog stoljea, francuski predsjednik Nicolas Sarkozy odluio da se Francuska vrati i u vojne strukture Saveza.

Padom Berlinskog zida NATO se naao pred novim izazovom. Prestao je postojati Varavski pakt, a raspao se i Sovjetski Savez. U vrijeme bipolarne podijele svijeta uloga i zadae NATO-a bile su jasne i povijesno opravdane. Zavretkom gotovo polustoljetnog neprijateljstva, neki su analitiari smatrali kako NATO vie ne treba postojati te kako bi se trokovi ulaganja u naoruanje mogli znatno smanjiti. Mnoge drave lanice smanjile su financijska davanja za obranu, ali ubrzo se pokazalo kako se trajni mir na europskom kontinentu nije ostvario.

Na podruju biveg Sovjetskog Saveza izbilo je nekoliko regionalnih sukoba koji su uglavnom nastali zbog etnikih netrpeljivosti. Sukobi u jugoistonoj Europi takoer su znatno poremetili sliku o Europi kao prostoru mira i suradnje, a postojao je i opravdan strah od irenja tih sukoba. Tada su drave lanice Sjevernoatlantskog saveza shvatile da je i dalje potrebno njihovo djelovanje kroz kolektivnu obranu i sigurnost u postkomunistikoj Europi.

Danas se smanjila opasnost od konvencionalnog vojnog sukoba i masovne uporabe teko naoruanih postrojbi, ali, pojavili su se novi izazovi koji sve lanice stavljaju pred nove dileme na koje treba pronai adekvatan odgovor. Nove su prijetnje po naravi drukije od onih iz doba Hladnog rata. Nove su zadae NATO borba protiv novih prijetnji: terorizma, proizvodnje i proliferacije oruja za masovno unitenje, opasnosti koje prijete iz takozvanih neuspjelih ili slabih drava te mora djelovati preventivno kako bi se u budunosti sprijeile takve opasnosti. Posljednjih godina NATO uspostavlja naine borbe protiv suvremenih opasnosti koje ugroavaju sigurnost i stabilnost. Upravljanje krizom ("crisis management") i mirovne operacije za ouvanje i odravanjem mira ("peacekeeping" i "peace-support") neki su od naina djelovanja suvremenog Sjevernoatlantskog saveza u odgovoru na nove izazove.

Nakon pada komunizma i zavretka Hladnog rata, Sjevernoatlantskom savezu pridruile su se zemlje bive lanice nekadanjeg Varavskog ugovora. Tako su lanicama Saveza 1999. godine postale eka, Maarska i Poljska. Uspjean primjer prve tri postkomunistike lanice potaknuo je i druge da se vrsto opredijele za pristupanje Savezu kao najbolji nain ostvarenja dugorone stabilnosti. Savezu 2004. godine pristupaju Bugarska, Rumunjska, Slovenija, Slovaka, Estonija, Litva i Latvija, a poziv
nicu za lanstvo na samitu u Bukuretu 2008. godine dobile su Hrvatska i Albanija, koje su ule ve sljedee, 2009. godine

Od 1999. godine sve aspirantice za lanstvo sudjeluju u takozvanom Akcijskom planu za lanstvo koji nudi praktine savjete i pomo da se drave to bolje pripreme za lanstvo u Savezu.

Trenutani kandidati za lanstvo su Bosna i Hercegovina, Crna Gora i Makedonija. Makedonija je ispunila sve uvjete za lanstvo istodobno kada i Hrvatska i Albanija, ali pristupanje Makedonije NATO-u je blokirala Grka zbog spora oko naziva drave Makedonije.

Danas Organizacija Sjevernoatlantskog ugovora ima 28 drava lanica.

Drave osnivaice su dvanaest drava koje su 4. travnja 1949. godine u Washingtonu potpisale Sjevernoatlantski ugovor:

Savezu je naknadno pristupilo jo esnaest drava, i to u est krugova proirenja:

Sjevernoatlantsko vijee, Odbor za obrambeno planiranje i Skupina za nuklearno planiranje glavne su institucije za razvoj politike i donoenje odluka. Odluke koje je donijelo svako od tih tijela imaju istu vanost i predstavljaju dogovorenu politiku zemalja lanica, bez obzira na razinu na kojoj su donesene. Ovim tijelima podinjeni su specijalizirani odbori.

Podrobniji lanak o temi: Sjevernoatlantsko vijee

Sjevernoatlantsko vijee (eng. North Atlantic Council, kratica NAC) jedino je tijelo NATO-a koje je formalno uspostavljeno Sjevernoatlantskim ugovorom iz kojeg crpi svoje ovlasti (lanak 9. Ugovora). Vijee ima politike ovlasti i pravo donoenja odluka koje se tiu Saveza. Sastoji od stalnih predstavnika svih drava lanica koji se sastaju najmanje jedanput tjedno, a po potrebi i u kratkom roku. Vijee se takoer sastoji i na viim razinama koje obuhvaaju efove drava i vlada, ministre vanjskih poslova, ministre obrane. Sjednicama Vijea predsjedava Glavni tajnik NATO-a (ili njegov zamjenik).

Pitanja koja se razmatraju i odluke koje se donose na sastancima Vijea pokrivaju aspekte djelatnosti NATO-a, i esto se temelje na izvjeima i preporukama koje pripremaju podinjena povjerenstva. Isto tako, predmete rasprave moe predloiti bilo koji od nacionalnih predstavnika ili Glavni tajnik. Stalni predstavnici rade prema naputcima svojih vlada.

Odluke u Vijeu donose se jednoglasno i to zajednikim pristankom. Nema glasovanja niti se odluke donose veinom. Na taj nain nemogue je donijeti odluku koja e obvezati dravu koja u njezinom donoenju nije sudjelovala niti je na nju pristala. Svaka drava lanica zadrava potpunu suverenost i odgovornost pri donoenju svojih odluka.

Pripreme za rad Vijea vre podinjeni odbori; odbori odgovorni za pojedina podruja aktivnosti NATO-a.

Odbor za obrambeno planiranje (eng. Defence Planning Committee, kratica DPC) sastavljen je od stalnih predstavnika, ali se sastaje i na razini ministara obrane najmanje dvaput godinje. U radu odbora sudjeluju sve drave lanice. Odborom predsjedava Glavni tajnik NATO-a. Odbor je glavno tijelo za donoenje odluka glede pitanja planiranja kolektivne obrane i integrirane NATO vojne strukture te daje smjernice vojnim vlastima NATO-a. Rad Odbora priprema vei broj podreenih odbora, meu kojima je najvaniji Odbor za obrambenu reviziju (eng. Defence Review Committee, kratica DRC) koji nadzire postupak organizacije oruanih snaga unutar NATO-a i poruava druga pitanja vezana uz zdruenu vojnu strukturu.

Skupina za nuklearno planiranje (eng. Nuclear Planning Group, kratica NPG) sastoji se od ministara obrane drava lanica koje sudjeluju u radu Odbora za obrambeno planiranje. Unutar Skupine raspravlja se o posebnim politikim pitanjima koji se tiu nuklearnog naoruanja. Skupinom predsjedava Glavni tajnik NATO-a. Rad Skupine za nuklearno planiranje priprema Skupina osoblja NPG (eng. NPG Staff Group), sastavljena od lanova nacionalnih izaslanstava drava koje sudjeluju u NPG, lanova Meunarodnog vojnog osoblja i predstavnika Stratekih zapovjednika. Skupina obavlja rad u ime Stalnih predstavnika NPG-a. Skupina na visokoj razini (eng. High Level Group, kratica HLG) visoko je savjetodavno tijelo NPG-a na podruju nuklearne politike i planiranja. Ovom skupinom predsjedavaju SAD.

Finska sudjeluje gotovo u svim akcijama programa Partnerstvo za mir i daje snage za mirovne operacije u Afganistanu i na Kosovu. Istraivanja javnog mijenja pokazuje da je tamonje stanovnitvo potpuno protivno protiv ulaska u NATO.[4] Mogunost ulaska u ovaj vojni savez je bilo jedno od glavnih pitanja tijekom finskih predsjednikih izbora 2006. godine. Glavni opozicijski kandidat za predsjednika Sauli Niinisto je podravao ulazak u NATO emu se protivila dotadanja predsjednica Tarja Halonen koja je i dobila izbore. Njena pobjeda je otklonila mogunost ulaska Finske u NATO barem tijekom njenog predsjednikog mandata. S druge strane ministarstvo obrane zahtjeva ulazak u NATO kako bi se pojaala sigurnost ove skandinavske zemlje.[5]

Bivi finski predsjednici Martti Ahtisaari i Mauno Koivisto stoje na razliitim barikadama po ovom pitanju. Prvi se zalae za ulazak u savez kako bi se postalo lan organizacije gdje se nalaze i druge demokratske zemlje, dok se drugi tomu protive znajui da Rusija ne bi ovu promjenu dobro prihvatila.[6]

1949. godine vedska je odluila ne ui u NATO savez ime je postavila temelje svoje politike neutralnosti koja see do dananjih dana. Ova je politika bila neupitna tijekom cijelog hladnog rata, ali tijekom devedesetih godina poelo se raspravljati o moguem ulazu u savez. Iako su se vladajue stranke protivile ulasku u NATO vedski vojnici su sudjelovali tijekom NATO operacija u Bosni i Hercegovini, na Kosovu i Afganistanu. Veina vedskih stranaka po ovom je pitanju postala oita krajem 2006. godine kada se trebala donijeti odluka o kupovini 2 nova transportna aviona ili da se po ovom pitanju ue u kooperaciju s NATO savezom.[7]

Istraivanje javnog mijenja iz 2006. godine je pokazalo da se veina veana protivi ulasku u NATO (46% protiv i 22% za).[8]

Ministar obrane Ukrajine Anatolij Hrytsenko je izjavio da e njegova zemlja imati akcijski plan za ulazak u NATO do oujka 2006. godine, a da e se izvravati od rujna. Konana se odluka o moguem ulasku oekuje u 2008. godini, a puno lanstvo e, najvjerojatnije, biti mogue od 2010. godine.[9]

Ideja Ukrajinskog ulaska u savez je dobila podrku od nekoliko lidera drava koje se tamo nalaze. Meu dravnicima koji su pruili javnu podrku se nalaze rumunjski predsjednik Traian Basescu[10] i slovaki predsjednik Ivan Gaparovi.[11] S druge strane zamjenik ministra vanjskih poslova Rusije je izjavio da lanstvo u NATO savezu nije u interesu Ukrajine i da ono nee poboljati njihove odnose.[12]

Trenutano je veina stanovnika Ukrajine protiv ulaska u NATO bez obzira na njihove politike poglede. Ovo protivljenje je bilo iskazano protestnim okupljanjima i skupljanjem potpisa. Bivi premijer Jurij Jekhanurov je izjavio kako drava nee ui sve dok je narod protiv toga.[13]

Planovi za lanstvo su prekinuti 14. rujna 2006. zbog velikog protivljenja NATO savezu.[14] Trenutana je vlada Ukrajine pokrenula informativnu kampanju kako bi prikazala beneficije ulaska u ovaj savez.

Napomena: Ovaj tekst ili jedan njegov dio je preuzet iz internetskog izdanja asopisa Hrvatski vojnik. Vidi Doputenje Hrvatskog vojnika za Wikipediju na hrvatskome jeziku.

See the article here:
NATO - Wikipedija

Posted in NATO | Comments Off on NATO – Wikipedija

NATO – Vikipeedia, vaba entsklopeedia

Posted: at 7:43 pm

Phja-Atlandi Lepingu Organisatsioon (ingl North Atlantic Treaty Organisation (NATO), pr Organisation du Trait de l'Atlantique Nord (OTAN)) on sjaline liit, millele pandi alus 4. aprillil 1949 Phja-Atlandi lepingu ehk Washingtoni lepinguga. NATO krgeim organ on Phja-Atlandi Nukogu, mida juhib NATO peasekretr. Organisatsioon phineb kollektiivkaitsel, lbi mille liikmesriigid nustuvad vlise rnnaku korral vastastikust kaitset osutama. NATO peakorter asub Brsselis. Viimati laienes NATO 2009. aastal, kui liitusid Albaania ja Horvaatia. Lisaks liikmesriikidele osaleb NATO rahupartnerlusprogrammis veel 22 riiki. NATO liikmesriikide kaitsekulutused kokkuliidetuna moodustavad le 70 protsendi kogu maailma kaitsekulutustest.[1] Igal liikmesriigil on kohustus investeerida SKT-st riigikaitsesse vhemalt kaks protsenti, peale Eesti tidavad seda reeglit veel Kreeka, USA ja hendkuningriik.[2]

Kuni Korea sjani oli NATO peaasjalikult poliitiline organisatsioon. Militaarstruktuur ehitati les USA juhtimisel. Klma sja kigus tekkinud vastasseis viis 1955. aastal rivaalitseva organisatsiooni, nn Varssavi pakti ehk Varssavi Lepingu Organisatsiooni asutamiseni, mis oli Ida-Euroopa kommunistlike riikide sjalis-poliitiline organisatsioon. Samal ajal olid Euroopa riikide ja USA vahelised suhted ebastabiilsed ning kaheldi NATO kaitses Nukogude Liidu rnnaku korral. Need kahtlused viisid Prantsusmaa iseseisva tuumarelvastuse vljaarendamiseni ning 1966. aastal vljus Prantsusmaa jrgmiseks kolmekmneks aastaks NATO sjalisest tiivast. Prast Berliini mri langemist 1989. aastal oli organisatsioon segatud Jugoslaavia lagunemisse, NATO esimesed sjalised operatsioonid toimusid Bosnia sjas aastatel 19921995. Endiste Varssavi pakti riikidega tekkisid aga head suhted ning paljud neist astusid 1999. ja 2004. aastal NATO-sse, nende hulgas ka Eesti.

NATO artikkel 5, mille kohaselt ksitletakse he liikme rndamist rnnakuna kogu alliansi vastu, on aktiveerunud vaid hel korral prast 11. septembri terrorirnnakuid 2001. aastal USA-s[3] ning NATO ved saadeti Afganistani. Prast seda on NATO lbi viinud mitmesuguseid operatsioone, niteks osalenud Liiba-vastastes hurnnakutes ja piraatlusevastastes operatsioonides. Artikkel number 4, mis tagab kikidele liikmesriikidele iguse sjalisele konsultatsioonile, on kivitunud neljal korral: 2003. aastal kivitas selle Trgi seoses Iraagi sjaga, 2012. aastal kivitas Trgi selle kahel korral seoses Sria sjaga ning 2014. aastal kivitas artikli number 4 Poola seoses 2014. aasta Krimmi kriisiga.[4]

NATO peasekretr on alates 1. oktoobrist 2014 Jens Stoltenberg. Enne teda oli 20092014 peasekretr Anders Fogh Rasmussen. Aastatel 20042009 oli NATO peasekretr Jaap de Hoop Scheffer.

NATO lepingu eelkijaks loetakse 1948. aastal Belgia, Hollandi, Luksemburgi, Prantsusmaa ja hendkuningriigi vahel slmitud Brsseli pakti, mis viis samal aastal Lneliidu loomisele, mis oli sjajrgse Euroopa esimene sjalis-poliitiline organisatsioon.[5] Aga USA osalust peeti oluliseks ning lbirkimised uue sjalise liidu loomiseks algasid peaaegu kohe. Phja-Atlandi leping (ehk Washingtoni leping) allkirjastati 4. aprillil 1949 Washingtonis ning leping justus sama aasta 24. augustil. Lisaks Brsseli pakti viiele osapoolele osalesid ka USA, Kanada, Portugal, Itaalia, Norra, Taani ja Island.[6] Osapooled leppisid kokku, et rnnakut neist he vastu ksitletakse rnnakuna nende kigi vastu. Rnnaku alla sattunud liikmesriiki pidid kik teised abistama, kuid konkreetne meetod ji igahe enda otsustada: leping ei ninud tingimata ette sjalist aktsiooni agressori vastu.[7]

Toona ei olnud NATO-l poliitilist struktuuri, htset sjalist juhtimist ja spetsiaalselt alliansi kaitseks mratud vgesid, kuid Korea sja puhkemine 1950. aastal ilmestas ohtu, mida kujutasid koosttavad kommunistlikud riigid, ning see sundis NATO-t vlja ttama konkreetseid sjalisi plaane.[8] Seda td alustati 1951. aastal Dwight D. Eisenhoweri juhtimisel.[9] 1952. aastal peeti Lissabonis kohtumine eesmrgiga leida vahendid NATO kaitseplaanide titmiseks. Sama aasta septembris algasid esimesed NATO sjalised ppused, kus harjutati Taani ja Norra kaitsmist merel.[10] Samuti astusid 1952. aastal alliansi liikmeteks ka Kreeka ja Trgi.

1954. aastal avaldas Nukogude Liit soovi NATO-ga hineda, tagamaks rahu Euroopas. See ettepanek lkati tagasi, kuna selles nhti soovi alliansi nrgestada.[11]

17. detsembril 1954 veti vastu dokument nimega MC 48, milles stestati, et sja puhkedes Nukogude Liiduga vib NATO kasutada aatomipommi, kskik kas Nukogude Liit kasutab seda esimesena vi mitte. See andis NATO Euroopa liitlasvgede lemjuhatajale (SACEUR Supreme Allied Commander Europe) samasugused igused tuumarelvade ksitlemiseks nagu olid USA hujudude lemjuhatajal.

Lne-Saksamaa inkorporeerimist NATO-sse 9. mail 1955 kirjeldas Norra tollane vlisminister Halvard Lange kui "meie kontinendi ajaloo otsustavat prdepunkti".[12] Selle otsuse peamine phjus oli see, et ilma Saksamaata poleks Nukogude Liidu invasioonile olnud piisavalt judu vastu astuda.[13] Otsese vastusena sellele kigule loodi Varssavi pakt, mille allkirjastasid 14. mail 1955 Nukogude Liit, Ungari, Tehhoslovakkia, Bulgaaria, Poola, Rumeenia, Albaania ja Ida-Saksamaa. Klma sja osapooled olid seega vlja joonestatud.

1957. aastal korraldati alliansi siiani kige ambitsioonikam sjaline ppus: kolmel samal ajal toimunud operatsioonil osales htekokku le 250 000 mehe, 300 laeva ja 1500 husiduki Norrast Trgini.[14]

NATO htsus pandi proovile Prantsusmaa presidendi Charles de Gaulle'i valitsemisajal.[15] De Gaulle protesteeris USA juhirolli vastu ning selle vastu, mida ta tlgendas Ameerika hendriikide ja hendkuningriigi eriliste suhetena. President Dwight D. Eisenhowerile ja peaminister Harold Macmillanile saadetud kirjas 17. septembril 1958 nudis ta alliansi kolmepoolset juhtimist, kus Prantsusmaa oleks Ameerika ja Suurbritanniaga vrdvrsel positsioonil.[16] Kui reageering ji de Gaulle'i jaoks ebarahuldavaks, otsustas ta hakata Prantsusmaa kaitsejude arendama lejnud alliansist sltumatult. De Gaulle'i eesmrgiks oli vimalus sjaolukorras idablokiga eraldi rahu slmida, kaasamata end laiemasse NATO ja Varssavi pakti riikide vahelisse stta.[17] Mrtsis 1959 veti NATO vejuhatuse alt ra Prantsuse Vahemere laevastik ning keelduti lubamast rajada Gallia pinnale tuumarelvade ladu.

Kuigi Kuuba kriisi ajal 1962. aastal nitas Prantsusmaa lejnud NATO suhtes les solidaarsust, jtkas de Gaulle iseseisva kaitse planeerimist. 1966. aastal viis Prantsusmaa kik oma ved NATO integreeritud sjalise juhtimise alt ra ning kigil NATO vrvgedel paluti riigist lahkuda. Prantsusmaa ji siiski NATO liikmeks. Aastast 2001 on Prantsusmaa osalenud Afganistani operatsioonis ning hakanud taas liikuma tieliku integreerumise suunas.

Klm sda ei viinud kunagi reaalse relvakonfliktini NATO ja Varssavi pakti riikide vahel. 1969. aasta lpul algasid Helsingis lbirkimised strateegilise relvastuse piiramise le. Lbirkimiste tulemusena valmisid kaks kokkulepet, millest ks ksitles raketitrjessteemide rajamist ja teine strateegilise relvastuse piiramist. Mais 1978 defineerisid NATO liikmesriigid alliansi kaks eesmrki: tagada turvalisus ja taotleda pingeldvendust vastaspoolega. See pidi thendama ka vidurelvastumise edasist ohjeldamist.[18] 1979. aastal Varssavi pakti tuumavimekuse suurenemise valguses vttis NATO vastu otsuse sjatandri tuumajudude kahesuunalise kasutamise kohta.[19]

1990. aasta juulis kuulutati Londoni tippkohtumisel klm sda lppenuks ning NATO kaotas de facto peamise vaenlase. Organisatsiooni eesmrk ja olemus vajasid mberhindamist, Londonis visandati ettepanekud koost vljaarendamiseks
Kesk- ja Ida-Euroopa riikidega poliitilises ja sjalises tegevuses. Jrgmise aasta tippkohtumisel Roomas kiideti heaks alliansi strateegiline kontseptsioon, mis ngi ette sltuvuse vhendamise tuumarelvadest ja oluliste muudatuste tegemise NATO hendvgedes.[20]

Aastatel 19941997 NATO laienes ja uuendas oma tegevusvaldkondi, niteks loodi koostprogramm "Partnerlus rahu nimel" ning alliansiga kutsuti liituma sellised endised idabloki riigid nagu Poola, Tehhi Vabariik ja Ungari. Praha tippkohtumisel 2002. aastal kiitsid NATO liikmesriigid heaks alliansi ajaloo suurima laienemise, kus esitati kutsed liitumislbirkimistele seitsmele riigile, sh Eestile.

Prast 2001. aasta 11. septembri terrorirnnakuid kuulutas NATO vlja artikkel 5 operatsiooni USA toetuseks. Sellega muudeti NATO kohalikest, liikmesriikide maa-ala kaitsmise hendusest leilmsete (globaalsete) eesmrkidega liiduks, mille philesandeks sai sjaliste operatsioonide lbiviimine vljaspool oma maa-ala. Seetttu pole NATO valmis liikmesriikide maa-ala kaitsmiseks ning Venemaa kasvava sjalise ju tasakaalustamiseks Ida-Euroopas ja Baltikumis.[21]

2009. aastal sai heakskiidu Brsselis toimunud NATO kaitseministrite kohtumisel NATO reageerimisjudude (NATO Responce Force, NRF) NRF-i mudel, mis phineb suurel mral Suurbritannia initsiatiivil varem vlja pakutud NRF-i sisese kriisireguleerimisksuse ASF (Allied Solidarity Force) olulistel elementidel hine planeerimine ja vljape, solidaarne rahastamismudel, suur nhtavus avalikkusele ning usutav heidutusvime. NRF-i tuumikuks sai ligi 13 000-meheline ksus, mis on 510 pevaga valmis siirduma kriisipiirkonda. Lisaks sellele mratavad liikmesriigid tiendavad 1030-pevases valmisolekus olevad veksused[22].

Seoses majandussurutisega seisis NATO ksimuse ees, kuidas silitada kaitsevimet kokkuhoiu oludes. NATO peasekretr Anders Fogh Rasmussen ti kasutusse "targa kaitse" miste, mis thendab kaitsestruktuuride tihedamat integreerimist. Selle niteks on ka Balti riikide huturve.[23]

2012. aasta Chicago tippkohtumise heks pevakorrapunktiks oli NATO laienemine. Praegu ootavad seda neli riiki: Bosnia ja Hertsegoviina, Montenegro, Gruusia ja endine Jugoslaavia Makedoonia Vabariik.[23]

Prast Eesti taasiseseisvumist 1991. aastal iseloomustas olukorda riigikaitselise kogemuse puudus. Alustati alles sjaveliste struktuuride loomist, millest esimesena taastati kodanikualgatuse korras Kaitseliit.[24] Aga paika tuli panna ka laiemad visioonid. Riigikaitse peatkk veti peaaegu muutmata kujul le 1938. aasta phiseadusest, kuid arutati isegi Eesti muutmist demilitariseeritud riigiks. Tnapeval arvavad phiseaduse asjatundjad, et tollal ei osatud hinnata kollektiivse enesekaitse thtsust rahvusvahelistes suhetes.[25] 1992. aasta valimiste jrel moodustatud valitsuse poliitika oli idast lnde mberorienteerumine. 1994. aastal ksitles president Lennart Meri oma knes esmakordselt Euroopa Liidu ja NATO-ga integreerumist. Siiski ngid paljud poliitikud pdlusi NATO-ga liituda kui perspektiivitut projekti, mis rikuks Eesti neutraliteeti.[25]

Eesti alustas osalemist rahvusvahelistes operatsioonides 1995. aastast.[26] Kaitsejudude rahvusvaheline koost sai raamistiku NATO vlja ttatud rahupartnerlusprogrammiga, mis oli meldud Kesk- ja Ida- Euroopa riikidega poliitilise ja sjalise koost arendamiseks. Esmakordselt fikseeriti NATO-ga liitumise eesmrk 1996. aastal. 1999. aastast hakkas Eesti titma NATO liikmesuse tegevuskava ning 2002. aasta novembris Praha tippkohtumisel esitati Eestile kutse liitumislbirkimistele NATO-ga hinemiseks.[24] Liitumislbirkimised algasid 2003. aasta jaanuaris ning sama aasta mrtsis allkirjastasid NATO liikmesriigid Eesti Phja-Atlandi lepinguga liitumise protokolli. 10. mrtsil 2004 ratifitseeris Riigikogu NATO Phja-Atlandi lepingu koos kigi lisadega. Eestist sai NATO tieiguslik liige 29. mrtsil 2004, kui hinemiskirjad anti Ameerika hendriikide valitsuse ktte hoiule.[27]

2007. aastal esitas Eesti soovi korraldada NATO vlisministrite mitteametlik kohtumine. Kohtumine toimus 22.23. aprillil 2010 Tallinnas, kohtumisel osalesid teiste hulgas USA riigisekretr Hillary Clinton ja Euroopa vgede lemjuhataja Stavridis. Kohtumisel langetati otsus anda Bosnia ja Hertsegoviinale liikmesuse tegevusplaan.[28]

Prast 2007. aasta aprillirahutusi toimunud kberrnnakud Eesti veebiserverite vastu tstsid esile NATO riikide haavatavuse kommunikatsioonissteemide kaudu ning arutama hakati NATO kberkaitse poliitikat. 14. mail 2008 asutati Tallinnas NATO kberkaitsekoost keskus.[29]

Seoses Venemaa agressiooniga Ukrainas 2014. aastal paigutati NATO liitlasved Ida-Euroopa piiririikidesse. Eestisse saabus 150 USA maavelast ning Taani hvitajad baseeruvad psivalt Eesti lennubaasis. See on esimene kord, kui NATO liitlased Eestisse pikemaks ajaks jvad. Peaminister Taavi Rivase snul on Eesti valmis vrustama tiendavaid NATO vgesid.[30][31][32][33]

Praegu hoolitseb Eesti huruumi valvamise eest Saksamaa lennusalk.[34] Eestisse on paigutatud kolm radariposti, mille radarid katavad kogu Eesti ja Eestit mbritseva huruumi htse radaripildiga. Seda peetakse heks Eesti pikaajalise sjalise kaitse arengukava olulisemaks arenduseks.[35]

Juulis 2006 teatas NATO peasekretr Jaap de Hoop Scheffer Euroopat kaitsva raketikilbi rajamise kavatsusest. 18. septembril 2006 slmiti esimesed lepingud raketikilbi komponente tootvate firmadega.

Raketikilbi eesmrgiks on Iraanist ja Phja-Koreast tulevate raketirnnakute trjumine. Venemaa juhtkonna arvates on raketikilbi lepe suunatud Venemaa vastu ja on hvardanud sjaliste meetmetega raketikilbi rajamise korral Venemaa piiride lhedale.

20. augustil 2008 kirjutasid Ameerika hendriikide riigisekretr Condoleezza Rice ja Poola vlisminister Radek Sikorski alla lepingule millega Poola nustus lubama oma pinnale USA globaalse raketitrjessteemi komponente. [36]. 2009. aastal teatas USA president Barack Obama siiski, et raketikilbi osasid Poola ja Tehhi Vabariigi territooriumile ei tule.[37] Uus plaan neb hoopis ette Poola territooriumile AEGIS ssteemidega laevade paigutamise.[38]

Lisaks liikmete kaitsmisele sjalise rnnaku korral on NATO osalenud ka konfliktide ohjeldamises mujal maailmas, niteks Jugoslaavia kodusjas. Samuti toimub dialoog ja koost riikidega, mis ei ole NATO liikmed.

Alates 1. aprillist 2009 on NATO liikmeid 28.

Liikmesriigid liitumisaastati:

NATO krgeim organ on Phja-Atlandi Nukogu (North Atlantic Council, NAC), mille esimees ja organisatsiooni poliitiline juht on NATO peasekretr, kes koordineerib liikmesriikide tegevust, on organisatsiooni peamine kneisik ning juhib NATO sekretariaadi td.

Peasekretr on ka:

Kui traditsiooniliselt valitakse peasekretri ametisse Euroopa esindaja, siis NATO Euroopa liitlasvgede lemjuhataja mravad Ameerika hendriigid.

NATO sjaline vestruktuur koosneb liikmesriikide alaliselt vi kindla operatsiooni jaoks NATO ksutusse antud sjalistest ksustest ja staapidest. NATO sjaline juhtimisstruktuur katab strateegilise ja regionaalse tasandi ning on meldud eelkige liikmesriikide eri veliikide hendoperatsioonide juhtimiseks, siis vestruktuuri koosseisu kuuluvad taktikalise tasandi staabid, mis on meldud he veliigi operatsioonide juhtimiseks.

Vestruktuur koosneb kaht tpi ksustest: paiksed ksused (In-Place Forces, IPF) ja mberpaigutatavad ksused (Deployable Forces, DF). mberpaigutatavad ksused on meldud kigiks NATO operatsioonitpideks ja on valmis tegutsema kogu alliansi territooriumil ning ka vljaspool seda. Paiksed ksused on meldud kollektiivkaitse operatsioonideks oma riigi piirides vi selle lhedal.

Vestruktuuri kuuluva
d veosad on grupeeritud vastavalt nende valmisolekule reageerimiseks:

View original post here:
NATO - Vikipeedia, vaba entsklopeedia

Posted in NATO | Comments Off on NATO – Vikipeedia, vaba entsklopeedia

Video – Space.com

Posted: at 4:45 pm

CubeSats Are Bound For The Planets | Video

Unboxing The Best Inexpensive Telescope - AWB...

Orions Jewels Glisten This Winter! | Skywatc...

5 Dawn Planets And A Dusk Comet In Feb. 2016...

Trippy Trip Over Colorful Dwarf Planet Ceres...

Space Station Crew Goes Silent To Recall Fall...

Matter Tears Through Sun's Atmosphere As Magn...

Why Is This Dwarf Galaxy So Clean Of Cosmic S...

Paragliding Through Aurora Borealis Beauty |...

Rising Seas More Accurately Measured From Spa...

Blue Origin Booster Reused! Lands Safely Afte...

Next-Gen Spacesuits - NASA Builds On Old Tech...

Space Coffee - How It's Brewed On ISS | Video...

Space 'Ping Pong' - Astronaut Plays With Ball...

SpaceX Dragon 2 Hovers In Latest Test | Video

Hubble Telescope Opens Cosmic Jewel Box | Vid...

SnOMG! Northeast U.S. Blizzard Seen From Spac...

NASA Officially Cautious About 'Planet Nine'...

Watch Earth Get Hotter - 135 Years Of Tempera...

A New Giant Planet In Our Solar System? Evide...

Planet X May Be Real - Evidence Mounting For...

How To Use The 'Loo' In Space | Video

Leonard Nimoy Recalls Space Shuttle Enterpris...

Blast-Off! SpaceX Launches Jason-3 Satellite...

NASA Jason-3 Mission To Track Rising Sea Leve...

Human Mars Exploration - How Landing Sites Co...

Is Oddball January Hurricane An Artifact Of C...

Did Life Ever Exist On Mars? Russian/European...

Double Star Detected By New Black Hole Probe...

SpaceX Celebrates As Falcon 9 'Sticks Its Lan...

Dramatically Sharper Gamma-ray Telescope Spot...

The Oldest Light: The Cosmic Microwave Backgr...

Making Light Of What Makes Light | Video

'God Save The Queen' From Space -- UK Astrona...

Invisible Dark-Matter Dwarf Galaxy Ripped Thr...

'The Martian' Story Continues Bonus Feature...

Ice Volcanoes On Pluto? New Imagery Points To...

Quadrantid Meteors Seen From Edge of Space |...

Black Holes Can Make Stars Actually Twinkle |...

'Challenger Disaster: Lost Tapes' Includes Mc...

Celestron SkyProdigy 130 Telescope Unboxing...

SpaceX Falcon 9 First Stage Comes In Hot In A...

Happy New Year Message From Space Station | V...

Comet Catalina, Quadrantid Meteors and More I...

Dune-Roving Curiosity Studies Active Martian...

January 2016 Skywatching: Orange Giant Star,...

NASA's Plutonium-238 Reserves Get Boost For S...

European Space Agency In 2015 - Highlight Vid...

NASA In 2015 - Year In Review | Video

NASA's Commercial Crew - 2015 Year In Review...

NASA In 2016 - Music Video Highlights Space A...

What's Behind Rocker Grace Potter's Space Fas...

Space Station Transmits 'Happy Holidays' Gree...

SpaceX Launches, Lands, Deploys 11 Birds | Hi...

Upgraded SpaceX Falcon 9 Launches 11 ORBCOMM...

Active Spinning Comet Poses For Close-Up | V...

Celestial 'Double-Bladed Lightsaber' Revealed...

Cosmic Jailbreak! Blazar's Gamma Rays Make It...

Planet Construction Sites Are Cleaner Than Pr...

Space Station Bound - Soyuz TMA-19M Launches...

Independence Day Resurgence Official Traile...

Star Trek Beyond - Trailer (2016) - Paramount...

Orbiting EPIC Camera Snaps 12 Whole-Earth Ima...

Elite Dangerous Gives Gamers 400 Billion Star...

Tiny Star With Huge Storm Spotted By Space Te...

Police Drama Set In Colonized Solar System -...

Alien Invaders or Saviors? - Arthur C. Clarke...

When We Dodged A Solar Bullet: Halloween 2003...

What Are Dwarf Planet Ceres' Bright Spots? Da...

Ancient Cosmic Crash Site Hints At How Galaxi...

Comet's Death-Dive Into Sun Captured By Space...

Ancient 90-Mile-Wide Object Spotted In Outer...

Failed Russian Spy Satellite Will Fall Back T...

Space Piloting on a Tablet? NASA Studying Fea...

Blast Off! Cygnus Cargo Spacecraft Returns To...

Read the original:
Video - Space.com

Posted in Space Station | Comments Off on Video – Space.com

DNA Wikipedie

Posted: at 4:45 pm

Tento lnek pojednv onositelce genetick informace. Ometabolickm onemocnn pojednv lnek dna.

Deoxyribonukleov kyselina, bn oznaovan DNA (z anglickho deoxyribonucleic acid, esky zdka iDNK), je nukleov kyselina, nositelka genetick informace vech organism svjimkou nkterch nebunnch, unich hraje tuto lohu RNA (nap. RNA viry). DNA je tedy pro ivot nezbytnou ltkou, kter ve sv struktue kduje a bukm zadv jejich program a tm peduruje vvoj a vlastnosti celho organismu. Ueukaryotickch organizm (jako nap. rostliny a ivoichov) je DNA hlavn slokou chromatinu, smsi nukleovch kyselin a protein, a je uloena zejmna uvnit bunnho jdra, zatmco uprokaryot (nap. bakterie a archea) se DNA nachz voln vcytoplazm.

DNA je biologick makromolekula polymer v podob etzce nukleotid. Nukleotidy jsou vdy sloeny zcukru deoxyribzy, fosftov skupiny a jedn ze ty nukleovch bz. Informan funkci maj prv bze, jimi me bt adenin (A), guanin (G), cytosin (C) nebo thymin (T). Prvn dv pat mezi puriny, zbyl mezi tzv. pyrimidiny. Dv vlkna DNA se asto spojuj a vytvej dvouroubovici, jej tvar je tak slavn, e se stal kulturn ikonou modern doby.[1] Dvouroubovici DNA tvo dv navzjem spleten roubovice, kad mc opanm smrem (jsou antiparaleln). Mezi protilehlmi bzemi obou vlken se vytvej vodkov mstky, a to ti mezi guaninem a cytosinem nebo dva mezi adeninem a thyminem. Existuj i jin zpsoby uspodn etzc, vymykajc se tradin pedstav dvouroubovice.

Deoxyribonukleov kyselina je stedem zjmu vdc nejen z biologickch obor a byly vyvinuty promylen techniky jej izolace, separace, barven, sekvenovn, uml syntzy a manipulace s n pomoc metod genovho inenrstv. Vechny tyto postupy jsou dleit i pro lkae, kriminalisty i evolun biology DNA je zsadnm materilem v diagnostice nemoc, testech otcovstv, pi vyetovn zloin, pprav plodin s novmi vlastnostmi i teba hledn pbuzenskch vztah mezi organismy.

Deoxyribonukleov kyselina byla popsna roku 1869, kdy vcarsk lka Friedrich Miescher zkoumal sloen hnisu znemocninch obvaz. Zjader blch krvinek ptomnch vtomto hnisu zskal jist mnostv nukleovch kyselin, kter souhrnn nazval nuklein.[2] Na potku 20. stolet Phoebus Levene rozpoznal, e DNA se skld zcukr, fosft a bz.[3]

Ofunkci DNA toho dlouho nebylo moc znmo. Prvn dkaz oroli DNA vpenosu genetick informace pinesl vroce 1944 Averyho-MacLeodv-McCartyho experiment, kter provedli Oswald Avery spolen sColinem MacLeodem a Maclynem McCartym. Sri pokus stransformac pneumokok zjistili, e DNA je genetickm materilem bunk.[4] Dal dkaz pinesl vroce 1952 Hersheyho-Chaseov experiment.

Patrn nejslavnjm milnkem ve vzkumu DNA bylo odhalen jej trojrozmrn struktury. Sprvn dvouroubovicov model poprv pedstavili vroce 1953 vasopise Nature James D. Watson a Francis Crick, pozdj laureti Nobelovy ceny.[5] Vychzeli pitom zrentgenov difrakn analzy, kterou orok dve provedli Rosalind Franklinov a Raymond Gosling a publikovali ve stejnm sle Nature. Dal lnek vtomto vydn pedloil iMaurice Wilkins.[6] Vroce 1957 pedloil vt dob ji slavn Crick srii pravidel, kter se oznauj jako centrln dogma molekulrn biologie a popisuj vztahy mezi DNA, RNA a proteiny.[7] Orok pozdji slavn Meselsonv-Stahlv experiment umonil poznat zpsob replikace DNA vbukch.[8] Genetick kd rozlutili na potku 60. let Har Gobind Khorana, Robert W. Holley a Marshall Warren Nirenberg.[9]

Ptomnost nukleovch kyselin, tedy DNA a RNA, je spolenou vlastnost vech znmch pozemskch organism. Veker ivot je zaloen na koexistenci tchto nukleovch kyselin s blkovinami, nicmn nen zcela jasn, jak se vztah mezi DNA a blkovinami vyvinul. Podle nkterch hypotz nejprve existovaly blkoviny a a nsledn vznikly nukleov kyseliny, nicmn nejvce pznivc m zejm v souasnosti pedstava, e prapvodn ltkou byla nukleov kyselina, kter byla schopna biologick evoluce. Podle teorie RNA svta vak hlavn roli hrla nejprve spe RNA a teprve poslze pejala hlavn roli DNA.[10] Doklady ve prospch takovch hypotz jsou vak vdy nepm, protoe nejsou k dispozici dostaten star vzorky DNA. ivot vznikl ji ped nkolika miliardami let, jene u po nkolika destkch tisc let kles mnostv DNA na setinu pvodnho stavu. Studie v asopise Nature z let 2000 a 2002 nicmn popisuj nlez a 450 milion let starch vzork bakteriln DNA uchovanch v solnch krystalech,[11][12] dle existuje i ada dalch, vce nebo mn spolehlivch studi.

Stavbu DNA je mono zkoumat na nkolika rovnch. Poad nukleotid vlinernm dvouvlkn je zleitost tzv. primrn struktury. Sten vlkna do dvouroubovice se oznauje jako sekundrn struktura DNA. Konen pod tzv. tercirn strukturou se rozum obvykle nadroubovicov vinut, kter usnaduje kondenzaci DNA.

DNA vlastn nen nic jinho ne velmi dlouh linern etzec nukleotid. Napklad uvnit kadho virionu planch netovic se nachz DNA odlce 193 mikrometr, kruhov DNA uEscherichia coli m dlku 1600 mikrometr (1,6mm), lidsk genom je rozloen do 23 linernch molekul DNA (v haploidnm stavu) ocelkov dlce 1 metru.[13] Nukleotid je zkladn stavebn jednotkou vech molekul DNA; existuj pitom tyi zkladn typy nukleotid, je se vDNA pirozen vyskytuj. Tyto tyi nukleotidy (dATP, dGTP, dCTP, dTTP) se navzjem li typem piven nukleov bze, j me bt pedevm adenin, guanin, cytosin i thymin.[pozn. 1] Dleit je, e kad nukleotid m ti dleit stavebn sousti:

Primrn struktura DNA se d znzornit jako linern ada nukleotid nebo teba jako ada psmen, kter odpovdaj duskatm bzm vtchto nukleotidech. Dle je dleit, e DNA je smrovan (direkcionalizovan), tzn. daj se jednoznan odliit oba konce. Smr vlken se oznauje prv podle orientace deoxyribzy vnm, tedy: smr 3'5' a opan smr 5'3'. Podle konvence se poad nukleotid zapisuje smrem 5'3' (nap. TACGGACGGG AGAAGCGCGC GGGCGGGCCG je prvnch 30 z3675 nukleotid tvocch pepisovanou st genu pro lidsk alfa-tubulin[15]).

Vroce 2011 se objevila zprva oexistenci bakteri GFAJ-1, kter dajn ve sv DNA obsahuje msto fosftovch skupin arseninany.[16] Hypotza byla definitivn vyvrcena v r. 2012.[17][18][19]

Deoxyribonukleov kyselina (DNA) me existovat jako samostatn jednovlknov molekula (tzv. ssDNA), nicmn velmi asto vytv vcevlknov struktury, kter jsou sloen znkolika etzc spojench vodkovmi mstky. Vodkov mstky jsou jednm ztyp pomrn slabch vazebnch interakc, mezi dvma i vce vlkny DNA jich vak me vzniknout obrovsk mnostv; vsledn vcevlknov struktura tak je pomrn stabiln. Typickou formou takovho vcevlknovho uspodn DNA je dvouroubovice, notoricky znm molekula DNA (pipomnajc stoen ebk) tvoen dvma linernmi etzci. Aby vznikla pravideln struktura svelkm mnostvm vodkovch mstk, je douc, aby se vedle sebe vpli ebku vyskytovaly vdy urit nukleov bze, kter spolu ve sprvnm prostorovm uspodn vytv nkolik vodkovch mstk. Vtypickm ppad (ne vak vdy) se nukleov bze spojuj navzjem sodpovdajc bz podle jednoduchho kle:

Jedn se otzv. komplementaritu bz, zn vychz vzjemn komplementarita obou vlken DNA. Vdy je na urit pozici vmolekule jeden nukleotid zdvojice a vprotjm vlkn druh znich. Takto se uchovv vkadm zvlken tat informace, i kdy jedno z vlken je negativem vlkna druhho podle jednoho vlkna je mon piazenm komplementrnch bz vytvoit vlkno druh. Pomr AT a GC pr vmolekule DNA je velmi rzn: tzv. obsah GC se pohybuje ubakteri od 25 do 75%, usavc vrozmez 3946%.[20]

Existuje cel ada dalch monost, jak pomoc vodkovch mstk sprovat bze, nebo atom schopnch podlet se na vzniku vodkovch vazeb je na molekulch purin ipyrimidin cel ada. Samostatnou kapitolou je tzv. hoogsteenovsk provn pojmenovan podle Karsta Hoogsteena, kter je v60. letech 20. stolet jako prvn popsal.[21] Jinou monost je tzv. wobble provn, kter umouje sporn rozeznvn kodon pomoc tRNA molekul. Pi wobble provn me napklad guanin vytvet vazbu suracilem; nkdy je rekrutovn inosin, jen m velmi obecn vazebn schopnosti a je schopen vzat se na C, Aa U.[22]

Vdrtivm procentu ppad se DNA za bnch podmnek uchovv ve form pravotoiv dvouroubovice. Dvouroubovice DNA je tvoena dvma vlkny DNA, kter se obt kolem spolen osy a interaguj spolu. Vlkna jsou tzv. antiparaleln, tzn. smuj opanmi smry[23] zatmco jedno vlkno meme jednm smrem popsat jako 5'-3', druh je ve stejnm smru 3'-5'. sla 3' a 5' oznauj sla uhlku na deoxyribze, na kter se upnaj fosftov skupiny vcukr-fosftov koste DNA. Mezi bzemi vrmci jednoho patra dvouroubovice plat pravidla Watson-Crickovsk komplementarity.

Existuje nkolik tzv. heliklnch forem (konformac) DNA, kter se li celou adou parametr. Typick Watson-Crickovsk pravotoiv dvouroubovice (tzv. B-DNA) je nicmn zcela pevaujc a ostatn formy (zejmna pravotoiv A-DNA a levotoiv Z-DNA) se sice mohou vyskytovat ivpodmnkch iv buky, nicmn spe vzcn a jen za specifickch okolnost.[24][25][26]

Vobecnm povdom DNA tvo dvouroubovici, nicmn existuj ijin zpsoby uspodn. Nkter se vyskytuj ivbukch (in vivo), jin jsou spe laboratorn zleitost. Mnohdy se vyuv neobvyklch provacch mst na molekulch bz. To je ppad tzv. G-kvartet, tyvlknovch sek DNA vtelomerickch oblastech chromozom, vnich do kruhu pruj tyi guaninov bze.[27] Co se te trojroubovice DNA,[28][29] mon doasn vznik pi tzv. crossing-overu;[30] laboratorn me bt trojvlknov struktura pipravena nap. zvlken poly(A) a polydeoxy(U).[31]

DNA se tak me vtvit a vznikaj nap. tvlknov i tyvlknov spojen. Vnkterch ppadech dvouroubovicov DNA na jednom svm konci lokln denaturuje a na uvolnn konce se pipoj tet etzec vprosted buky by tato struktura mohla vznikat pi crossing-overu, pokud nedolo kreplikaci vjednom zgenom.[32] Jindy takto vlastn denaturuj dv dvouroubovice a vzjemn se komplementrn pilo, m vznik tyvlknov spojen. Vppad crossing-overu se jedn oznm Hollidayv spoj, kter umouje vlastn vmnu homolognch vlken.[33] Pi replikaci DNA i pi oprav DNA mohou vtven vznikat tak. Vlaboratoi nicmn vznikaj jet mnohem fantastitj prostorov struktury DNA byly vyrobeny nap. krychle i osmistn sloen cel pouze zDNA molekul. Tyto a dal syntetick struktury DNA jsou vcentru zjmu DNA nanotechnolog.[1]

Genom, tedy souhrn DNA vbuce, nen pouhou zmt dvouroubovicov DNA na vych rovnch je mon pozorovat komplikovan vinut a etn interakce sbunnmi blkovinami. Zcela typick je tzv. nadroubovicov vinut (supercoiling), tedy dodaten roubovicov vinut ji existujc dvouroubovice.[34] Nadroubovicov vinut se d zjednoduen pedstavit tak, e drme vkad ruce jeden zobou konc provzku a postupn na jednom konci provzek kroutme. Vznikl napt se opt uvoln (relaxuje) jen tehdy, pokud uvolnme jednu ruku. Dvouroubovice je vak stoen ji ve svm relaxovanm stavu (jedna otka kadch cca 10 pr bz), a tak meme rozliit, zda se nadroubovice vine stejnm smrem, jako dvouroubovice (tzv. pozitivn supercoiling), nebo smrem opanm (negativn supercoiling, uvoluje DNA). Nadroubovicov vinut m celou adu dleitch funkc a regulanch rol;[35] vdnm ppad se nejedn pouze oanomlii ve struktue.

DNA se vbuce dle organizuje do mikroskopicky pozorovatelnch tvar znmch jako chromozomy. Ubakteri je zejm systm kondenzace DNA do (obvykle jedinho) chromozomu ponkud mn propracovan a nap. uEscherichia coli zahrnuje nkolik protein, kter jsou schopn udrovat nadroubovicov vinut a vytvet ostr ohyby vlkna DNA.[36]Eukaryotick organismy, jako je teba lovk, maj velmi komplikovan sbalenou DNA. Souvis to sdlkou jejich DNA nap. lidsk genom m na dlku dva metry, pitom bunn jdro m na dlku nkolik mikrometr. Dvouvlkno DNA se nejprve nabaluje na bazick proteiny znm jako histony; DNA nabalen na osm histon vytv tzv. nukleozom, a tak na tto rovni DNA vypad jako ada korlk (nukleozom) na provzku (DNA). Tyto korlky se vak obvykle jet st do 30 nanometr tlust roubovice.[37] Na vzniku chromozom se podl jet vy rovn sbalen DNA, kter jsou vak mn prostudovan a vznikaj jen vuritch fzch bunnho cyklu.

DNA je polymern sloueninou svysokou molrn hmotnost. Molrn hmotnost zvis na dlce DNA a zhruba plat, e skadm nukleotidem stoup molrn hmotnost o330g/mol, vppad dvouvlknov DNA na jeden pr bz pipad asi 650g/mol.[38] Deoxyribonukleov kyselina je zporn nabit (dky fosforenanovm skupinm), a je tedy polrnho charakteru. Dky tomu je rozpustn ve vod, naopak vethanolu se sr (nebo dochz kvyvzn zpornch nboj).[39] Po vysren m DNA blou barvu.[40] Izolovan DNA zaujm dvouroubovicov uspodn, to je vak mon rozruit vprocesu denaturace. Typicky se denaturace provd zvenm teploty, ale denaturaci zpsobuje inzk iontov sla roztoku nebo siln zsadit prosted. Naopak kysel prosted nen vhodn, protoe dochz khydrolze glykosidovch vazeb mezi cukrem a bz.[41] DNA absorbuje vUV oblasti sabsorpnm maximem pi vlnov dlce 260 nm. Pi denaturaci DNA se absorbance vtto oblasti zvyuje tomuto jevu se k hyperchromn efekt.[42] Je to dno tm, e na absorpci se v nejvt me podlej bze DNA, kter jsou v dsDNA "schovan" uvnit dvouroubovice. Po denaturaci dochz k "obnaen" bz, kter tak mohou lpe absorbovat UV zen.

Poloas rozpadu DNA in dle studia kosternch nlez asi 521 let.[43] DNA je povaovna za stabiln molekulu, co vynikne zejmna pi srovnn s RNA jakoto druhou vznamnou nukleovou kyselinou. V molekule DNA nen na 2' uhlku OH skupina u RNA tam tato reaktivn skupina je a zpsobuje ni stabilitu RNA.[44] DNA se v laboratoi dlouhodob skladuje pi 20 nebo 70C, kde vydr i nkolik let. Pi teplot 4C v TE pufru vydr nkolik tdn.[45] Uvnit tl ivch organism vak DNA mus snet i pomrn vysok teploty, a pesto vydr. Krajnm ppadem jsou hypertermofiln organismy, kter ij i pi teplotch kolem 100C. Jejich DNA el jak riziku denaturace, tak i termodegradaci (rozpadu pevnch chemickch vazeb). Pesto ij a mimo opravnch mechanism k tomu zejm pispv i nadroubovicov vinut a tak optimln iontov sloen cytoplazmy.[46]

Pro DNA jsou vak dle typick inkter vlastnosti, kter ji do jist mry odliuj od bnch chemickch ltek. Vbuce je napklad mon replikovat DNA, tedy vytvet jej kopie. Vcemn kad bunn dlen vyaduje zmnoen genetick informace, aby j vkad buce bylo stle konstantn mnostv. Vprbhu procesu se oddl etzce matesk DNA a oba slou jako nvod (tzv. templt) pro tvorbu druhch vlken vrmci obou nov vznikajcch dvouroubovic. Ty jsou nsledn napl tvoeny pvodn DNA a napl nov dosyntetizovan cel proces je semikonzervativn. Kdalm zajmavm vlastnostem DNA vbukch pat monost opravovat DNA, co jet dle vylepuje (u tak pomrn precizn) penos genetick informace.[47] Bylo by mono najt mnostv dalch pozoruhodnch vlastnost DNA, vesms probhajcch vbuce za pomoci specilnch enzym.

DNA je nositelkou genetick informace vech ivch organism vpravm slova smyslu, ale imnoha vir. VDNA je zapsna sekvence vech blkovin a penesen je genetickou informac podmnna existence vech biomolekul a bunnch struktur (kjejich tvorb jsou poteba blkoviny).[48] Schopnost ukldat a penet genetickou informaci je jednou zfundamentlnch vlastnost ivota.[48] Bez DNA buky vydr t jen omezenou dobu; napklad lidsk erven krvinky pi svm zrn vyvrhuj jdro, a protoe pak nejsou schopn vyrbt nov blkoviny a udrovat buku, jsou po nkolika mscch pokozeny a mus se zobhu odstraovat.[49] Nkter viry jsou sice schopn uchovvat svj genetick materil vpodob RNA (tzv. RNA viry), jene RNA genomy nepodlhaj opravnm mechanismm a rychle mutuj, a proto maj limitovanou velikost.[50] ivot, tak jak ho znme, je proto zvisl na DNA.

Konkrtn uloen DNA vbuce zvis na pslunosti organismu kjedn zdvou zkladnch skupin organism. Bakterie a archea (souhrnn prokaryota) maj DNA obvykle uloenu voln vcytoplazm. Obvykle vznik pouze jist jadern oblast, tzv. nukleoid. Mimo to ada bakteri vlastn imal kruhov molekuly DNA, tzv. plazmidy, kter umouj mimo jin horizontln vmnu genetick informace. Zbyl organismy, tedy nap. lovk, ale irostliny, ivoichov i prvoci, maj DNA uloenu pedevm vbunn jde. Dle vak se DNA nachz vnkterch eukaryotickch organelch, jmenovit vmitochondrich a vplastidech, pokud je buka vlastn (jev zvan mimojadern ddinost).

Informace nesen sekvenc nukleotid vDNA se oznauje jako genetick informace. Na kad nukleotidov pozici se nachz jedna ze ty bz (A, C, G i T), co znamen, e sekvence odlce n me nabvat 4n stav.[51] Pro DNA dlouhou pouhch 10 nukleotid existuje tedy teoreticky 410= 1048576 kombinac. Lidsk genom (souhrn lidsk jadern DNA) pitom obsahuje 3,1 miliardy (pr) bz.[52] Nejvy informan hodnota se pitom vgenomu objevuje vmstech, kde sdl tzv. geny, kter zaznamenvaj informaci pro tvorbu RNA a potamo ivech blkovin. Informace pro tvorbu blkovin je zaifrovna pomoc tpsmennho kdu znmho jako genetick kd. Kad trojici bz vDNA toti uprotein-kdujcch gen odpovd urit aminokyselina. Aminokyseliny jsou zkladn stavebn kameny blkovin, take je vlastn genetick informace jakmsi nvodem na vrobu blkovin. Genetick informace je uplatovna podle tzv. centrlnho dogmatu molekulrn biologie. DNA je nejprve pepisovna vRNA (obvykle tzv. messenger RNA), nae je tato RNA pouita jako vzor pro tvorbu blkovin. Prvn zmnn krok se jmenuje transkripce, druh translace.

Velk st genomu mnoha organism vak nen soust dnho genu a dokonce se ani nepepisuje v RNA. Role tto tzv. nekdujc DNA je v mnoha ppadech neznm; nkdy vak pomh regulovat spoutn a vypnn okolnch gen.[53] Velk st nekdujc DNA dle souasn rovn znalost nem dnou konkrtn funkci a oznauje se prost jako junk (odpadn) DNA.[54] st tto odpadn DNA vak podle vsledk projektu ENCODE ve skutenosti kduje rzn krtk regulan RNA; celkem se odhaduje, e 1020% genomu m dky tmto RNA vznamnou regulan funkci. V tsnm okol tchto regulanch sekvenc se tak podle ENCODE celkem nachz a 95% lidskho genomu.[55][56]

Vcel ad ppad je douc izolovat zbunk i zvirovch partikul jejich DNA. Existuje samozejm cel ada metod extrakce DNA, nicmn uvech je nutn zskat dostaten mnostv biologickho materilu, uvolnit DNA a oddlit ji znadmolekulrnch struktur, nae je nutn vzorek peistit a ppadn zahustit.[57] Dleitm krokem je uvolnn DNA zbunk, kter se uivoinch bunk provd pomoc detergent (povrchov aktivnch isticch ltek), je rozruuj membrny. Ubunk sbunnou stnou je to komplikovanj a je nutn nasadit teba lysozymy (na bakteriln bunnou stnu) i mechanickou degradaci. Co se te peiovn bunnch extrakt, obvykle je nutn se zbavit blkovin, kter pedstavuj hlavn kontaminaci vzork. Je mon pout protezy, ale mnohdy se proteiny sr fenolem a chloroformem, zatmco nukleov kyseliny zstanou vroztoku a je mon je pak vysret teba ethanolem.[58]

Po izolaci DNA nsleduje asto separace (oddlen) poadovanch druh molekul. Me bt douc oddlen teba plazmid od genomov DNA bakteri, co se dl pomrn jednodue centrifugac pi vhodn nastavench parametrech, obvykle pomoc denaturace a nsledn renaturace.[58] Pro jemnj rozdlovn podle velikosti ipodle topologie DNA se asto pouv elektroforza na agarzovm (i vppad velmi malch molekul na polyakrylamidovm) gelu. Vppad extrmn velkch fragment DNA se uv tzv. pulzn gelov elektroforza. Zgelu je mon nsledn DNA pevst na nitrocelulzovou membrnu pomoc tzv. Southernova penosu. Dal metodou dlen DNA je centrifugace vhustotnm gradientu, obvykle vgradientu chloridu cesnho tato metoda oddluje zejmna fragmenty, je se li zastoupenm bz (obsahem GC).[59]

Byl vyvinut nespoet zpsob, jak obarvit DNA a to jak pmo vbuce, tak iDNA izolovanou vlaboratornm skle. Pouvaj se asto vlaboratoch ve chvli, kdy je nutn nap. velektroforetickm gelu i pmo ve fixovan buce zvraznit DNA. Ke znmm takovm barvivm pat (bez logick nslednosti): SYBR Green, YOYO-1, TOTO-1, TO-PRO, SYTOX Green, ale iklasick ethidiumbromid a propidiumjodid, akridinov oran, rzn Hoechst barviva i teba DAPI.[60] Kvelmi specifickm barvcm metodm pat fluorescenn in situ hybridizace (FISH), kter umouje navzn fluorescennch sond na konkrtn sekvenci DNA.[61]

Sekvenovn DNA je souhrnn termn pro biochemick metody, jimi se zjiuje poad nukleovch bz vsekvencch DNA.[62] Prv poad bz je princip zakdovn genetick informace, a proto je vcentru zjmu biolog. Pvodn a po dlouh lta pevaujc metodou bylo tzv. Sangerovo sekvenovn, kter vyuv speciln chemicky upravench nukleotid, je jsou pomoc DNA polymerzy zaazovny suritou pravdpodobnost do prodluujc se DNA tm blokuj dal polymeraci a vsledn produkt je mon detekovat pomoc elektroforzy. Vsouvislosti se snahou zrychlit a zlevnit sekvenovac proces byla vyvinuta cel ada sekvenanch metod nov generace. K tm pat nap. pyrosekvenovn a pbuzn metody. Studie Zhang et al. 2011 uvd pt modernch metod, je jsou komern dostupn: Roche GS-FLX 454 (454 sekvenovn), Illumina (Solexa), ABI SOLiD, Polonator G.007 a Helicos HeliScope.[63]

Existuje icel ada postup, jak si pipravit i namnoit konkrtn molekulu DNA. Jednou zmonost je chemick syntza DNA, pi n dochz ksestavovn krtkch oligonukleotid, a to postupnm azenm nukleotid za sebou. Vtypickm ppad vak ji je urit mnostv DNA kdispozici a je douc ho pouze zmnoit tak, aby vechny kopie mly pokud mono totonou sekvenci. To se asto dl bu pomoc klonovn DNA nebo metodou polymerzov etzov reakce.[64]

Vdeck pokrok v oblasti genetiky zpsobil boom v mnoha oblastech lkask diagnostiky. Napklad v bakteriologii, virologii a parazitologii se uplatnily metody, je umouj v napaden tkni detekovat DNA pochzejc z mikroorganism, je tuto tk napadly. To se dl bu pomoc rznch DNA prb schopnch se specificky vzat na uritou sekvenci typickou pro danho parazita, nebo nap. cestou namnoen DNA pomoc polymerzov etzov reakce a nslednm sekvenovnm tm je mon zskat sekvenci DNA patogennch organism, j mikrobiologov srovnaj s databzemi patogennch kmen. Tyto pokroil molekulrn metody se uplatuj nap. pi identifikaci tko kultivovatelnch bakteri i pi urovn cel ady virovch i parazitrnch onemocnn.[65]

Soust diagnostick prce je vak i studium lidsk DNA uplatuje se napklad v rakovinn terapii[66] i pi diagnostice nkterch genetickch onemocnn. Sv msto ji molekulrn metody naly v prenatln diagnostice chorob, nap. ze vzorku plodov vody.[67] Dal testy se rutinn provd z kapky krve novorozenc. Testy DNA v rmci genetickho poradenstv vak dnes mohou pomoci i prm, je teprve dt plnuj. Je to vhodn tehdy, vyskytuje-li se v rodinn historii njak genetick onemocnn. Dnes jsou genetick testy dostupn vem zjemcm a je mon o sob zjistit celou adu informac od tch zejmch (barva o) pes rzn zajmavosti (atletick vlohy) a po vn daje (nchylnost k rakovin atp.).[68]

Nkter oblasti nap. lidsk jadern DNA jsou velmi promnliv a lovk od lovka se vnich tm vdy li. Ztohoto dvodu je DNA vkriminalistice a vforenznch vdch neocenitelnm zdrojem informac. Repetitivn sekvence znm jako VNTR i STR pat mezi ty nejastji studovan. Studium VNTR repetic vyaduje relativn velk mnostv DNA, a proto se vyuv zejmna tehdy, mme-li kdispozici vzorek krve (nap. utest otcovstv). Obvykle se testuj metodou RFLP (jen zkoum polymorfismus dlky restriknch fragment). Vkriminalistice naly vt vyuit tzv. STR (ili ~mikrosatelity). Pravdpodobnost, e dv osoby budou mt jednu STR oblast shodnou, je pro danou variantu nap. 1:83, co by nebylo pli pesvdiv, a proto se pouv obvykle 13 marker, kter se vyhodnocuj zvl a vzjemn pozitivn vsledek dvryhodnost testu mnohonsobn zvyuje. Prvn pouit DNA vkriminalistice se datuje do roku 1986 a dolo knmu vrmci soudnho zen vAnglii. Testovn STR oblast se vak dnes prosazuje ivurovn otcovstv.[69]

Vsouasnosti je lidstvo schopn provdt clen zmny vgenetick informaci (vpoad nukleotid vDNA) a ovlivovat tm nkter vlastnosti organism. Tyto tzv. genetick modifikace zpsobily revoluci vcel ad biotechnologickch odvtv a umouj nap. prmyslovou produkci hormon, srecch faktor pro hemofiliky, enzym uvanch vpotravinstv a nkterch vakcn. Vsledkem genetickho inenrstv jsou irzn transgenn plodiny, nap. ty odoln kherbicidm.[70] VEvropsk unii je zgeneticky modifikovanch plodin povolena pouze Bt kukuice,[71] kter nese gen cry pochzejc zpdn bakterie Bacillus thuringiensis. Tento gen zpsobuje, e je rostlina pro sv hmyz kdce jedovat.[72]

V neposledn ad se studium sekvenc DNA uplatuje v tdn organism podle jejich pbuznosti, tedy v oboru biologie znmm jako fylogenetika. Jednou z prvnch krk v tomto oboru byla v 60. letech studie, kter srovnvala sekvenci genu pro cytochrom c u rznch organism: vsledky jsou v podstat intuitivn, zatmco impanz m sekvenci tohoto genu s lovkem zcela shodnou a makak rhesus se li pouze jedinou nukleotidovou zmnou, ps gen pro cytochrom u se od lidskho genu li na 13 mstech a kvasinkov gen dokonce na 56 pozicch. Na zklad tchto informac si lze udlat obrzek o pbuzenskch vztazch mezi organismy. V souvislosti s rozmachem sekvenovn je dnes k dispozici obrovsk mnostv sekvenc DNA cel ady organism a k jejich analze se pouvaj rzn sofistikovan nstroje, jako napklad metoda parsimonie nebo metoda maximln pravdpodobnosti. Dnes je mono i odhadnout as, kter dl v evolun historii libovoln dva druhy metoda k tomu uvan opt pracuje se sekvencemi DNA a oznauje se jako molekulrn hodiny. Pomoc fylogenetickch pstup je mono odpovdat na celou adu dalch otzek, namtkou jak vztah maj neandertlci k dnenm lidem, jak se mezi jednotlivmi nemocnmi virus HIV a podobn.[73]

V tomto lnku byl pouit peklad textu z lnku DNA na anglick Wikipedii.

See the rest here:
DNA Wikipedie

Posted in DNA | Comments Off on DNA Wikipedie

Join the Transhumanist Movement – YouTube

Posted: at 4:43 pm

Join us, join us today! WATCH Good Mythical Morning here: https://youtu.be/n1PF99LtBLQ Watch Good Mythical More here: http://youtube.com/goodmythicalmore

Get the GMM Coffee Mug! http://store.dftba.com/products/good-...

Get the GMM Poster plus the GMM T-shirt! http://store.dftba.com/collections/rh...

Watch the Rhett & Link Channel: http://youtube.com/rhettandlink

Listen to Ear Biscuits! iTunes: https://itunes.apple.com/podcast/ear-... SoundCloud: https://soundcloud.com/earbiscuits

JOIN the RhettandLinKommunity! http://bit.ly/rlkommunity

LIKE us on FACEBOOK! http://facebook.com/rhettandlink FOLLOW us on TWITTER! http://twitter.com/rhettandlink FOLLOW us on TUMBLR: http://rhettandlink.tumblr.com/ FOLLOW our INSTAGRAM - http://instagram.com/rhettandlink JOIN our circle on GOOGLE PLUS: https://plus.google.com/+rhettandlink

We are two Internetainers dedicated to giving you a daily dose of casual comedy every Monday-Friday on our show "Good Mythical Morning" at youtube.com/rhettandlink2. Thanks for making us a part of your daily routine. Be your mythical best, mythical beast. - Rhett & Link

Mail us stuff to our P.O. Box Go to http://rhettandlink.com/contact for details.

CREDITS: Produced by Stevie Wynne Levine Writer/Producer: Edward Coleman Writer/Producer: Lizzie Bassett Associate Producer: Chase Hilt Editor/Graphics/Technical Director: Morgan Locke Editor: Casey Nimmer Production Coordinator: Alexander Punch Show Graphics Package/Lighting: Ben Eck Content Manager: Becca Canote Set Construction/Dresser: Cassie Cobb Intro Motion Graphics: Digital Twigs http://www.digitaltwigs.com Intro Music: Pomplamoose http://www.youtube.com/pomplamoosemusic Outro Music: Pomplamoose http://www.youtube.com/pomplamoosemusic Wheel Music: http://www.royaltyfreemusiclibrary.com/ Microphone: The Mouse by Blue Microphones: http://www.bluemic.com/mouse/

Read the original post:
Join the Transhumanist Movement - YouTube

Posted in Transhumanist | Comments Off on Join the Transhumanist Movement – YouTube