Electrons inhabit a strange and topsy-turvy world. These infinitesimally small particles have never ceased to amaze and mystify despite the more than a century that scientists have studied them. Now, in an even more amazing twist, physicists have discovered that, under certain conditions, interacting electrons can create what are called topological quantum states. This finding, which was recently published in the journal Nature,holds great potential for revolutionizing electrical engineering, materials science and especially computer science.
Topological states of matter are particularly intriguing classes of quantum phenomena. Their study combines quantum physics with topology, which is the branch of theoretical mathematics that studies geometric properties that can be deformed but not intrinsically changed. Topological quantum states first came to the publics attention in 2016 when three scientists Princetons Duncan Haldane, who is Princetons Thomas D. Jones Professor of Mathematical Physics and Sherman Fairchild University Professor of Physics, together with David Thouless and Michael Kosterlitz were awarded the Nobel Prize for their work in uncovering the role of topology in electronic materials.
A Princeton-led team of physicists have discovered that, under certain conditions, interacting electrons can create what are called topological quantum states, which,has implications for many technological fields of study, especially information technology. To get the desired quantum effect, the researchersplaced two sheets of graphene on top of each other with the top layer twisted at the "magic" angle of 1.1 degrees, whichcreates a moir pattern. This diagram shows a scanning tunneling microscopeimaging the magic-angle twisted bilayer graphene.
Image courtesy of Kevin Nuckolls
The last decade has seen quite a lot of excitement about new topological quantum states of electrons, said Ali Yazdani, the Class of 1909 Professor of Physics at Princeton and the senior author of the study. Most of what we have uncovered in the last decade has been focused on how electrons get these topological properties, without thinking about them interacting with one another.
But by using a material known as magic-angle twisted bilayer graphene, Yazdani and his team were able to explore how interacting electrons can give rise to surprising phases of matter.
The remarkable properties of graphene were discovered two years ago when Pablo Jarillo-Herrero and his team at the Massachusetts Institute of Technology (MIT) used it to induce superconductivity a state in which electrons flow freely without any resistance. The discovery was immediately recognized as a new material platform for exploring unusual quantum phenomena.
Yazdani and his fellow researchers were intrigued by this discovery and set out to further explore the intricacies of superconductivity.
But what they discovered led them down a different and untrodden path.
This was a wonderful detour that came out of nowhere, said Kevin Nuckolls, the lead author of the paper and a graduate student in physics. It was totally unexpected, and something we noticed that was going to be important.
Following the example of Jarillo-Herrero and his team, Yazdani, Nuckolls and the other researchers focused their investigation on twisted bilayer graphene.
Its really a miracle material, Nuckolls said. Its a two-dimensional lattice of carbon atoms thats a great electrical conductor and is one of the strongest crystals known.
Graphene is produced in a deceptively simple but painstaking manner: a bulk crystal of graphite, the same pure graphite in pencils, is exfoliated using sticky tape to remove the top layers until finally reaching a single-atom-thin layer of carbon, with atoms arranged in a flat honeycomb lattice pattern.
To get the desired quantum effect, the Princeton researchers, following the work of Jarillo-Herrero, placed two sheets of graphene on top of each other with the top layer angled slightly. This twisting creates a moir pattern, which resembles and is named after a common French textile design. The important point, however, is the angle at which the top layer of graphene is positioned: precisely 1.1 degrees, the magic angle that produces the quantum effect.
Its such a weird glitch in nature, Nuckolls said, that it is exactly this one angle that needs to be achieved. Angling the top layer of graphene at 1.2 degrees, for example, produces no effect.
The researchers generated extremely low temperatures and created a slight magnetic field. They then used a machine called a scanning tunneling microscope, which relies on a technique called quantum tunneling rather than light to view the atomic and subatomic world. They directed the microscopes conductive metal tip on the surface of the magic-angle twisted graphene and were able to detect the energy levels of the electrons.
They found that the magic-angle graphene changed how electrons moved on the graphene sheet. It creates a condition which forces the electrons to be at the same energy, said Yazdani. We call this a flat band.
When electrons have the same energy are in a flat band material they interact with each other very strongly. This interplay can make electrons do many exotic things, Yazdani said.
One of these exotic things, the researchers discovered, was the creation of unexpected and spontaneous topological states.
This twisting of the graphene creates the right conditions to create a very strong interaction between electrons, Yazdani explained. And this interaction unexpectedly favors electrons to organize themselves into a series of topological quantum states.
The researchers discovered that the interaction between electrons creates topological insulators:unique devices that whose interiors do not conduct electricity but whose edges allow the continuous and unimpeded movement ofelectrons. This diagram depicts thedifferent insulating states of the magic-angle graphene, each characterized by an integer called its Chern number, which distinguishes between different topological phases.
Image courtesy of Kevin Nuckolls
Specifically, they discovered that the interaction between electrons creates what are called topological insulators. These are unique devices that act as insulators in their interiors, which means that the electrons inside are not free to move around and therefore do not conduct electricity. However, the electrons on the edges are free to move around, meaning they are conductive. Moreover, because of the special properties of topology, the electrons flowing along the edges are not hampered by any defects or deformations. They flow continuously and effectively circumvent the constraints such as minute imperfections in a materials surface that typically impede the movement of electrons.
During the course of the work, Yazdanis experimental group teamed up two other Princetonians Andrei Bernevig, professor of physics, and Biao Lian, assistant professor of physics to understand the underlying physical mechanism for their findings.
Our theory shows that two important ingredients interactions and topology which in nature mostly appear decoupled from each other, combine in this system, Bernevig said. This coupling creates the topological insulator states that were observed experimentally.
Although the field of quantum topology is relatively new, itcouldtransform computer science. People talk a lot about its relevance to quantum computing, where you can use these topological quantum states to make better types of quantum bits, Yazdani said. The motivation for what were trying to do is to understand how quantum information can be encoded inside a topological phase. Research in this area is producing exciting new science and can have potential impact in advancing quantum information technologies.
Yazdani and his team will continue their research into understanding how the interactions of electrons give rise to different topological states.
The interplay between the topology and superconductivity in this material system is quite fascinating and is something we will try to understand next, Yazdani said.
In addition to Yazdani, Nuckolls, Bernevig and Lian, contributors to the study included co-first authors Myungchul Oh and Dillon Wong, postdoctoral research associates, as well as Kenji Watanabe and Takashi Taniguchi of the National Institute for Material Science in Japan.
Strongly Correlated Chern Insulators in Magic-Angle Twisted Bilayer Graphene, by Kevin P. Nuckolls, Myungchul Oh, Dillon Wong, Biao Lian, Kenji Watanabe, Takashi Taniguchi, B. Andrei Bernevig and Ali Yazdani, was published Dec. 14 in the journal Nature (DOI:10.1038/s41586-020-3028-8). This work was primarily supported by the Gordon and Betty Moore Foundations EPiQS initiative (GBMF4530, GBMF9469) and the Department of Energy (DE-FG02-07ER46419 and DE-SC0016239). Other support for the experimental work was provided by the National Science Foundation (Materials Research Science and Engineering Centers through the Princeton Center for Complex Materials (NSF-DMR-1420541, NSF-DMR-1904442) and EAGER DMR-1643312), ExxonMobil through the Andlinger Center for Energy and the Environment at Princeton, the Princeton Catalysis Initiative, the Elemental Strategy Initiative conducted by Japans Ministry of Education, Culture, Sports, Science and Technology (JPMXP0112101001, JSPS KAKENHI grant JP20H0035, and CREST JPMJCR15F3), the Princeton Center for Theoretical Science at Princeton University, the Simons Foundation, the Packard Foundation, the Schmidt Fund for Innovative Research, BSF Israel US foundation (2018226), the Office of Naval Research (N00014-20-1-2303) and the Princeton Global Network Funds.
- Global AI Chipsets Markets 2019-2024 for Wireless Networks and Devices, Cloud and Next Generation Computing, IoT, and Big Data Analytics -... [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- AWS re:Invent re:turns with re:vised robo-car and Windows Server 2008 re:vitalization plan - The Register [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Researchers Discover New Way to Split and Sum Photons with Silicon - UT News | The University of Texas at Austin [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- First quantum computing conference to take place in Cambridge - Cambridge Independent [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazon is now offering quantum computing as a service with Braket for AWS - The Verge [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Quantum Computers Are About to Forever Change Car Navigation - autoevolution [Last Updated On: December 7th, 2019] [Originally Added On: December 7th, 2019]
- How Countries Are Betting on to Become Supreme in Quantum Computing - Analytics Insight [Last Updated On: December 7th, 2019] [Originally Added On: December 7th, 2019]
- Quantum Trends And The Internet of Things - Forbes [Last Updated On: December 7th, 2019] [Originally Added On: December 7th, 2019]
- This Week in Tech: What on Earth Is a Quantum Computer? - The New York Times [Last Updated On: December 7th, 2019] [Originally Added On: December 7th, 2019]
- InfoQ's 2019, and Software Predictions for 2020 - InfoQ.com [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Breakthrough in creation of gamma ray lasers that use antimatter - Big Think [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Quantum supremacy is here, but smart data will have the biggest impact - Quantaneo, the Quantum Computing Source [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Quantum Computers Are the Ultimate Paper Tiger - The National Interest Online [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Atos Boosts Quantum Application Development Through the Creation of the First Quantum User Group - AiThority [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Shaping the technology transforming our society | News - Fermi National Accelerator Laboratory [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Inside the weird, wild, and wondrous world of quantum video games - Digital Trends [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- China is beating the US when it comes to quantum security - MIT Technology Review [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Double eureka: Breakthroughs could lead to quantum 'FM radio' and the end of noise - The Next Web [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- D-Wave partners with NEC to build hybrid HPC and quantum apps - TechCrunch [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Quantum computing will be the smartphone of the 2020s, says Bank of America strategist - MarketWatch [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Quantum computing leaps ahead in 2019 with new power and speed - CNET [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The Hits And Misses Of AWS re:Invent 2019 - Forbes [Last Updated On: December 14th, 2019] [Originally Added On: December 14th, 2019]
- Technology to Highlight the Next 10 Years: Quantum Computing - Somag News [Last Updated On: December 14th, 2019] [Originally Added On: December 14th, 2019]
- How quantum computing is set to impact the finance industry - IT Brief New Zealand [Last Updated On: December 14th, 2019] [Originally Added On: December 14th, 2019]
- Will quantum computing overwhelm existing security tech in the near future? - Help Net Security [Last Updated On: December 14th, 2019] [Originally Added On: December 14th, 2019]
- Quantum expert Robert Sutor explains the basics of Quantum Computing - Packt Hub [Last Updated On: December 14th, 2019] [Originally Added On: December 14th, 2019]
- ProBeat: AWS and Azure are generating uneasy excitement in quantum computing - VentureBeat [Last Updated On: December 14th, 2019] [Originally Added On: December 14th, 2019]
- Could quantum computing be the key to cracking congestion? - SmartCitiesWorld [Last Updated On: December 14th, 2019] [Originally Added On: December 14th, 2019]
- D-Wave Announces Promotion of Dr. Alan Baratz to CEO - GlobeNewswire [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- What Was The Most Important Physics Of 2019? - Forbes [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- AI, 5G, 'ambient computing': What to expect in tech in 2020 and beyond - USA TODAY [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- What WON'T Happen in 2020: 5G Wearables, Quantum Computing, and Self-Driving Trucks to Name a Few - Business Wire [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- How quantum computing could beat climate change - World Economic Forum [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- How Quantum Computers Work | HowStuffWorks [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- Quantum Computing Market Increase In Analysis & Development Activities Is More Boosting Demands - Market Research Sheets [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- IBM partners with the University of Tokyo on quantum computing initiative - SiliconANGLE News [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- 2020 and beyond: Tech trends and human outcomes - Accountancy Age [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- IBM and the U. of Tokyo launch quantum computing initiative for Japan | - University Business [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Quantum Computing Decade Is ComingHeres Why You Should Care - Observer [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Quantum Technology Expert to Discuss Quantum Sensors for Defense Applications at Office of Naval Research (ONR) - Business Wire [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- IBM and Japan join hands in the development of quantum computers - Neowin [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- IBM and the University of Tokyo Launch Quantum Computing Initiative for Japan - Martechcube [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- IBM and the University of Tokyo partner to advance quantum computing - Help Net Security [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Reflections on 2019 in Technology Law, and a Peek into 2020 - Lexology [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- IBM and the University of Tokyo Launch Quantum Computing Initiative for Japan - Quantaneo, the Quantum Computing Source [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- 2020 Will be a Banner Year for AI Custom Chipsets and Heterogenous Computing; Quantum Computing Remains on the Far Horizon - Yahoo Finance [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- IBM, University of Tokyo Partner on Quantum Computing Project - Yahoo Finance [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- What's Not Likely To Happen In 2020 - RTInsights [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- From space tourism to robo-surgeries: Investors are betting on the future like there's no tomorrow - Financial Post [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- 2020 will be the beginning of the tech industry's radical revisioning of the physical world - TechCrunch [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Same Plastic That Make Legos Could Also Be The Best Thermal Insulators Used in Quantum Computers - KTLA Los Angeles [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Information teleported between two computer chips for the first time - New Atlas [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- How This Breakthrough Makes Silicon-Based Qubit Chips The Future of Quantum Computing - Analytics India Magazine [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Quantum Computing Breakthrough: Silicon Qubits Interact at Long-Distance - SciTechDaily [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Donna Strickland appointed to Order of Canada - University of Rochester [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- 20 technologies that could change your life in the next decade - Economic Times [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- 5 open source innovation predictions for the 2020s - TechRepublic [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- Quantum Supremacy and the Regulation of Quantum Technologies - The Regulatory Review [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- Physicists Just Achieved The First-Ever Quantum Teleportation Between Computer Chips - ScienceAlert [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- The 12 Most Important and Stunning Quantum Experiments of 2019 - Livescience.com [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- Quantum Teleportation Has Been Achieved With the Help of Quantum Entanglement - Dual Dove [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Top 5 Cloud Computing Trends of 2020 - Analytics Insight [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- News Content Hub - Five emerging technologies for the 2020s - Riviera Maritime Media [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- US Government Looks To Restrict Exports Of AI, Quantum Computing And Self-Driving Tech - WebProNews [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Year 2019 in Science: History of Humans, Ebola Treatment and Quantum Computing - NewsClick [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Superconductor or not? They're exploring the identity crisis of this weird quantum material. - News@Northeastern [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- The World Keeps Growing Smaller: The Reinvention Of Finance - Seeking Alpha [Last Updated On: January 8th, 2020] [Originally Added On: January 8th, 2020]
- Goldman Sachs and QC Ware Join Forces to Develop Quantum Algorithms in Finance - Quantaneo, the Quantum Computing Source [Last Updated On: January 8th, 2020] [Originally Added On: January 8th, 2020]
- January 9th: France will unveil its quantum strategy. What can we expect from this report? - Quantaneo, the Quantum Computing Source [Last Updated On: January 8th, 2020] [Originally Added On: January 8th, 2020]
- Where will technology take us in 2020? - Digital News Asia [Last Updated On: January 8th, 2020] [Originally Added On: January 8th, 2020]
- Superconductor or Not? Exploring the Identity Crisis of This Weird Quantum Material - SciTechDaily [Last Updated On: January 8th, 2020] [Originally Added On: January 8th, 2020]
- AI, ML and quantum computing to cement position in 2020: Alibabas Jeff Zhang - Tech Observer [Last Updated On: January 8th, 2020] [Originally Added On: January 8th, 2020]
- AI, edge computing among Austin tech trends to watch in 2020 - KXAN.com [Last Updated On: January 8th, 2020] [Originally Added On: January 8th, 2020]
- Charles Hoskinson Predicts Economic Collapse, Rise of Quantum Computing, Space Travel and Cryptocurrency in the 2020s - The Daily Hodl [Last Updated On: January 8th, 2020] [Originally Added On: January 8th, 2020]
- Global Quantum Computing Market: What it got next? Find out with the latest research available at PMI - Pro News Time [Last Updated On: January 12th, 2020] [Originally Added On: January 12th, 2020]
- Is Quantum Technology The Future Of The World? - The Coin Republic [Last Updated On: January 12th, 2020] [Originally Added On: January 12th, 2020]
- Were approaching the limits of computer power we need new programmers now - The Guardian [Last Updated On: January 12th, 2020] [Originally Added On: January 12th, 2020]
- Google and IBM square off in Schrodingers catfight over quantum supremacy - The Register [Last Updated On: January 12th, 2020] [Originally Added On: January 12th, 2020]
- Start-ups join Google, SpaceX and OneWeb to bring new technologies to space - CNBC [Last Updated On: January 12th, 2020] [Originally Added On: January 12th, 2020]
- Bleeding edge information technology developments - IT World Canada [Last Updated On: January 12th, 2020] [Originally Added On: January 12th, 2020]