Getting Started with R and InfluxDB The New Stack – thenewstack.io

Gourav Singh Bais

Gourav is an applied machine learning engineer at ValueMomentum Inc. He is skilled in developing machine learning/deep learning pipelines, retraining systems and transforming data science prototypes to production-grade solutions. He has been working in the same field for the last three years and has served a lot of clients including Fortune 500 companies, which provided him the exposure to build experience and skills that can contribute to the machine learning community.

As a data professional, you may come across some datasets with few independent variables (input variables). One variable would be time, and the other can be any sort of time-dependent column, such as the number of bookings in a hotel or the number of passengers on a flight.

This type of data is referred to as time-series data, which has some type of trend and captures a point in time. There are various ways of storing this type of data, such as relational databases or files, like CSV or Excel. However, these options are not designed to efficiently store the time-series data. Enter time-series databases, which are specifically designed to efficiently and quickly store time-series data.

There are various use cases where time-series databases (TSDB) perform significantly better than other storage mechanisms. Consider a few:

Furthermore, there are several advantages to using a time-series database over other storage mechanisms for that data type. Here are a few reasons:

One widely used time-series database is InfluxDB. The company InfluxData created InfluxDB, an open source time-series database. Its written in Go for storing and retrieving time-series data for any use case, including operations monitoring, application metrics, Internet of Things (IoT) sensor data and real-time analytics.

To learn more about the benefits of InfluxDB, you can refer to the InfluxData website.

In this article, you will learn what is needed to get started in InfluxDB with R language, starting from installing, setting up, querying, writing and finally, building a simple time-series application using R.

Clients interacting with InfluxDB using any programming language must be able to connect to the database so that different database operations can be carried out. The influxdb-client-r library can be used to connect to InfluxDB using R. Its a package that supports operations, like writing data, reading data and getting the database status. This client library works with InfluxDB version 2.0.

Lets start with setting up InfluxDB using version 2.0. InfluxDB is available on different platforms, like Windows, Linux and macOS. Examples that you will see in this article are tested against macOS Big Sur, although installing it on any platform is simple.

Alternatively, you can use InfluxDB Cloud to quickly get a free instance of InfluxDB running in minutes without having to install anything locally on your machine.

InfluxDB can be installed on macOS using Homebrew:

```$ brew update$ brew install influxdb influxdb-cli```

```

$ brew update

$ brew install influxdb influxdb-cli

```

Alternatively, InfluxDB can be manually downloaded here.

Once InfluxDB is installed, you can start it by using this code:

The first time you start InfluxDB, it will ask you to set up the account, which can be carried out using the UI [localhost:8086](localhost:8086) or command line interface (CLI). For a UI setup, you will have to open the localhost URL and provide the information required for the initial setup. If youre using CLI, youll need to do it with the InfluxDB client, which can be started in the terminal using the following code:

For the initial setup, note the following details:

Username: You can choose any username for the initial user.

Password: You need to create and confirm a password for database access.

Organization name: You need to choose the initial organization name.

Bucket name: An initial bucket name is required, and you can create as many buckets as you want to work with.

Retention period: The time period your bucket will store the data before deleting it. You can choose **never** or leave it empty for an infinite retention period.

To install InfluxDB on other platforms, refer to the following link.

Once you have installed InfluxDB and completed the setup, you can log in to [localhost:8086](localhost:8086). You should see a screen like this:

You can take a look through the various modules included in the dashboard, though this article will primarily focus on those through which you can connect to the InfluxDB client. Start with the data module:

Here, you can observe different sections, like Sources, Bucket, Telegraf, Scrapers, and Tokens. To interact with InfluxDB using R, youll need to check the Buckets and Tokens sections. To connect with the database, youll need to have a private token (key) generated that is only accessible to you, allowing you to connect to different buckets.

To generate this token, navigate to the Tokens tab. On the right side, you will see a Generate Tokens button. This button has two different sections:

Read/Write Token: This token provides read and write access to different buckets, which can be limited to the scope (to specific buckets) or provided to all the buckets available. With this token, you can only read and write the data in an organization.

All-Access Token: This token provides full access to actions, like reading, writing, updating or deleting each bucket. This would be the recommended token through which you can connect to any bucket available without any explicit configuration and can perform all the needed actions, like read, write, update and delete.

For the purposes of this article, youll want to generate an All-Access Token. Once the token is generated, you can access it anytime by simply logging into the localhost console.

Now that you have InfluxDB all set up, you can download R and RStudio for writing and testing the code. Installing R is pretty simple. You can download the package here, then open and install it. After the R installation, you can download RStudio, which will be the IDE that you use to write the R code. You can download RStudio here.

At this stage, you have almost all the tools and technologies needed to connect to InfluxDB. As the last step, you need to install the InfluxDB client library for R, which can be downloaded using the following line of code:

```install.packages("influxdbclient")```

```

install.packages("influxdbclient")

```

If you install it on RStudio, other dependencies will be downloaded along with the base library. However, if dependencies are not automatically downloaded, you can separately download them using the following line of code:

```install.packages(c("httr", "bit64", "nanotime", "plyr"))```

```

install.packages(c("httr", "bit64", "nanotime", "plyr"))

```

The next step will be to import the InfluxDB client library in R and create an instance of InfluxDBClient that can be used to interact with the database and perform all sets of operations. Parameters required to make a database connection include the following:

Since this connection will be made locally, the connection script should look like this:

If you are using a cloud account make sure the URL parameter matches the region your cloud account is located in, rather than using localhost. You can find the URL endpoints in the docs.

Now that you have established a connection to InfluxDB, its time to use the data to perform different database operations. To understand these operations, lets take a look at some sample data of worldwide COVID-19 casesfrom January 2020 to April 2020:

This sample data contains the following fields:

To read the data frame in R, you will need to write the following line of code:

Lets start by first inserting this data into InfluxDB. To do so, use the write() method, which accepts parameters like this:

```client$write(data, bucket, precision, measurementCol,tagCols, fieldCols, timeCol, object)```

```

client$write(data, bucket, precision, measurementCol,

tagCols, fieldCols, timeCol, object)

```

Note: The above method is simply a function definition, not part of the code.

This method takes the following parameters:

To store the COVID-19 data in InfluxDB using the write() method, you will need to make sure that your time-stamp column (Date) is in POSIXct format.

The response from the write() function can be NULL, True, or an error. To debug the write() function and check how the data is being written in the database, you can assign an object: lp.

Now that you have your time-stamped data stored in the database, lets try reading the data. For querying the data using the R client, the read() function is used, which expects a Fluxquery. For querying, you can make use of the same client that you created for writing the data or you can create a new InfluxDB client and do the same.

Lets break down the above query. Starting with the keyword from, youll need to first specify the bucket name, followed by the range of time from which you want to select the data, and finally, a set of conditions. In the above query, the condition specifies not to include the start and stop columns from the database.

The result contains a list of data frames for each entry made in the database for the specified period. To check an instance of it, you can use the following code:

Now that you have queried the data, lets make use of this data for forecasting purposes. Here, you will be training a time-series model on the data retrieved and will try to predict the next five days cases. Lets create a dataframe from the results that you have after querying:

Once the dataframe is created, there are some changes that will be required to apply the time-series model on it. Typically, this stage is data preprocessing.

After preprocessing, now its time to create a time-series representation of our data. This would be done using the following code:

Finally, lets fit the data into the forecasting model and make the predictions for the next five days:

That is how data can be accessed and used for time-series forecasting, which is just one practical use case for the time-stamp data. The whole implementation can be found here.

For more information and best practices for optimizing the performance of InfluxDB, refer to the docs.

After reading this article, you now know how to set up InfluxDB in your system, as well as how to create a client and to write and read data for your time-series use case using R language. One major advantage of InfluxDB is that it comes with support for almost all major programming languages.

There are several options for storing time-series data, but time-series databases, like InfluxDB, can do so more quickly and on a higher scale. Several use cases, such as IoT applications, automated cars or real-time application analysis, need data insertion from as little as tens of thousands to as many as hundreds of thousands of entries at a time. Time-series databases perform this task at a very high speed and in real time, allowing them to be easily adapted by any developer working on a real-time time-series application. Be sure to consider deploying InfluxDB to use these great features in your own applications.

The New Stack is a wholly owned subsidiary of Insight Partners, an investor in the following companies mentioned in this article: Real.

Featured image via Pixabay.

Visit link:
Getting Started with R and InfluxDB The New Stack - thenewstack.io

Related Posts
This entry was posted in $1$s. Bookmark the permalink.