What Is Cryptography? Definition & How It Works | Okta

Modern cryptography is a method of sending and receiving messages that only the intended receiver and sender can read to prevent third-party access. It often involves encryption of electronic data, which commonly creates ciphertext by scrambling regular text. Then, it uses a decryption key of some form to return it to readable format on the receiving end. Cryptography can involve either a symmetric key system, which is the simplest, or an asymmetric key system, which is typically more secure. Cryptography provides methods for secure communication and electronic data that malicious adversaries cannot read, interpret, or access.

Cryptography is used to keep messages and data secure from being accessible to anyone other than the sender and the intended recipient. It is the study of communications and a form of security for messaging. Ultimately, cryptography can keep data from being altered or stolen. It can also be used to authenticate users. Cryptography often uses encryption and an algorithm to keep electronic data and messages secure and only readable by the intended parties. Cryptography has been around for centuries. The term itself comes from the Greek word kryptos, which translates to hidden. Today, cryptography is based on computer science practices and mathematical theory.

There are two main types of cryptography used for digital data and secure messages today: symmetric cryptography and asymmetric cryptography. Hash functions, a third type, doesnt involve use of a key.

The intention of cryptography is to keep data and messages secure and inaccessible to potential threats or bad actors. It is often working behind the scenes to encrypt and decrypt data you are sending through social media, applications, interactions on websites, and email. Symmetric cryptography can be used for these purposes:

Asymmetric cryptography can be used for the following purposes:

Cryptography strives for private communications and data security to protect digital information from being altered, accessed, or read by anyone other than those with legitimate access. These are key principles of cryptography:

Messages and data should always be encrypted to ensure privacy and security. The best practices for cryptography include using an entire cryptographic system, or cryptosystem, that regularly uses multiple forms of encryption to keep data and communications safe and secure. This system should have an easy-to-use interface along with strong cryptographic algorithms that conform to the industrys best practices. For symmetric encryption, this means using AES with 128, 192, or 256-bit keys. For asymmetric encryption standards, it should include elliptical curve cryptography (ECC) and RSA. These are examples of files and data that should be encrypted and protected with cryptography:

Cryptographic methods need to be effective, but also user-friendly to ensure that they are actually going to be used as intended. Using encryption functions can also help to prevent the loss or theft of data even if the hardware itself is stolen or compromised. A strong cryptosystem should be able to hold up to the security community and not rely on security through obscurity. Instead, the system should be known, and the only thing kept secret and private are the actual keys. The public key can be publicized, but the secret or private key should be protected. These are methods for keeping your keys secure:

Cryptography is a necessary form of cybersecurity that uses encryption methods to keep digital data and communications secure and out of the hands of potential threats or bad actors. Data protection is highly important in this digital era where so much information is stored on computers, in the cloud, and on the internet. Data security is important to businesses, industries, companies, and individuals alike. Cryptography is a form of securing digital data and messages often using special keys that only the sender and recipient have access to. Cryptography uses mathematical systems and algorithms to encrypt and decrypt data. Symmetrical cryptography uses the same key for both encryption and decryption. It can quickly encrypt and decrypt data, and it is easy to use. It can also be compromised if a third party gains access to the key, however. It is important to keep your data encryption keys safe and secure. Sending your encryption key in a plain text form along with your encrypted message, for example, is similar to leaving your front door key in plain sight in front of your locked door. Keep your keys safe to keep your data safe. Asymmetrical cryptography is a step further than symmetrical cryptography, using different keys for encryption and decryption. The encryption key is public, and everyone has access to it. The decryption key is kept private, and only intended recipients can have access to this secret key. While this adds an extra layer of security, it can also take longer to encrypt and decrypt data, so it is regularly used for smaller bits of data. A strong cryptosystem often uses multiple forms of encryption and cryptographic methods to keep digital data private and secure from adversaries. Cryptography is a vital component of digital security.

Definition of Cryptography. (January 2022). The Economic Times.

Security Component Fundamentals for Assessment. (2020). Security Controls Evaluation, Testing, and Assessment Handbook (Second Edition).

Advanced Encryption Standard (AES). (2001). National Institute of Standards and Technology (NIST).

Compliance FAQs: Federal Information Processing Standards (FIPS). (November 2019). National Institute of Standards and Technology (NIST).

Security and Privacy in the Internet of Things. (2016). Internet of Things.

Elliptical Curve Cryptography ECC. (June 2020). National Institute of Standards and Technology (NIST).

Excerpt from:
What Is Cryptography? Definition & How It Works | Okta

Related Posts
This entry was posted in $1$s. Bookmark the permalink.