Mount Sinai researchers use artificial intelligence to uncover the cellular origins of Alzheimer’s disease and other cognitive disorders – EurekAlert

Mount Sinai researchers have used novel artificial intelligence methods to examine structural and cellular features of human brain tissues to help determine the causes of Alzheimers disease and other related disorders. The research team found that studying the causes of cognitive impairment by using an unbiased AI-based methodas opposed to traditional markers such as amyloid plaquesrevealed unexpected microscopic abnormalities that can predict the presence of cognitive impairment. These findings were published in the journal Acta Neuropathologica Communications on September 20.

AI represents an entirely new paradigm for studying dementia and will have a transformative effect on research into complex brain diseases, especially Alzheimers disease, said co-corresponding author John Crary, MD, PhD, Professor of Pathology, Molecular and Cell-Based Medicine, Neuroscience, and Artificial Intelligence and Human Health, at the Icahn School of Medicine at Mount Sinai. The deep learning approach was applied to the prediction of cognitive impairment, a challenging problem for which no current human-performed histopathologic diagnostic tool exists.

The Mount Sinai team identified and analyzed the underlying architecture and cellular features of two regions in the brain, the medial temporal lobe and frontal cortex. In an effort to improve the standard of postmortem brain assessment to identify signs of diseases, the researchers used a weakly supervised deep learning algorithm to examine slide images of human brain autopsy tissues from a group of more than 700 elderly donors to predict the presence or absence of cognitive impairment. The weakly supervised deep learning approach is able to handle noisy, limited, or imprecise sources to provide signals for labeling large amounts of training data in a supervised learning setting. This deep learning model was used to pinpoint a reduction in Luxol fast blue staining, which is used to quantify the amount of myelin, the protective layer around brain nerves. The machine learning models identified a signal for cognitive impairment that was associated with decreasing amounts of myelin staining; scattered in a non-uniform pattern across the tissue; and focused in the white matter, which affects learning and brain functions. The two sets of models trained and used by the researchers were able to predict the presence of cognitive impairment with an accuracy that was better than random guessing.

In their analysis, the researchers believe the diminished staining intensity in particular areas of the brain identified by AI may serve as a scalable platform to evaluate the presence of brain impairment in other associated diseases. The methodology lays the groundwork for future studies, which could include deploying larger scale artificial intelligence models as well as further dissection of the algorithms to increase their predictive accuracy and reliability. The team said, ultimately, the goal of this neuropathologic research program is to develop better tools for diagnosis and treatment of people suffering from Alzheimers disease and related disorders.

Leveraging AI allows us to look at exponentially more disease relevant features, a powerful approach when applied to a complex system like the human brain, said co-corresponding author Kurt W. Farrell, PhD, Assistant Professor of Pathology, Molecular and Cell-Based Medicine, Neuroscience, and Artificial Intelligence and Human Health, at Icahn Mount Sinai. It is critical to perform further interpretability research in the areas of neuropathology and artificial intelligence, so that advances in deep learning can be translated to improve diagnostic and treatment approaches for Alzheimers disease and related disorders in a safe and effective manner.

Lead author Andrew McKenzie, MD, PhD, Co-Chief Resident for Research in the Department of Psychiatry at Icahn Mount Sinai, added: Interpretation analysis was able to identify some, but not all, of the signals that the artificial intelligence models used to make predictions about cognitive impairment. As a result, additional challenges remain for deploying and interpreting these powerful deep learning models in the neuropathology domain.

Researchers from the University of Texas Health Science Center in San Antonio, Texas, Newcastle University in Tyne, United Kingdom, Boston University School of Medicine in Boston, and UT Southwestern Medical Center in Dallas also contributed to this research. The study was supported by funding from the National Institute of Neurological Disorders and Stroke, the National Institute on Aging, and the Tau Consortium by the Rainwater Charitable Foundation.

About the Mount Sinai Health System

Mount Sinai Health System is one of the largest academic medical systems in the New York metro area, with more than 43,000 employees working across eight hospitals, over 400 outpatient practices, nearly 300 labs, a school of nursing, and a leading school of medicine and graduate education. Mount Sinai advances health for all people, everywhere, by taking on the most complex health care challenges of our time discovering and applying new scientific learning and knowledge; developing safer, more effective treatments; educating the next generation of medical leaders and innovators; and supporting local communities by delivering high-quality care to all who need it.

Through the integration of its hospitals, labs, and schools, Mount Sinai offers comprehensive health care solutions from birth through geriatrics, leveraging innovative approaches such as artificial intelligence and informatics while keeping patients medical and emotional needs at the center of all treatment. The Health System includes approximately 7,300 primary and specialty care physicians; 13 joint-venture outpatient surgery centers throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and more than 30 affiliated community health centers. We are consistently ranked by U.S. News & World Report's Best Hospitals, receiving high Honor Roll status, and are highly ranked: No. 1 in Geriatrics and top 20 in Cardiology/Heart Surgery, Diabetes/Endocrinology, Gastroenterology/GI Surgery, Neurology/Neurosurgery, Orthopedics, Pulmonology/Lung Surgery, Rehabilitation, and Urology. New York Eye and Ear Infirmary of Mount Sinai is ranked No. 12 in Ophthalmology. U.S. News & World Reports Best Childrens Hospitals ranks Mount Sinai Kravis Children's Hospital among the countrys best in several pediatric specialties. The Icahn School of Medicine at Mount Sinai is one of three medical schools that have earned distinction by multiple indicators: It is consistently ranked in the top 20 by U.S. News & World Reports Best Medical Schools, aligned with a U.S. News & World Report Honor Roll Hospital, and top 20 in the nation for National Institutes of Health funding and top 5 in the nation for numerous basic and clinical research areas. Newsweeks Worlds Best Smart Hospitals ranks The Mount Sinai Hospital as No. 1 in New York City and in the top five globally, and Mount Sinai Morningside in the top 30 globally; Newsweek also ranks The Mount Sinai Hospital highly in 11 specialties in Worlds Best Specialized Hospitals, and in Americas Best Physical Rehabilitation Centers.

For more information, visit https://www.mountsinai.org or find Mount Sinai on Facebook, Twitter and YouTube.

Acta Neuropathologica Communications

Interpretable deep learning of myelin histopathology in age-related cognitive impairment

20-Sep-2022

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

See the original post:
Mount Sinai researchers use artificial intelligence to uncover the cellular origins of Alzheimer's disease and other cognitive disorders - EurekAlert

Be On The Cutting-Edge Of Tech With This Top-Rated Learning Bundle – IFLScience

If youve heard the term machine learning, but arent quite sure what it means, then youve come to the right place. Machine learning is a type of artificial intelligence that allows software applications to become more accurate at predicting outcomes without being specifically programmed to do so. Basically, machine learning (MI) and artificial intelligence (AI) are helping businesses by improving customer service, reducing errors, managing automation and much more. Why do you need to know all of this? Well, for all of you out there looking to boost your income and career opportunities, you should consider this handy bundle that will give you the basics in machine learning.

The Premium Machine Learning Artificial Intelligence Super Bundle offers you 79 hours, 12 courses and 438 training on Python, data science, analysis and tons more. Start by learning the fundamentals of Python, and dont worry its not all theory. Youll be getting some serious hands-on training. Learn the powerful tools used in data science and machine learning and get certified. Create deep learning algorithms in Python, master the importance of deep learning for Python, harness the power of the H2O framework for machine learning with R, create your very own image detection app and so much more.

With each course rating 4+ stars or higher, you know you are in good hands to learn the fundamentals of machine learning and artificial intelligence. Need further convincing? In the words of one 5-star reviewer, The Premium Machine Learning Artificial Intelligence Super Bundle is amazing, lot of information on Machine Learning and Artificial Intelligence. Great quality on videos. Must have this bundle!!!

If youve been looking for a way out of your 9-5 nightmare, but just havent had the opportunity, now is your chance. This learning bundle comes with lifetime access, which means you can learn whenever or wherever you need. And, you can feel free to revisit material any time.

Join the 531 people enrolled today, and begin your journey towards a more lucrative career.

Get The Premium Machine Learning Artificial Intelligence Super Bundle for $36.99 (reg. $2,388), a discount of 98 per cent.

Prices subject to change.

This article includes sponsored material. Read our transparency policy for more information.

More here:
Be On The Cutting-Edge Of Tech With This Top-Rated Learning Bundle - IFLScience

How Machine Learning And AI Is Transforming The Logistic Sector? – Daijiworld.com

Sep 12: Digitization has changed many sectors across the globe and that also include the logistic sector. With digitization, machine learning and artificial intelligence have become the norm. Logistic sectors have been implementing machine learning and artificial intelligence to innovate the sector and improve it further. The usage of artificial intelligence and machine learning has improved the productivity of the logistic sector. According to a report by Katrine Spina and Anastasiya Zharovskikh, the productivity of the logistic sector will increase by 40% by 2035 with the help of artificial intelligence and machine learning.

With the help of big data, logistic companies have been helpful in making clear predictions that were useful to improve their performance. Visibility and prediction have become possible due to the implementation of artificial intelligence and machine learning in the logistic sector. Here is how machine learning and artificial intelligence has been helpful in the logistic sector.

1. Robotics can be used to help the workforce

Including robotics in the logistic sector has been helpful in logistic companies likeDelhivery primarily with autonomous navigation. It has also further reduced the burden from the workforce and has been helpful in providing cost-effective solutions. Automated robots in the logistic sectors have been helpful in material selection and handling, long-haul distribution along last-mile delivery.

2. Warehouse management and optimization of supply chain planning

Warehouse management in the logistic sector can only be optimized when it is accurately predicted when things need to be moved and what equipment is needed to handle it. This can improve the overall productivity of the warehouse. Accuracy of such predictions is possible with the help of big data. Also, with the help of contextual intelligence, effective planning can be made in logistic companies like Ekart. AI-based solutions are helpful in forecasting demand and machine learning can also be applied in order to improve the efficiency of the supply chain too.

3. Autonomous vehicles

Autonomous vehicles have become popular all across the world and it would not have been possible if artificial intelligence did not exist. Artificial intelligence allows autonomous vehicles to perceive and then further, predict the changes in the environment with the help of sensing technologies. With autonomous vehicles, last-mile delivery can be fastened. Many logistic companies have been experimenting with autonomous vehicles as a part of their development strategy and Google and Tesla have been working hard towards this sector.

4. Improved customer experience

Gone are the days when the general queries of the customers used to be handled by real people. Thankfully, customer experiences are now handled with the help of chatbots and this has made things so much easier in ensuring a satisfactory customer experience. Many companies have accepted that the customer experience played a vital role in the growth of the company. The use of artificial intelligence in customer experience has been helpful in improving customer loyalty and retention with personalization.

5. Efficient planning and resource management

For the growth of any business and not just the logistic sector, efficient planning and resource management are important. Artificial intelligence plays a key role in efficient planning and resource management by helping companies to reduce the cost and optimize the movement of commodities, which also improves the supply chain of the logistic sector in real-time.

6. Time Route Optimization

Artificial intelligence also makes it possible for real-time route optimization which increases the efficiency of the delivery and thereby, helps in reducing the waste of resources. Many logistics companies have already been using an autonomous delivery system which has made it possible to deliver items at a much quicker pace and that too without the requirement of human labor. Artificial intelligence has always been helpful in freight management by helping in efficient logistic management by lowering the shipping costs and improving the delivery process.

In addition to the factors mentioned above, machine learning and artificial intelligence also help in demand prediction, sales and marketing optimization, product inspection and back-office automation. Competitive advantage will be in the hands of logistic sectors that use artificial intelligence and machine learning for the growth of the company. The current demands of the customers include real-time visibility, super-fast deliveries and it is possible to meet such expectations of the customers only by accepting technology in the logistics sector.

View post:
How Machine Learning And AI Is Transforming The Logistic Sector? - Daijiworld.com

Apple machine learning speech focuses on benefits for accessibility and health – 9to5Mac

Apple machine learning projects span almost every aspect of the companys activities, but in a new speech at an AI conference, a senior exec spoke specifically about the benefits for accessibility and health.

Ge Yue, Apple VP and managing director of Apple Greater China, gave her speech at the 2022 World Artificial Intelligence Conference in Shanghai

NPR reports:

Apple has given a rare speech at a global AI gathering, with vice president Ge Yue choosing to concentrate on Machine Learning in accessibility features []

The company has chosen to illustrate the technology through accessibility features in Apple Watch, and AirPods Pro []

She said that Machine Learning plays a crucial role in Apples hope that its products can help people innovate and create, and provide the support they need in their daily lives.

We believe that the best products in the world should meet everyones needs, she continued. Accessibility is one of our core values and an important part of all products. We are committed to manufacturing products that are truly suitable for everyone.

We know that machine learning can help disabled users provide independence and convenience, she said, including people with the visually impaired, the hearing impaired, people with physical and motor disabilities, and people with cognitive impairment.

Ge Yue gave the example of the Assistive Touch feature on Apple Watch, which the company introduced last year, alongside eye-tracking on iPad.

To support users with limited mobility, Apple is introducing a revolutionary new accessibility feature for Apple Watch. AssistiveTouch for watchOS allows users with upper body limb differences to enjoy the benefits of Apple Watch without ever having to touch the display or controls.

Using built-in motion sensors like the gyroscope and accelerometer, along with the optical heart rate sensor and on-device machine learning, Apple Watch can detect subtle differences in muscle movement and tendon activity, which lets users navigate a cursor on the display through a series of hand gestures, like a pinch or a clench. AssistiveTouch on Apple Watch enables customers who have limb differences to more easily answer incoming calls, control an onscreen motion pointer, and access Notification Center, Control Center, and more.

She said that this utilized on-device machine learning.

This function combines machine learning on the device with data from the built-in sensors of Apple Watch to help detect subtle differences in muscle movement and tendon activity, thus replacing the display tapping.

Apple views accessibility as one of the companys core values, and its tech can make a huge difference to the lives of people with disabilities. One reader spoke earlier this year about small things making a big difference.

I always thought it bonkers when using Siri on iPhones, for years users can place a call by saying Hey Siri, call, but until now theres been no Hey Siri, end call command. It lead to a lot of daily frustration as I cant press the red button on the iPhone screen to hang up a phone call, so this prompted me to campaign for it. Im really glad Apple has listened and resolved the contradiction in iOS 16! Hopefully, it will also be of use to anyone who has their hands full.

That point is one others have echoed: Accessibility features may be aimed primarily at those with disabilities, but can often prove beneficial to a much wider audience.

Apple also sees machine learning having huge potential for future health features, says Ge Yue.

Saying, too, that our exploration in the field of health has just begun, she says that Apple believes that machine learning and sensor technology have unlimited potential in providing health insights and encouraging healthy lifestyles.

Photo: Xu Haiwei/Unsplash

FTC: We use income earning auto affiliate links. More.

Check out 9to5Mac on YouTube for more Apple news:

Originally posted here:
Apple machine learning speech focuses on benefits for accessibility and health - 9to5Mac

Floating-Point Formats in the World of Machine Learning – Electronic Design

What youll learn:

Over the last two decades, compute-intensive artificial-intelligence (AI) tasks have promoted the use of custom hardware to efficiently drive these robust new systems. Machine-learning (ML) models, one of the most used forms of AI, are trained to handle those intensive tasks using floating-point arithmetic.

However, because floating-point formats have been extremely resource-intensive, AI deployment systems often rely on one of a handful of now-standard integer quantization techniques using floating-point formats, such as Google's bfloat16 and IEEE's FP16.

Since computer memory is limited, it's not efficient to store numbers with infinite precision, whether theyre binary fractions or decimal ones. This is due to the inaccuracy of the numbers when it comes to certain applications, such as training AI.

While software engineers can design machine-learning algorithms, they often can't rely on the ever-changing hardware to be able to efficiently execute those algorithms. The same can be said for hardware manufacturers, who often produce next-gen CPUs without being task-oriented, meaning the CPU is designed to be a well-rounded platform to process most tasks instead of target-specific applications.

When it comes to computing, floating-points are formulaic arithmetic representative of real numbers that are an approximation to support a tradeoff between range and precision, or rather tremendous amounts of data and accurate outcomes. Because of this, floating-point computation is often used in systems with minimal and large numbers that require fast processing times.

It's widely known that deep neural networks can tolerate lower numerical precision because high-precision calculations are less efficient when training or inferencing neural networks. Additional precision offers no benefit while being slower and less memory-efficient.

In fact, some models can even reach higher accuracy with lower precision. A paper released by Cornell University attributes to the regularization effects of the lower precision.

While there are a ton of floating-point formats, only a few have gained traction for machine-learning applications as those formats require the appropriate hardware and firmware support to run efficiently. In this section, we will look at several examples of floating-point formats designed to handle machine-learning development.

IEEE 754

The IEEE standard 754 (Fig. 1) is one of the widely known formats for AI apps. Its a set of representations of numerical values and symbols, including FP16, FP32, and FP64 (AKA Half, Single and Double-precision formats). FP32, for example, is broken down as a sequence of 32 bits, such as b31, b30, and b29, all the way down to zero.

A floating-point format is specified by a base (b), which is either 2 (binary) or 10 (decimal), a precision (p) range, and an exponent range from emin to emax, with emin = 1 emax for all IEEE 754 formats. The format comprises finite numbers that can be described by three integers.

These integers include s = a sign (zero or one), c = a significand (or coefficient) having no more than p digits when written in base b (i.e., an integer in the range through 0 to bp 1), and q = an exponent such that emin q + p 1 emax. The format also comprises two infinites (+ and ) and two kinds of NaN (Not a Number), including a quiet NaN (qNaN) and a signaling NaN (sNaN).

The details here are extensive, but this is the overall format of how the IEEE 754 floating-point functions; more detailed information can be found at the link above. FP32 and FP64 are on the larger floating-point spectrum, and theyre supported by x86 CPUs and most of today's GPUs, along with the C/C++, PyTorch, and TensorFlow programming languages. FP16, on the other hand, isn't widely used with modern processors, but its widely supported by current GPUs in conjunction with machine learning frameworks.

Bfloat16

Google's bfloat16 (Fig. 2) is another widely utilized floating-point format aimed at machine-learning workloads. The Brain Floating Point Format is basically a truncated version of IEEE's FP16, allowing for fast, single-precision conversion of the 754 to and from that format. When applied to machine learning, there are generally three flavors of values, including weights, activations, and gradients.

Google recommends storing weights and gradients in the FP32 format and storing activations in bfloat16. Of course, the weights also can be stored in BFloat16 without a significant performance degradation depending on the circumstances.

At its core, bfloat16 consists of one sign bit, eight exponent bits, and seven mantissa bits. This differs from the IEEE 16-bit floating-point, which was not designed with deep-learning applications in mind during its development. The format is utilized in Intel AI processors, including Nervana NNP-L1000, Xeon processors, Intel FPGAs, and Google Cloud TPUs.

Unlike the IEEE format, bfloat16 isnt used with C/C++ programming languages. However, it does take advantage of TensorFlow, AMD's ROCm, NVIDIA's CUDA, and the ARMv8.6-A software stack for AI applications.

TensorFloat

NVIDIA's TensorFloat (Fig. 3) is another excellent floating-point format. However, it was only designed to take advantage of TensorFlow TPUs built explicitly for AI applications. According to NVIDIA, "TensorFloat-32 is the new math mode in NVIDIA A100 GPUs for handling the matrix math also called tensor operations used at the heart of AI and certain HPC applications. TF32 running on Tensor Cores in A100 GPUs can provide up to 10X speedups compared to single-precision floating-point math (FP32) on Volta GPUs."

The format is just a 32-bit float that drops 13 precision bits to run on Tensor Cores. Thus, it has the precision of the FP16 (10 bits), but has the range of the FP32 (8 bits) IEEE 754 format.

NVIDIA states that TF32 uses the same 10-bit mantissa as the half-precision FP16 math, which is shown to have more than enough margin for the precision requirements of AI workloads. TF32 also adopts the same 8-bit exponent as FP32, so it can support the same numeric range. That means content can be converted from FP32 to TF32, making it easy to switch platforms.

Currently, TF32 doesnt support C/C++ programming languages, but NVIDIA says that the TensorFlow framework and a version of the PyTorch framework with support for TF32 on NGC are available for developers. While it limits the hardware and software that can be used with the format, its exceptional in performance on the companys GPUs.

This is just a basic overview of floating-point formats, an introduction to a larger, more extensive world designed to lessen hardware and software demands to drive innovation within the AI industry. It will be interesting to see how these platforms evolve over the coming years as AI becomes more advanced and ingrained within our lives. The technology is constantly evolving, so too must the formats that make developing machine-learning applications increasingly efficient in software execution.

See more here:
Floating-Point Formats in the World of Machine Learning - Electronic Design

5 use cases for machine learning in the insurance industry – Digital Insurance

In 2020, the U.S. insurance industry was worth a whopping $1.28 trillion. The American insurance industry is one of the largest markets in the world. The massive amount of premiums means there is an astronomical amount of data involved. Without artificial intelligence technology like machine learning, insurance companies will have a near-impossible time processing all that data, which will create greater opportunities for insurance fraud to happen.

Insurance data is vast and complex, composed of many individuals with many instances and many factors used in determining the claims. Moreover, the type of insurance increases the complexity of data ingestion and processing. Life insurance is different from automobile insurance, health insurance is different from property insurance, and so forth. While some of the processes are similar, the data can vary greatly.

As a result, insurance enterprises must prioritize digital initiatives to handle huge volumes of data and support vital business objectives. In the insurance industry, advanced technologies are critical for improving operational efficiency, providing excellent customer service, and, ultimately, increasing the bottom line.

ML can handle the size and complexity of insurance data. It can be implemented in multiple aspects of the insurance practice, and facilitates improvements in customer experiences, claims processing, risk management, and other general operational efficiencies. Most importantly, ML can mitigate the risk of insurance fraud, which plagues the entire industry. It is a big development in fraud detection and insurance organizations must add it to their fraud prevention toolkit.

In this post, we lay out how insurance companies are using ML to improve their insurance processes and flag insurance fraud before it affects their bottom lines. Read on to see how ML can fit within your insurance organization.

ML is a technology under the AI umbrella. ML is designed to analyze data so computers can make predictions and decisions based on the identification of patterns and historical data. All of this is without being explicitly programmed and with minimal human intervention. With more data production comes smarter ML solutions as they adapt autonomously and are constantly learning. Ultimately, AI/ML will handle menial tasks and free human agents to perform more complex requests and analyses.

There are several use cases for ML within an insurance organization regardless of insurance type. Below are some top areas for ML application in the insurance industry:

For insurers and salespeople, ML can identify leads using valuable insights from data. ML can even personalize recommendations according to the buyer's previous actions and history, which enables salespeople to have more effective conversations with buyers.

For a majority of customers, insurance can seem daunting, complex, and unclear. It's important for insurance companies to assist their customers at every stage of the process in order to increase customer acquisition and retention. ML via chatbots on messaging apps can be very helpful in guiding users through claims processing and answering basic frequently asked questions. These chatbots use neural networks, which can be developed to comprehend and answer most customer inquiries via chat, email, or even phone calls. Additionally, ML can take data and determine the risk of customers. This information can be used to recommend the best offer that has the highest likelihood of retaining a customer.

ML utilizes data and algorithms to instantly detect potentially abnormal or unexpected activity, making ML a crucial tool in loss prediction and risk management. This is vital for usage-based insurance devices, which determine auto insurance rates based on specific driving behaviors and patterns.

Unfortunately, fraud is rampant in the insurance industry. Property and casualty insurance alone loses about $30 billion to fraud every year, and fraud occurs in nearly 10% of all P&C losses. ML can mitigate this issue by identifying potential claim situations early in the process. Flagging early allows insurers to investigate and correctly identify a fraudulent claim.

Claims processing is notoriously arduous and time-consuming. ML technology is a tool to reduce processing costs and time, from the initial claim submission to reviewing coverages. Moreover, ML supports a great customer experience because it allows the insured to check the status of their claim without having to reach out to their broker/adjuster.

Fraud is one of the biggest problems for the insurance industry, so let's return to the fraud detection stage in the insurance lifecycle and detail the benefits of ML for this common issue. Considering the insurance industry consists of more than 7,000 companies that collect more than $1 trillion in premiums each year, there are huge opportunities and incentives for insurance fraud to occur.

Insurance fraud is an issue that has worsened since the COVID-19 pandemic began. Some industry professionals believe that the number of claims with some element of fraud has almost doubled since the pandemic.

Below are the various stages in which insurance fraud can occur during the insurance lifecycle:

Based on the amount of fraud and the different types of fraud, insurance companies should consider adding ML to their fraud detection toolkits. Without ML, insurance agents can be overwhelmed with the time-consuming process of investigating each case. The ML approaches and algorithms that facilitate fraud detection are the following:

ML is instrumental in fraud prevention and detection. It allows companies to identify claims suspected of fraud quickly and accurately, process data efficiently, and avoid wasting valuable human resources.

Implementing digital technologies, like ML, is vital for insurance businesses to handle their data and analytics. It allows insurance companies to increase operational efficiency and mitigate the top-of-mind risk of insurance fraud.

Read the original:
5 use cases for machine learning in the insurance industry - Digital Insurance

Everything Youve Ever Wanted to Know About Machine Learning – KDnuggets

Looking for a fun introduction to AI with a sense of humor? Look no further than Making Friends with machine learning (MFML), a lovable free YouTube course designed with everyone in mind. Yes,everyone. If youre reading this, the course is for you!

Image by Randall Munroe,xkcd.comCC.

Short form videos:Most of the videos below are 15 minutes long, which means you get to upgrade your knowledge in bite-sized, well, bites. Tasty bites! Dive right in at the beginning or scroll down to find the topic youd like to learn more about.

Long form videos:For those who prefer to learn in 12 hour feasts, the course is also available as 4 longer installmentshere.

Making Friends with machine learningwas an internal-only Google course specially created to inspire beginners and amuse experts.* Today, it is available to everyone!

The course is designed to give you the tools you need for effective participation in machine learning for solving business problems and for being a good citizen in an increasingly AI-fueled world. MFML is perfect for all humans; it focuses on conceptual understanding (rather than the mathematical and programming details) and guides you through the ideas that form the basis of successful approaches to machine learning. It has something for everyone!

After completing this course, you will:

I was simply blown away by the quality of her presentation. This was a 6-hour(!) tour de force; through every minute of it, Cassie was clear, funny, energetic, approachable, insightful and informative.Hal Ableson, Professor of Computer Science at MIT

I cannot emphasize enough how valuable it was that this course was targeted towards a general audience. Human resources specialist

Fantastic class, plus it is hilarious! Software engineer

I now feel more confident in my understanding of ML Loved it. Communications manager

More useful than any of the courses I took in university on this stuff. Reliability engineer

I loved how she structured the course, knowing the content, and navigating this full-day course without getting us bored. So I learned two things in this lesson. 1) Machine learning, and 2) Presentation skills. Executive

Great Stuff: I would recommend it. ML Research Scientist

always interesting and keeps my attention. Senior leader, Engineering

well structured, clear, pitched in at the right level for people like me and full of useful visuals and stories to help me understand and remember. I learnt a ton. Senior leader, Sales

Read more here:
Everything Youve Ever Wanted to Know About Machine Learning - KDnuggets

How avatars and machine learning are helping this company to fast track digital transformation – ZDNet

Image: LNER

Digital transformation is all about delivering change, so how do you do that in an industry that's traditionally associated with largescale infrastructures and embedded operational processes?

Danny Gonzalez, chief digital and innovation officer (CDIO) at London North Eastern Railway (LNER), says the answer is to place technology at the heart of everything your business does.

"We firmly believe that digital is absolutely crucial," he says. "We must deliver the experiences that meet or exceed customers' expectations."

Delivering to that agenda is no easy task. Gonzalez says the rail journey is "absolutely full" of elements that can go wrong for a passenger, from buying a ticket, to getting to the train station, to experiencing delays on-board, and onto struggling to get away from the station when they reach their destination.

SEE: Digital transformation: Trends and insights for success

LNER aims to fix pain points across customer journeys, but it must make those changes in a sector where legacy systems and processes still proliferate. Gonzalez says some of the technology being used is often more than 30 years' old.

"There's still an incredible amount of paper and spreadsheets being used across vast parts of the rail industry," he says.

"Our work is about looking at how things like machine learning, automation and integrated systems can really transform what we do and what customers receive."

Gonzalez says that work involves a focus on the ways technology can be used to improve how the business operates and delivers services to its customers.

This manifests as an in-depth blueprint for digital transformation, which Gonzalez refers to as LNER's North Star: "That gives everyone a focus on the important things to do."

As CDIO, he's created a 38-strong digital directorate of skilled specialists that step out of traditional railways processes and governance and into innovation and the generation of creative solutions to intractable challenges.

"It's quite unusual for a railway company to give more permission for people to try things and fail," he says.

Since 2020, the digital directorate in combination with its ecosystem of enterprise and startup partners has launched more than 60 tools and trialled 15 proof-of-concepts.

One of these concepts is an in-station avatar that has been developed alongside German national railway company Deutsche Bahn AG.

LNER ran a trial in Newcastle that allowed customers to interact in free-flowing conversations with an avatar at a dedicated booth at the station. The avatar plugged into LNER's booking engine, so customers could receive up-to-date information on service availability. Following the successful trial, LNER is now looking to procure a final solution for wider rollout.

The company is also working on what Gonzalez refers to as a "door-to-door" mobility-as-a-service application, which will keep customers up to date on the travel situation and provide hooks into other providers, such as taxi firms or car- and bike-hire specialists.

"It's about making sure the whole journey is seamlessly integrated," he says. "As a customer, you feel in control and you know we're making sure that if anything is going wrong through the process that we're putting it right."

When it comes to behind-the-scenes operational activities, LNER is investing heavily in machine-learning technology. Gonzalez's team has run a couple of impactful concepts that are now moving into production.

SEE:What is digital transformation? Everything you need to know about how technology is reshaping business

One of these is a technology called Quantum, which processes huge amounts of historical data and helps LNER's employees to reroute train services in the event of a disruption and to minimise the impact on customers.

"Quantum uses machine learning to learn the lessons of the past. It looks at the decisions that have been made historically and the impact they have made on the train service," he says.

Gonzalez: "We firmly believe that digital is absolutely crucial."

"It computes hundreds of thousands of potential eventualities of what might happen when certain decisions are made. It's completely transforming the way that our service delivery teams manage trains when there's disruption to services."

To identify and exploit new technologies, Gonzalez's team embracesconsultant McKinsey's three horizon model, delivering transformation across three key areas that allows LNER to assess potential opportunities for growth without neglecting performance in the present.

Horizon one focuses on "big, meaty products" that are essential to everyday operations, such as booking and reservations systems, while horizon two encompasses emerging opportunities that are currently being scoped out by the business.

Gonzalez says a lot of his team's activity is now focused on horizon three, which McKinsey suggests includes creative ideas for long-term profitable growth.

He says that process involves giving teams quite a lot of freedom to get on and try stuff, run proof of concepts, and actually understand where the technology works.

Crucial to this work isan accelerator called FutureLabs, where LNER works with the startup community to see if they can help push digital transformation in new and exciting directions.

"We go out with key problem statements across the business and ask the innovators to come and help us solve our challenges and that's led to some of the most impactful things that we've done as a business," says Gonzalez.

FutureLabs has already produced pioneering results. Both the Quantum machine-learning tool and the "door-to-door" mobility service have been developed alongside startup partners JNCTION and IOMOB respectively.

LNER continues to search for new inspiration and has just run the third cohort of its accelerator. Selected startups receive mentoring and funding opportunities to develop and scale up technology solutions.

Gonzalez says this targeted approach brings structure to LNER's interactions and investments in the startup community and that brings a competitive advantage.

"It's not like where I've seen in other places, where innovation initiatives tend to involve 'spray and pray'," he says. "The startups we work with are clear on the problems they're trying to solve, which leads to a much greater success rate."

SEE: Four ways to get noticed in the changing world of work

Gonzalez's advises other professionals to be crystal clear on the problems they're trying to solve through digital transformation.

"Know what the priorities are and bring the business along with you. Its really important the business understands the opportunities digital can bring in terms of how you work as an organisation," he says.

"We're fortunate that we've got a board that understood that rail wasn't where it needed to be in terms of its digital proposition. But we've put a lot of work into creating an understanding of where issues existed and the solutions that we needed if we're going to compete in the future."

More:
How avatars and machine learning are helping this company to fast track digital transformation - ZDNet

Getting Value Out of An ML with Philip Howes – InfoQ.com

Subscribe on: Apple Podcasts Google Podcasts Soundcloud Spotify Overcast Podcast Feed

Struggling to scale your IoT infrastructure? Get more performance out of your network today with EMQ. From proof-of-concept to large-scale deployment, EMQ enables mission-critical IoT solutions at the edge, in the cloud, and across multi-cloud.EMQ: Mission-critical data infrastructure for IoT.

Roland Meertens: Welcome to the new episode of the InfoQ podcast. Today, I, Roland Meertens, am going to interview Philip Howes. In the past, he was a machine learning engineer and currently he is a chief scientist and co-founder in Baseten. He has worked with neural networks for a long time, of which we have an interesting story at the end of the podcast.

Because of his work at Baseten, Philip and I will talk about how to go from an idea to a deployed model, as fast as possible, and how to improve their model afterwards in the most efficient way. We will also discuss how the future of engineering teams looks like and what the role of data scientist is there. Please enjoy listening to this episode.

Welcome, Philip, to the InfoQ podcast. The first topic we want to discuss is going from zero to one and minimizing time to value. What do you mean by that?

Philip Howes: I guess what I mean is, how do we make sure that machine learning projects actually leave the notebook or your development environment? So much of what I see in my work is these data science projects or machine learning projects that have these aspirations and they fall flat for all sorts of different reasons. And really, what we're trying to do is get the models into the hands of the downstream users or the stakeholders as fast as possible.

Roland Meertens: So, really trying to get your model into deployment. What kind of tools do you like to use for that? Or what kind of tools would you recommend for that?

Philip Howes: I keep saying that we're in the Wild West and I keep having to sort of temperature check. Is it still the Wild West? And it turns out from this report last week that I had read, yes, it is.

I think at least in enterprise, most people are doing everything sort of in-house. They're sort of building their own tools. I think this is even more the case in startup land, people hiring and building rather than using that many off-the-shelf tools.

I think that there has been this good ecosystem that's starting to form around getting to value as quickly as possible. Obviously, the company I started with my co-founders is operating in this space, but there are other great ones, even in the space of just out of these Jupyter notebooks. There's like Voila. And then some more commonly known things like GradIO, Streamlit, Data Bricks, all the way up to, I guess, the big cloud players like Amazon and others.

Roland Meertens: Do you remember the name of the report? Or can we put it in the show notes somehow?

Philip Howes: I think it's just an S&P global report on MLOps. I'll try and find a link and we can share it.

Roland Meertens: Yes, then I'll share it at the end of that podcast or on the InfoQ website. So, if we're talking about deploying things, what are good practices then around this process? Are there any engineering best practices at the moment?

Philip Howes: I mean, I think this is a really interesting area because engineering as a field is such a well established field. We really have, through the course of time, iterated on and developed these best practices for how to package applications, how to do separations of concerns.

And, with regards to machine learning, it's kind of like, well, the paradigm is very different. You're going from something which is very deterministic to something that's probabilistic. And you're using models in place of deterministic logic. And so, some of the patents aren't quite the same. And the actual applications that you're building typically are quite different, as well, because you're trying to make predictions around things. And so, the types of applications that make predictions are pretty fundamentally different from applications that serve some sort of very deterministic process.

I think there's certainly some similarities.

I think it's really important to involve all the stakeholders as early as possible. And this is why minimizing time to value is such an important thing to be thinking about as you're doing development in machine learning applications. Because at the end of the day, a machine learning application is just a means to an end. You're building this model because it's going to unlock some value for someone.

And usually, the stakeholder is not the machine learning engineer or the data scientist. It's somebody who's doing some operationally heavy thing. It might be some toy app that is facing consumers who might be doing recommendations. But as long as the stakeholders aren't involved, you're really limiting your ability to close that feedback loop between, what is the value of this thing and how am I producing this thing?

And so, I think this is true in both engineering and machine learning. The best products are the ones that have very clear feedback loops between the development of the product and the actual use of the product.

And then, of course there are other things that we have to think about in the machine learning world around understanding, again, we're training these models on large amounts of data. We don't really have the capacity to look at every data point. We have to look at these things statistically. And because of that, we start to introduce bias. And where are we getting bias from? Where is data coming from? And the models that we're developing to put into these operational flows, are they reinforcing existing structural biases that are inherent in the data? What are the limitations of the models?

And so, thinking about data is also really important.

Roland Meertens: The one thing which always scares me is that, if I have a model and I update it and put it in production again, will it still work? Is everything still the same? Am I still building on the assumptions I had in the past? Do you have some guard rails there? Or are there guard rails necessary when you want to update those machine learning models all the time?

Philip Howes: Absolutely. I mean, there's, of course, best practices around just making sure things stay stable as you are updating. But coming from an engineering background, what is the equivalent of doing unit tests for machine learning models? How do we make sure that the model continues to behave in a way...

At the end of the day, you're optimizing over some metric, whether it be accuracy or something a little bit more exotic. You're optimizing over something. And so you're following that number. You're following the metric. You're not really following sort of, what does that actually mean?

And so it's always good to think about, "Okay, well, how do I think about what this model should be doing as I iterate on it?" And making sure that, "Hey, can I make sure that, if I understand biases in the data or if I understand where I need the model to perform well, and incorporating those understandings as kind of tests that I do, whether or not they're in an automated way or an ad hoc way..."

I think obviously automation is the key to doing things in these really closed tight feedback loops. But if I understand, "Hey, for this customer segment, this model should be saying this kind of thing," and I can build some statistics around making sure that the model is not moving too much, then I think that's the kind of thing that you've got to be thinking about.

Roland Meertens: I think we now talked a bit about going from zero and having nothing to one where you create some value. And you already mentioned the data a couple of times. So, how would you go at extending your data in a valuable way?

Philip Howes: I guess fundamentally we have to think about, why is data important to machine learning?

Most machine learning models, they're trained doing some sort of supervised learning. Without sufficient amount of data, you're not going to be able to extract enough signal so that your model is able to perform on something.

At the end of the day, that is also changing. The world around you is changing and the way that your model needs to perform in that world has to also adapt to a changing world. So, we've got to of think about how to evolve.

Actually, one sort of little tangent, I was reading the Chinchilla paper recently. And what was really interesting is, data is now becoming the bottleneck in improvements to a model. So, this is one of these things that I think, for a very long time, we thought, "Hey, big neural nets. How do we make them better? We add more parameters to the model. We get better performance by creating bigger models."

And it turns out that maybe actually data is now becoming the bottleneck. This paper showed that basically, the model size... Well, I guess the loss associated with the model is linear in the inverses of both the model size and the size of the data that you use to train it. So, there is this trade off that you have to think about, at least in the forefront of machine learning, where we're starting to get this point where data becomes a bottleneck.

So, data's obviously very important.

Then the question is, "Okay, how do we get data?"

Obviously, there are open data sets and that usually gives us a great place to start. But how many domain specific data sets are there? There's not that many. So, we have to think about, how do we actually start collecting and generating data? There is a few different ways.

I think some of the more novel ways are in synthesizing data. I think that's a whole nother topic. But I think for the majority of people, what we end up doing is, getting some unlabeled data and then figuring out, "Okay, how do we start labeling?" And there's this whole ecosystem that exists in the labeling tools and labeling machine learning models. And if we go back to our initial discussion around, "Hey, zero to one, you're trying to build this model," labeling is this process in which you start with the data, but the end product is both labeled data and also the model that is able to score well on your data set, as you are labeling.

Roland Meertens: I think often it's not only the availability of data. Data is relatively cheap to generate. But having high quality labels with this data and selecting the correct data is, in my opinion, the bigger problem. So, how would you select your data, depending on what your use case is? Would you have some tips for this?

Philip Howes: Yes, absolutely. You're presented with a large data set. And you're trying to think, "Okay, well, what is the most efficient way for me to pull signal out of this data set in such a way that I can give my model meaningful information, so that it can learn something?"

And generally, data is somewhat cheap to find. Labels is expensive. It's expensive because it's usually very time consuming to label data, particularly if there's this time-quality trade off. The more time you spend on annotating your data, the higher value it's going to have. But also, because it's time, it's also cost, right? It's certainly something that you want to optimize over.

And so, there are lots of interesting ways to think about, how should I label in my data?

And so, let's just set up a flow.

I have some unlabeled data. And I have some labeling interface. We can talk about, there's a bunch of different labeling tools out there. You can build your own labeling tools. You can use enterprise labeling tools. And you're effectively trying to figure out, "Okay, well, what data should I use such that I can create some signal for my model?"

And then once I have some initial set of data, I can start training a model. And it's obviously going to have relatively low performance, but I can use that model as part of my data labeling loop. And this is where the area of active learning comes in. The question is, "Okay, so how do I select the correct data set to label?"

And so, I guess what we're really doing is, we're querying our data set somewhat intelligently around, where is the data points in this data set such that I'm going to get some useful information?

And we can do this. Let's say that we have some initial model. What we can do is start scoring the data on that model and say, "Hey, what data is this model most uncertain about?" We can start sampling from our data set in terms of uncertainty. And so, through sampling there, we're going to be able to give new labels to the next iteration of the model, such that it is now more certain around the areas of uncertainty.

Another thing which maybe creates robustness in your model is maybe that we have some collection of models that can do some sort of weak classification on our data. And they are going to have some amount of disagreement. One model says this, another model says B, A and B. And so, I want to form a committee of my models and say, "Hey, where is there disagreement amongst you?" And then, I can select data that way.

I mean, obviously there are lots of different querying strategies that we could use. We could think about maybe, how do I optimize over error reduction? Or how much it's going to impact my model?

But I guess the takeaway is that there's lots of intelligent ways for different use cases in data selection.

Roland Meertens: And you mentioned initial models. What is your opinion on those large scale, foundational models, which you see nowadays? Or using pre-trained models? So, with foundational models, I mean like GPT-3 or CLIP.

Philip Howes: I think that there's a cohort of people in the world that are going to say that, basically, it's foundational models or nothing. It's kind of foundational models will eat machine learning. And it's just a matter of time.

Roland Meertens: It's general AI.

Philip Howes: Yes, something like that.

I mean, I think to the labeling example, it's like, "Yeah, these foundational models are incredibly good." Think of something like CLIP that is this model, which is conditioned over text and images. And let's say I have some image classification task. I can use CLIP as a way to bootstrap my labeling process. And then, as I add more and more labels, I can start thinking about, "Okay, I can not just use it to bootstrap my labeling process. I can also use it to bootstrap my model. And I can start fine tuning one of these foundational models on my specific task."

And I think that there is a lot of value in these foundational models in terms of their ability to generalize and particularly generalize when you are able to do some fine tuning on them.

But I think it raises this very important question because, you mentioned GPT-3, this is a closed source model. And so, it's kind of worrying to live in this world where few very large companies control the keys to these foundational models. And that's why I think the open science initiatives that are happening in the machine learning world, like big science. I think, as of time of recording this, I'm not sure when this comes out, but a couple days ago, the stable diffusion model came out, which is super exciting, which is essentially a DALL-E-type model that does image generation based off text, which does amazing high quality images from text.

Certainly, the openness around foundational models is going to be pretty fundamental to making sure that machine learning is a democratized thing.

Roland Meertens: And are you at all concerned about how well models generalize or what kind of model psychology is going on? Overall problems a model can solve? Or what abstractions it learned?

Philip Howes: Yes. I mean, it's like just going back to stable diffusion.

Of course, obviously the first thing I did when I see this model get released, I pulled down a version. And this is great because this is a model that is able to run on consumer hardware. And the classic thing that you do with this model is you say astronaut riding horse. And then, of course, it produces this beautiful image of an astronaut riding a horse. And if you stop to think about it a little bit and look at the image, it's like, "Oh, it's really learnt so much. There's nothing in reality which actually looks like this, but I can ask for a photograph of an astronaut riding a horse, and it's able to produce one for me."

And it's not just the astronaut riding a horse. It understands the context around, there's space in the background. And it understands that astronauts happen to live in space. And you're like, "Oh, wow, it's really understood my prompt in a way that it's filled in all the gaps that I've left."

And then, of course, you write, "Horse riding astronaut." And you know what the response is from the model? It's an astronaut riding a horse.

And so, clearly that there is some limitation in the model because it's understood the relationship between all these things in the data distributions that it's been trained on. And it's able to fill in the gaps and extrapolate around somewhat plausible things. But when you ask it to do something that seems really implausible, it's so far out of its model of the world that it just defaults back to, "Oh, you must have meant this. You must have met the inverse because there's no such thing as a horse that rides an astronaut."

Roland Meertens: Oh, interesting. I'm always super amazed at how, if you ask the model, for example, to draw an elephant with a snorkel, it actually understands that elephants might breathe not through their mouth. So, it draws to snorkel in a different place than you would expect. So, it has a really good understanding of where to put things you would put on humans, but put on animals.

I'm always very amazed at how it gets more concepts than I could have programmed myself manually.

Philip Howes: I think it's amazing how well these things tend to generalize in directions that kind of make sense. And I feel as though this is where a lot of the open questions exist. It's just like, where are these boundaries around generalization?

And I don't think that the tools really exist today that really give us some systematic way of encapsulating, what is it that this model has learned? And very often, it's upon sort of the trainers of the model, the machine learning experts, to maybe know enough about the distributions of the data and about the architecture of the model to start poking it in the places where maybe these limitations might exist.

And this is where bias in machine learning is really frightening because you just really don't know. How do I understand what's being baked into this model in a way that is transparent to me as the creator of the thing?

Roland Meertens: Yes, the bias is very real. I think yesterday I tried to generate a picture of a really good wolf, like a really friendly wolf meeting the Pope. But all the images generated were of an evil-looking wolf, which I guess is the bias on the internet towards wolves. And you don't realize it until you start generating these images.

Did you see this implicit bias from the training data come through your results in ways you don't expect?

Philip Howes: And I think this is where AI, not just on the data bias in the technical sense, but also in the ethical sense, is to really start thinking about how these things get used. And obviously, the world's changing very rapidly in this regard. And people are trying to understand these things as best they can, but I think it just underscores the need to involve the stakeholders in the downstream tasks of how you're using these models.

I think data scientists and machine learning engineers, they're very good at understanding and solving technical problems. And they've basically mapped something from the real world into something which is inherently dataset-centric. And there's this translation back to the real world that I think really needs to be done in tandem with people who understand how this model is going to be used and how it's going to impact people.

Roland Meertens: Yes. If we're talking about that, we already now talked about minimizing the time to value and extending your data in a valuable way. So, who would you have in a team if you are setting this up at a company?

Philip Howes: I think this is a really big question. And I think depends on how end to end you want to talk about this.

I think machine learning projects start at problem definition to problem solution. And problem definition and solution generally operate in the real world. And the job of the data scientists is usually in the data domain. So, everything gets mapped down to this domain, which is very technical and mathematical. And there are all sorts of requirements that you have on the team there in terms of data scientists. Data scientist means so many different things. It's like this title that means everything from doing ETL, to feature engineering, to training models, to deploying models, to monitoring models. It also includes things that happen orthogonally, maybe like business analyst.

But I think on the machine learning side of things, there's a lot of engineering problems that's starting to get specialized in terms of, on the data side of things, understanding how to operate over large data sets, data engineering. Then you have your data scientist who is maybe doing feature engineering and model architecture design and training these things.

And then it's like, "Okay, well now you have this model. How do I actually operationalize this in a way that is now tapping into the inherent value of the thing?" And so, how do you tap into the value? You basically make it available to be used somewhere.

And so there's traditional DevOps, ML ops engineering that's required. And then, of course, at the end of the day, these things end up in products. So, there's product engineering. There's design. And then surrounding all of this thing is the domain in which you're operating, so there are the domain experts.

And so, there's all sorts of considerations in terms of the team. And what tends to happen more often than not is, in companies that are smaller than Google and Microsoft and Uber, a lot of people get tasked with wearing a lot of hats. And so, I think when it comes to building a team, you have to think about, how can I do more with less?

And I think it becomes the question around, what am I good at? And what are the battles that I want to pick? Do I want be an infrastructure engineer or do I want to train models? And so, if I don't want to be an infrastructure engineer and learn Kubernetes and about scalability and reliability, all these kinds of things, what tools exist that are going to be able to support me for the size and the stage of the company that I'm in?

Particularly in smaller companies, there's a huge number of skills that are required to extract value out of a machine learning project. And this is why I love to operate in this space, because I think machine learning has got so much potential for impact in the world. And it's about finding, how do you give people superpowers and allow them to specialize in the things that create the most value where humans need to be involved and how to allow them to extract that value in the real world?

Roland Meertens: If you're just having a smaller company, how would you deal with lacking skills or responsibilities? Can this be filled with tools or education?

Philip Howes: It's a combination of tools and education. I think one of the great things about the machine learning world is it's very exciting. And exciting things tend to attract lots of interest. And with lots of interest, lots of tools proliferate. And so, I think that there's certainly no lack of tools.

I think what's clear to me is that the space is evolving so quickly and the needs are evolving so quickly and what's possible is evolving so quickly that the tools are always playing in this feedback loop, with research tooling and people of, what are the right tools for the right job at the right time? And I think that it hasn't settled. There's no stable place in this machine learning world. And I think that there are different tools that are really useful for different use cases. And lots of the time, there are different tools for different sizes and stages of your machine learning journey.

And there are fantastic educational resources out there, of course. I particularly like blogs, because I feel as though they're really good at distilling the core concepts, but also doing exposition and some demonstration of things. And they usually end up leading you to the right set of tools.

What becomes really hard is understanding the trade offs and making sure that you straddle the build versus by hire versus by line effectively. And I don't think that there is a solution to this. I think it's about just kind of staying attuned to what's happening in the world.

Roland Meertens: And if we're coming back to all the new AI technologies, do you think that there will be new disciplines showing up in the near future to extend on the data scientist role to be more specialist?

Philip Howes: Yes, absolutely. I mean, I think one of the things that's happened over the last few years is that specializations are really starting to solidify around data engineering, model development, ML, engineers, ML ops engineers.

But I think going back to our conversation around some of these foundational models, if you are to say that these things are really going to play a pretty central role in machine learning, then what kind of roles might end up appearing here? Because model fine tuning of a foundational model is a very different kind of responsibility, maybe technically lighter but maybe requires more sort of domain knowledge. And so, it's this kind of hybrid data scientist, domain expert kind of position.

I think tooling will exist to really give people the ability to do fine tuning on these foundational models. And so, I think maybe there is an opportunity for the model fine tuner thing.

I think going back to stable, diffusional or DALL-E type models, I think astronaut riding horse, you get an astronaut riding a horse. Horse riding astronaut, you get an astronaut riding a horse. But if you prompt the model in the right way, if you say maybe not horse riding astronaut, but rather horse sitting on back of astronaut, and maybe with additional prompting, you might actually able to get what you need to do. But that really requires a deep understanding of the model and how the model is thinking about the world.

And so, I think what's really interesting is this idea that these model are pretty opaque. And so, I think you mentioned model psychology earlier. Is there opportunity for model psychologists? Who's still going to be the Sigmund Freud of machine learning and develop this theory about how do I psychoanalyze the model and understand, what is this model thinking about the world? What is its opinion and abstractions that it's learned around the world of the data that it's built?

Roland Meertens: And maybe even know that if you want to have specific outputs, you should really go for one model rather than another. I really like your example of the horse thing on the back of an astronaut because I just typed it into DALL-E and even the Open AI website or so can't create horses on the back of astronauts. So, listeners can send us a message if they manage to create one.

As a last thing, you mentioned that you have extensive experience in neural networks and horses. Can you explain how you started working with neural networks?

Philip Howes: This is a bit of a stretch. But when I grew up, my dad was, let's say, an avid investor at the horse track. And so, one of the things I remember as the child back in the early 90's was we'd go to the horse track and there'd be a little rating given to each horse and provide some number. And I learned that N stood for neural network. And so, these people building these MLPs to basically score horses. And so this was a very early exposure to neural networks.

And so, I did a little digging as a kid. And obviously, it was over my head. But as I sort of progressed through teenage years and into university, I was getting exposed to these things again in the context of mathematical modeling. And this is how I entered the world of machine learning, was initially with the Netflix Prize and realizing that, "Hey, everyone's just doing SVD to win this million dollar prize." I'm like, "Hey, maybe mathematics is useful outside of this world."

And yeah, I made this transition into machine learning and haven't looked back. Neural networks.

Roland Meertens: Fantastic. I really love the story. So, yeah, thank you for being on the podcast.

Philip Howes: Thanks for having me, Roland. It's a real pleasure.

Roland Meertens: Thank you very much for listening to this podcast and thank you Philip for joining the podcast.

If you look at the show notes on InfoQ.com, you will find more information about the Chinchilla paper we talked about and the S&P Global Market Intelligence report. Thanks again for listening to the InfoQ podcast.

Read the original:
Getting Value Out of An ML with Philip Howes - InfoQ.com

Canadian company uses machine learning to promote DEI in the hiring process – IT World Canada

Toronto-based software company, Knockri has developed an AI-powered interview assessment tool to help companies reduce bias and bolster diversity, equity and inclusion (DEI) in the job hiring process.

Knockris interview assessment tool uses Natural Language Processing (NLP) to evaluate only the transcript of an interview, overlooking non-verbal cues, including facial expressions, body language or audio tonality. In addition, race, gender, age, ethnicity, accent, appearance, or sexual preference, reportedly, do not impact the interviewees score.

To achieve objective scoring, Faisal Ahmed, co-founder and chief technical officer (CTO) of Knockri, says that the company adopts a holistic and strategic approach in training their model, including constantly trying new and different data, training, and tests, that covers a wide range of representation in terms of race, ethnicity, gender, and accent, as well as job roles and choices. After training the model, the company conducts quality checks and adverse impacts analysis to analyze scoring patterns and ensure quality candidates do not fall through the cracks.

Though working with clients with high volume hiring such as IBM, Novartis, Deloitte, and the Canadian Department of National Defence, Ahmed says their model is not able to analyze for every job in the world. Once we have new customers, new geographies, new job roles or even new experience levels that were working with, we will wait to get an update on that, benchmark, retrain, and then push scores. Were very transparent about this with our customers.

To ensure that the data fed into the AI is not itself biased, Ahmed adds that the company avoids using data from past hiring practices, such as looking at resumes or successful hires from ten years ago, as they may have been recruiting using biased or discriminatory practices. Instead, Ahmed says, the AI model is driven by Industrial and Organizational (IO) psychology to focus purely on identifying the kind of behaviors or work activities needed for specific jobs. For example, if a customer service role requires empathy, the model will identify behaviors from the candidates past experiences and words that reflect that specific trait, Ahmed says.

He recommends that customers use Knockri at the beginning of the interview process when there is a reasonably high volume of applications, and the same experience, scoring criteria, and opportunities can be deployed for all candidates.

Ahmed says their technology seeks to help businesses lay a foundation for a fair and equitable assessment of candidates, and is not meant to replace a human interviewer. Decisions made by Knockri are reviewed by a human being, and later stages of the interview process will inevitably involve human interviewers.

Were not going to solve all your problems, but were going to set you on the right path, concludes Ahmed.

Read more from the original source:
Canadian company uses machine learning to promote DEI in the hiring process - IT World Canada