Holger Breinlich, valentina corradi, Nadia Rocha, Joo M.C. Santos Silva, Thomas Zylkin 08 July 2022
Preferential trade agreements (PTAs) have become more frequent and increasingly complex in recent decades, making it important to assess how they impact trade and economic activity. Modern PTAs contain a host of provisions besides tariff reductions in areas as diverse as services trade, competition policy, or public procurement. To illustrate this proliferation of non-tariff provisions, Figure 1 shows the share of PTAs in force and notified to the WTO up to 2017 that cover selected policy areas. More than 40% of the agreements include provisions such as investment, movement of capital and technical barriers to trade. And more than two-thirds of agreements cover areas such as competition policy or trade facilitation.
Figure 1 Share of PTAs that cover selected policy areas
Note: Figure shows the share of PTAs that cover a policy area. Source: Hofmann, Osnago and Ruta (2019).
Recent research has tried to move beyond estimating the overall impact of PTAs on trade and tried to establish the relative importance of individual PTA provisions (e.g. Kohl et al. 2016, Mulabdic et al. 2017, Dhingra et al. 2018, Regmi and Baier 2020). However, such attempts face the difficulty that the number of provisions included in PTAs is very large compared to the number of PTAs available to study (see Figure 2), making it difficult to separate their individual impacts on trade flows.
Figure 2 The number of provisions in PTAs over time
Source: Mattoo et al. (2020).
Researchers have tried to address the growing complexity of PTAs in different ways. For example, Mattoo et al. (2017) use the count of provisions in an agreement as a measure of its depth and check whether the increase in trade flows after a given PTA is related to this measure. Dhingra et al. (2018) group provisions into categories (such as services, investment, and competition provisions) and examine the effect of these provision bundles on trade flows. Obviously, these approaches come at the cost of not allowing the identification of the effect of individual provisions within each group.
In recent research (Breinlich et al. 2022), we instead adopt a technique from the machine learning literature the least absolute shrinkage and selection operator (lasso) to the context of selecting the most important provisions and quantifying their impact. More precisely, we adapt the rigorous lasso method of Belloni et al. (2016) to the estimation of state-of-the-art gravity models for trade (e.g. Yotov et al. 2016, Weidner and Zylkin 2021).1
Unlike traditional estimation methods such as least squares and the maximum likelihood that are based on optimising the in-sample fit of the estimated model, lasso balances in-sample fit with parsimony to optimise the out-of-sample fit and to simultaneously select the more important regressors and estimate their effect on trade flows. In our context, the lasso works by shrinking the effects of individual provisions towards zero and progressively removing those that do not have a significant impact on the fit of the model (for an intuitive description, see Breinlich et al. 2021; for more details, see Breinlich et al. 2022). The rigorous lasso of Belloni et al. (2016), a relatively recent variant of the lasso, refines this approach by taking into account the idiosyncratic variance of the data and by only keeping variables that are found to have a statistically large impact on the fit of the model.
Because the rigorous lasso tends to favour very parsimonious models, it may miss some important provisions. To address this issue, we introduce two methods to identify potentially important provisions that may have been missed by the rigorous lasso. One of the methods, which we call iceberg lasso, involves regressing each of the provisions selected by the rigorous lasso on all other provisions, with the purpose of identifying relevant variables that were initially missed due to their collinearity with the provisions selected in the initial step. The other method, termed bootstrap lasso, augments the set of variables selected by the plug-in lasso with the variables selected when the rigorous lasso is bootstrapped.
We use the World Bank's database on deep trade agreements, where we observe 283 PTAs and 305 essential provisions grouped into the 17 categories detailed in Figure 1.2The rigorous lasso selects eight provisions more strongly associated with increasing trade flows following the implementation of the respective PTAs. As detailed in Table 1, these provisions are in the areas of anti-dumping, competition policy, technical barriers to trade, and trade facilitation.
Table 1 Provisions selected by the rigorous lasso
Building on these results, the iceberg lasso procedure identifies a set of 42 provisions, and the bootstrap lasso identifies between 30 and 74 provisions that may impact trade, depending on how it is implemented. Therefore, the iceberg lasso and bootstrap lasso methods select sets of provisions that are small enough to be interpretable and large enough to give us some confidence that they include the more relevant provisions. In contrast, the more traditional implementation of the lasso based on cross-validation selects 133 provisions.
Reassuringly, both the iceberg lasso and bootstrap lasso select similar sets of provisions, mainly related to anti-dumping, competition policy, subsidies, technical barriers to trade, and trade facilitation. Therefore, although our results do not have a causal interpretation and, consequently, we cannot be certain of exactly which provisions are more important, we can be reasonably confident that provisions in these areas stand out as having a positive effect on trade.
Besides identifying the set of provisions that are more likely to have an impact on trade, our methods also provide an estimate of the increase in trade flows associated with the selected provisions. We use these results to estimate the effects of different PTAs that have already been implemented. Table 2 summarises the estimated effects for selected PTAs obtained using the different methods we introduce. As, for example, in Baier et al. (2017 and 2019), we find a wide variety of effects, ranging from very large impacts in agreements that include many of the selected provisions to no effect at all in agreements that do not include any.3
Table 2 also shows that different methods can lead to substantially different estimates, and therefore these results need to be interpreted with caution. As noted above, our results do not have a causal interpretation. Therefore the accuracy of the predicted effects of individual PTAs will depend on whether the selected provisions have a causal impact on trade or serve as a signal of the presence of provisions that have a causal effect. When this condition holds, the predictions based on this method are likely to be reasonably accurate, and in Breinlich et al. (2022), we report simulation results suggesting that this is the case. However, it is possible to envision scenarios where predictions based on our methods fail dramatically; for example, it could be the case that a PTA is incorrectly measured to have zero impact despite having many of the true causal provisions. Finally, we note that our results can also be used to predict the effects of new PTAs, but the same caveats apply.
Table 2 Partial effects for selected PTAs estimated by different methods
We have presented results from an ongoing research project in which we have developed new methods to estimate the impact of individual PTA provisions on trade flows. By adapting techniques from the machine learning literature, we have developed data-driven methods to select the most important provisions and quantify their impact on trade flows. While our approach cannot fully resolve the fundamental problem of identifying the provisions with a causal impact on trade, we were able to make considerable progress. In particular, our results show that provisions related to anti-dumping, competition policy, subsidies, technical barriers to trade, and trade facilitation procedures are likely to enhance the trade-increasing effect of PTAs. Building on these results, we were able to estimate the effects of individual PTAs.
Authors note: This column updates and extends Breinlich et al. (2021). See alsoFernandes et al. (2021).
Baier, S L, Y V Yotov and T Zylkin (2017), "One size does not fit all: On the heterogeneous impact of free trade agreements", VoxEU.org, 28 April.
Baier, S L, Y V Yotov and T Zylkin (2019), "On the Widely Differing Effects of Free Trade Agreements: Lessons from Twenty Years of Trade Integration", Journal of International Economics 116: 206-228.
Belloni, A, V Chernozhukov, C Hansen and D Kozbur (2016), "Inference in High Dimensional Panel Models with an Application to Gun Control", Journal of Business & Economic Statistics 34: 590-605.
Breinlich, H, V Corradi, N Rocha, M Ruta, J M C Santos Silva and T Zylkin (2021), "Using Machine Learning to Assess the Impact of Deep Trade Agreements", in A M Fernandes, N Rocha and M Ruta (eds), The Economics of Deep Trade Agreements, CEPR Press.
Breinlich, H, V Corradi, N Rocha, M Ruta, J M C Santos Silva and T Zylkin (2022), "Machine Learning in International Trade Research - Evaluating the Impact of Trade Agreements", CEPR Discussion paper 17325.
Dhingra, S, R Freeman and E Mavroeidi (2018), Beyond tariff reductions: What extra boost to trade from agreement provisions?, LSE Centre for Economic Performance Discussion Paper 1532.
Fernandes, A, N Rocha and M Ruta (2021), The Economics of Deep Trade Agreements: A New eBook, VoxEU.org, 23 June.
Hofmann, C, A Osnago and M Ruta (2019), "The Content of Preferential Trade Agreements", World Trade Review 18(3): 365-398.
Kohl, T S. Brakman and H. Garretsen (2016), "Do trade agreements stimulate international trade differently? Evidence from 296 trade agreements", The World Economy 39: 97-131.
Mattoo, A, A Mulabdic and M Ruta (2017), "Trade creation and trade diversion in deep agreements", Policy Research Working Paper Series 8206, World Bank, Washington, DC.
Mattoo, A, N Rocha and M Ruta (2020), Handbook of Deep Trade Agreements, Washington, DC: World Bank.
Mulabdic, A, A Osnago and M Ruta (2017), "Deep integration and UK-EU trade relations," World Bank Policy Research Working Paper Series 7947.
Regmi, N and S Baier (2020), "Using Machine Learning Methods to Capture Heterogeneity in Free Trade Agreements," mimeograph.
Weidner, M, T Zylkin (2021), "Bias and Consistency in Three-Way Gravity Models," Journal of International Economics: 103513.
Yotov, Y V, R Piermartini, J A Monteiro and M Larch (2016), An advanced guide to trade policy analysis: The structural gravity model, Geneva: World Trade Organization.
1 Our approach complements the one adopted by Regmi and Baier (2020), who use machine learning tools to construct groups of provisions and then use these clusters in a gravity equation. The main difference between the two approaches is that Regmi and Baier (2020) use what is called an unsupervised machine learning method, which uses only information on the provisions to form the clusters. In contrast, we select the provisions using a supervised method that also considers the impact of the provisions on trade.
2Essential provisions in PTAs include the set of substantive provisions (those that require specific integration/liberalisation commitments and obligations) plus the disciplines among procedures, transparency, enforcement or objectives, which are required to achieve the substantive commitments (Mattoo et al. 2020).
3It is worth noting that lasso based on the traditional cross-validation approach leads toextremely dispersedestimations of trade effects, with some of them being clearly implausible. This further illustrates the superiority of the methods we propose.
Here is the original post:
Using machine learning to assess the impact of deep trade agreements | VOX, CEPR Policy Portal - voxeu.org
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]