A machine learning pipeline revealing heterogeneous responses to drug perturbations on vascular smooth muscle cell spheroid morphology and formation |…

Thyberg, J., Hedin, U., Sjlund, M., Palmberg, L. & Bottger, B. A. Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arteriosclerosis 10, 966990. https://doi.org/10.1161/01.ATV.10.6.966 (1990).

CAS Article PubMed Google Scholar

Owens, G. K., Kumar, M. S. & Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84, 767801. https://doi.org/10.1152/physrev.00041.2003 (2004).

CAS Article PubMed Google Scholar

Thyberg, J., Blomgren, K., Roy, J., Tran, P. K. & Hedin, U. Phenotypic modulation of smooth muscle cells after arterial injury is associated with changes in the distribution of laminin and fibronectin. J. Histochem. Cytochem. 45, 837846. https://doi.org/10.1177/002215549704500608 (1997).

CAS Article PubMed Google Scholar

Ross, R. & Glomset, J. A. Atherosclerosis and the arterial smooth muscle cell. Science 180, 13321339. https://doi.org/10.1126/science.180.4093.1332 (1973).

ADS CAS Article PubMed Google Scholar

Ross, R. Atherosclerosis: An inflammatory disease. N. Engl. J. Med. 340, 115126. https://doi.org/10.1056/nejm199901143400207 (1999).

CAS Article PubMed Google Scholar

Chappell, J. et al. Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models. Circ. Res. 119, 13131323. https://doi.org/10.1161/circresaha.116.309799 (2016).

CAS Article PubMed PubMed Central Google Scholar

Michel, J.-B., Li, Z. & Lacolley, P. Smooth muscle cells and vascular diseases. Cardiovasc. Res. 95, 135137. https://doi.org/10.1093/cvr/cvs172 (2012).

CAS Article PubMed Google Scholar

Kothapalli, D. et al. Cardiovascular protection by ApoE and ApoE-HDL linked to suppression of ECM gene expression and arterial stiffening. Cell Rep. 2, 12591271. https://doi.org/10.1016/j.celrep.2012.09.018 (2012).

CAS Article PubMed PubMed Central Google Scholar

Liu, S.-L. et al. Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12. JCI Insight 4, e122742. https://doi.org/10.1172/jci.insight.122742 (2019).

Article PubMed Central Google Scholar

Klein, E. A. et al. Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr. Biol. 19, 15111518. https://doi.org/10.1016/j.cub.2009.07.069 (2009).

CAS Article PubMed PubMed Central Google Scholar

Bae, Y. H. et al. A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci Signal 7, 57. https://doi.org/10.1126/scisignal.2004838 (2014).

CAS Article Google Scholar

Mui, K. L. et al. N-Cadherin induction by ECM stiffness and FAK overrides the spreading requirement for proliferation of vascular smooth muscle cells. Cell Rep. https://doi.org/10.1016/j.celrep.2015.02.023 (2015).

Article PubMed PubMed Central Google Scholar

Roden, D. M. et al. Opportunities and challenges in cardiovascular pharmacogenomics. Circ. Res. 122, 11761190. https://doi.org/10.1161/CIRCRESAHA.117.310965 (2018).

CAS Article PubMed PubMed Central Google Scholar

Johnson Julie, A. Ethnic differences in cardiovascular drug response. Circulation 118, 13831393. https://doi.org/10.1161/CIRCULATIONAHA.107.704023 (2008).

CAS Article PubMed PubMed Central Google Scholar

Roden, D. M. et al. Pharmacogenomics: Challenges and opportunities. Ann. Intern. Med. 145, 749757. https://doi.org/10.7326/0003-4819-145-10-200611210-00007 (2006).

Article PubMed PubMed Central Google Scholar

Donnelly, R. Characterizing variability in cardiovascular drug responses. Br. J. Clin. Pharmacol. 57, 535537. https://doi.org/10.1111/j.1365-2125.2004.02148.x (2004).

CAS Article PubMed Central Google Scholar

Carson, P., Ziesche, S., Johnson, G. & Cohn, J. N. Racial differences in response to therapy for heart failure: Analysis of the vasodilator-heart failure trials. Vasodilator-Heart Failure Trial Study Group. J. Cardiac Failure 5, 178187. https://doi.org/10.1016/s1071-9164(99)90001-5 (1999).

CAS Article Google Scholar

Wright, J. T. Jr. et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: Results from the AASK trial. JAMA 288, 24212431. https://doi.org/10.1001/jama.288.19.2421 (2002).

CAS Article PubMed Google Scholar

Wright, J. T. Jr. et al. Outcomes in hypertensive black and nonblack patients treated with chlorthalidone, amlodipine, and lisinopril. JAMA 293, 15951608. https://doi.org/10.1001/jama.293.13.1595 (2005).

CAS Article PubMed Google Scholar

Agarwal, R. & Sinha, A. D. Cardiovascular protection with antihypertensive drugs in dialysis patients: Systematic review and meta-analysis. Hypertension 53, 860866. https://doi.org/10.1161/hypertensionaha.108.128116 (2009).

CAS Article PubMed Google Scholar

Genkel, V. V. & Shaposhnik, I. I. Conceptualization of heterogeneity of chronic diseases and atherosclerosis as a pathway to precision medicine: Endophenotype, endotype, and residual cardiovascular risk. Int. J. Chronic Dis. 2020, 5950813. https://doi.org/10.1155/2020/5950813 (2020).

Article PubMed PubMed Central Google Scholar

Yano, H. et al. Roles played by a subset of integrin signaling molecules in cadherin-based cell-cell adhesion. J. Cell Biol. 166, 283295. https://doi.org/10.1083/jcb.200312013 (2004).

CAS Article PubMed PubMed Central Google Scholar

Cheng, Z. et al. Focal adhesion kinase regulates smooth muscle cell recruitment to the developing vasculature. Arterioscler. Thromb. Vasc. Biol. 31, 21932202. https://doi.org/10.1161/atvbaha.111.232231 (2011).

CAS Article PubMed PubMed Central Google Scholar

Klein, E. A., Yung, Y., Castagnino, P., Kothapalli, D. & Assoian, R. K. in Methods in Enzymology Vol. Volume 426 (ed A. Cheresh David) 155175 (Academic Press, 2007).

Strauss, B. H. et al. Extracellular matrix remodeling after balloon angioplasty injury in a rabbit model of restenosis. Circ. Res. 75, 650658. https://doi.org/10.1161/01.res.75.4.650 (1994).

CAS Article PubMed Google Scholar

Braga, V. M., Machesky, L. M., Hall, A. & Hotchin, N. A. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J. Cell Biol. 137, 14211431. https://doi.org/10.1083/jcb.137.6.1421 (1997).

CAS Article PubMed PubMed Central Google Scholar

Bae, Y. H., Liu, S. L., Byfield, F. J., Janmey, P. A. & Assoian, R. K. Measuring the stiffness of ex vivo mouse aortas using atomic force microscopy. JoVE https://doi.org/10.3791/54630 (2016).

Article PubMed PubMed Central Google Scholar

Bade, N. D., Kamien, R. D., Assoian, R. K. & Stebe, K. J. Curvature and Rho activation differentially control the alignment of cells and stress fibers. Sci. Adv. 3, e1700150. https://doi.org/10.1126/sciadv.1700150 (2017).

ADS CAS Article PubMed PubMed Central Google Scholar

Welsh, C. F. et al. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat. Cell Biol. 3, 950957. https://doi.org/10.1038/ncb1101-950 (2001).

CAS Article PubMed Google Scholar

Nelson, C. M., Pirone, D. M., Tan, J. L. & Chen, C. S. Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol. Biol. Cell 15, 29432953. https://doi.org/10.1091/mbc.e03-10-0745 (2004).

CAS Article PubMed PubMed Central Google Scholar

Shibata, R. et al. Role of rho-associated kinase in neointima formation after vascular injury. Circulation 103, 284289. https://doi.org/10.1161/01.CIR.103.2.284 (2001).

CAS Article PubMed Google Scholar

Tang, D. D. & Gunst, S. J. The small GTPase Cdc42 regulates actin polymerization and tension development during contractile stimulation of smooth muscle. J. Biol. Chem. 279, 5172251728. https://doi.org/10.1074/jbc.M408351200 (2004).

CAS Article PubMed Google Scholar

Lv, J. et al. Endothelial Cdc42 deficiency impairs endothelial regeneration and vascular repair after inflammatory vascular injury. Respir. Res. 19, 27. https://doi.org/10.1186/s12931-018-0729-8 (2018).

CAS Article PubMed PubMed Central Google Scholar

Li, J. et al. Essential role of Cdc42 in cardiomyocyte proliferation and cell-cell adhesion during heart development. Dev. Biol. 421, 271283. https://doi.org/10.1016/j.ydbio.2016.12.012 (2017).

CAS Article PubMed Google Scholar

Zuo, X. et al. Spheroids of endothelial cells and vascular smooth muscle cells promote cell migration in hyaluronic acid and fibrinogen composite hydrogels. Research 2020, 8970480. https://doi.org/10.34133/2020/8970480 (2020).

ADS CAS Article PubMed PubMed Central Google Scholar

Pfisterer, L., Feldner, A., Hecker, M. & Korff, T. Hypertension impairs myocardin function: a novel mechanism facilitating arterial remodelling. Cardiovasc. Res. 96, 120129. https://doi.org/10.1093/cvr/cvs247%JCardiovascularResearch (2012).

CAS Article PubMed Google Scholar

Friedrich, J., Seidel, C., Ebner, R. & Kunz-Schughart, L. A. Spheroid-based drug screen: considerations and practical approach. Nat. Protoc. 4, 309324. https://doi.org/10.1038/nprot.2008.226 (2009).

CAS Article PubMed Google Scholar

Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. JoVE https://doi.org/10.3791/2720 (2011).

Article PubMed PubMed Central Google Scholar

Sata, M. et al. A mouse model of vascular injury that induces rapid onset of medial cell apoptosis followed by reproducible neointimal hyperplasia. J. Mol. Cell. Cardiol. 32, 20972104. https://doi.org/10.1006/jmcc.2000.1238 (2000).

CAS Article PubMed Google Scholar

Marx, S. O., Totary-Jain, H. & Marks, A. R. Vascular smooth muscle cell proliferation in restenosis. Circ. Cardiovasc. Interv. 4, 104111. https://doi.org/10.1161/circinterventions.110.957332 (2011).

CAS Article PubMed Google Scholar

Danuser, G. Computer vision in cell biology. Cell 147, 973978. https://doi.org/10.1016/j.cell.2011.11.001 (2011).

CAS Article PubMed Google Scholar

McQuin, C. et al. Cell Profiler 3.0: Next-generation image processing for biology. PLoS Biol. 16, e2005970. https://doi.org/10.1371/journal.pbio.2005970 (2018).

CAS Article PubMed PubMed Central Google Scholar

Lee, K. et al. Functional hierarchy of redundant actin assembly factors revealed by fine-grained registration of intrinsic image fluctuations. Cell Syst. 1, 3750. https://doi.org/10.1016/j.cels.2015.07.001 (2015).

CAS Article PubMed PubMed Central Google Scholar

Piccinini, F. AnaSP: a software suite for automatic image analysis of multicellular spheroids. Comput. Methods Programs Biomed. 119, 4352. https://doi.org/10.1016/j.cmpb.2015.02.006 (2015).

Article PubMed Google Scholar

Psycharakis, S. E. et al. in Clinical and Preclinical Optical Diagnostics II. 11076_11024 (Optical Society of America).

Piccinini, F., Tesei, A., Zanoni, M. & Bevilacqua, A. ReViMS: Software tool for estimating the volumes of 3-D multicellular spheroids imaged using a light sheet fluorescence microscope. Biotechniques 63, 227229. https://doi.org/10.2144/000114609 (2017).

CAS Article PubMed Google Scholar

Falk, T. et al. U-Net: Deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 6770. https://doi.org/10.1038/s41592-018-0261-2 (2019).

CAS Article PubMed Google Scholar

Jang, D. et al. A deep learning-based segmentation pipeline for profiling cellular morphodynamics using multiple types of live cell microscopy. Cell Reports Methods. 1, 100105. https://doi.org/10.1016/j.crmeth.2021.100105 (2021).

Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional networks for biomedical image segmentation. arXiv:1505.04597 (2015). https://ui.adsabs.harvard.edu/abs/2015arXiv150504597R.

Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014). https://ui.adsabs.harvard.edu/abs/2014arXiv1409.1556S.

Kim, S. J. et al. Deep transfer learning-based hologram classification for molecular diagnostics. Sci. Rep. 8, 17003. https://doi.org/10.1038/s41598-018-35274-x (2018).

ADS CAS Article PubMed PubMed Central Google Scholar

Iglovikov, V. & Shvets, A. TernausNet: U-Net with VGG11 Encoder pre-trained on imagenet for image segmentation. arXiv:1801.05746 (2018).

Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. How transferable are features in deep neural networks? arXiv:1411.1792 (2014). https://ui.adsabs.harvard.edu/abs/2014arXiv1411.1792Y.

Cowan, L. Y. P. a. L. Y. P. a. S. J. H. a. C. L. G. a. J. D. Discriminability-based transfer between neural networks. Adv. Neural Inf. Process. Syst. 5 (1993).

More here:
A machine learning pipeline revealing heterogeneous responses to drug perturbations on vascular smooth muscle cell spheroid morphology and formation |...

Related Posts
This entry was posted in $1$s. Bookmark the permalink.