The Earth and space sciences present ideal use cases for machine learning (ML) applications because the problems being addressed are globally important and the data are often freely available, voluminous, and of high quality.Machine learning (ML), loosely defined as the ability of computers to learn from data without being explicitly programmed, has become tremendously popular in technical disciplines over the past decade or so, with applications including complex game playing and image recognition carried out with superhuman capabilities. The Earth and space sciences (ESS) community has also increasingly adopted ML approaches to help tackle pressing questions and unwieldy data sets. From 2009 to 2019, for example, the number of studies involving ML published in AGU journals approximately doubled.
In many ways, ESS present ideal use cases for ML applications because the problems being addressedlike climate change, weather forecasting, and natural hazards assessmentare globally important; the data are often freely available, voluminous, and of high quality; and computational resources required to develop ML models are steadily becoming more affordable. Free computational languages and ML code libraries are also now available (e.g., scikit-learn, PyTorch, and TensorFlow), contributing to making entry barriers lower than ever. Nevertheless, our experience has been that many young scientists and students interested in applying ML techniques to ESS data do not have a clear sense of how to do so.
An ML algorithm can be thought of broadly as a mathematical function containing many free parameters (thousands or even millions) that takes inputs (features) and maps those features into one or more outputs (targets). The process of training an ML algorithm involves optimizing the free parameters to map the features to the targets accurately.
There are two broad categories of ML algorithms relevant in most ESS applications: supervised and unsupervised learning (a third category, reinforcement learning, is used infrequently in ESS). Supervised learning, which involves presenting an ML algorithm with many examples of input-output pairs (called the training set), can be further divided, according to the type of target that is being learned, as either categorical (classification; e.g., does a given image show a star cluster or not?) or continuous (regression; e.g., what is the temperature at a given location on Earth?). In unsupervised learning, algorithms are not given a particular target to predict; rather, an algorithms task is to learn the natural structure in a data set without being told what that structure is.
Supervised learning is more commonly used in ESS, although it has the disadvantage that it requires labeled data sets (in which each training input sample must be tagged, or labeled, with a corresponding output target), which are not always available. Unsupervised learning, on the other hand, may find multiple structures in a data set, which can reveal unanticipated patterns and relationships, but it may not always be clear which structures or patterns are correct (i.e., which represent genuine physical phenomena).
Books and classes about ML often present a range of algorithms but leave people to imagine specific applications of these algorithms on their own.Books and classes about ML often present a range of algorithms that fall into one of the above categories but leave people to imagine specific applications of these algorithms on their own. However, in practice, it is usually not obvious how such approaches (some seemingly simple) may be applied in a rich variety of ways, which can create an imposing obstacle for scientists new to ML. Below we briefly describe various themes and ways in which ML is currently applied to ESS data sets (Figure 1), with the hope that this listnecessarily incomplete and biased by our personal experienceinspires readers to apply ML in their research and catalyzes new and creative use cases.
One of the simplest and most powerful applications of ML algorithms is pattern identification, which works particularly well with very large data sets that cannot be traversed manually and in which signals of interest are faint or highly dimensional. Researchers, for example, applied ML in this way to detect signatures of Earth-sized exoplanets in noisy data making up millions of light curves observed by the Kepler space telescope. Detected signals can be further split into groups through clustering, an unsupervised form of ML, to identify natural structure in a data set.
Conversely, atypical signals may be teased out of data by first identifying and excluding typical signals, a process called anomaly or outlier detection. This technique is useful, for example, in searching for signatures of new physics in particle collider experiments.
An important and widespread application of supervised ML is the prediction of time series data from instruments or from an index (or average value) that is intended to encapsulate the behavior of a large-scale system. Approaches to this application often involve using past data in the time series itself to predict future values; they also commonly involve additional inputs that act as drivers of the quantities measured in the time series. A typical example of ML applied to time series in ESS is its use in local weather prediction, with which trends in observed air temperature and pressure data, along with other quantities, can be predicted.
In many instances, however, predicting a single time series of data is insufficient, and knowledge of the temporal evolution of a physical system over regional (or global) spatial scales is required. This spatiotemporal approach is used, for example, in attempts to predict weather across the entire globe as a function of time and 3D space in high-capacity models such as deep neural networks.
Physics-based simulations can take days or weeks to run on even the most powerful computers. An alternate solution is to train ML models to act as emulators for physics-based models.Traditional, physics-based simulations (e.g., global climate models) are often used to model complex systems, but such models can take days or weeks to run on even the most powerful computers, limiting their utility in practice. An alternate solution is to train ML models to act as emulators for physics-based models or to replicate computationally intensive portions within such models. For example, global climate models that run on a coarse grid (e.g., 50- to 100-kilometer resolution) can include subgrid processes, like convection, modeled using ML-based parameterizations. Results with these approaches are often indistinguishable from those produced by the original model alone but can run millions or billions of times faster.
Many physics-based simulations proceed by integrating a set of partial differential equations (PDEs) that rely on time-varying boundary conditions and other conditions that drive interior parts of the simulation. The physics-based model then propagates information from these boundary and driver conditions into the simulation spaceimagine, for example, a 3D cube being heated at its boundary faces with time-varying heating rates or with thermal conductivity that varies spatiotemporally within the cube. ML models can be trained to reflect the time-varying parameterizations both within and along the simulation boundaries of a physical model, which again may be computationally cheaper and faster.
If a spatiotemporal ML model of a physical system can be trained to produce accurate results under a variety of input conditions, then the implication is that the model implicitly accounts for all the physical processes that drive that system, and thus, it can be probed to gain insights into how the system works. Certain algorithms (e.g., random forests) can automatically provide a ranking of feature importance, giving the user a sense of which input parameters affect the output most and hence an intuition about how the system works.
More sophisticated techniques, such as layerwise relevance propagation, can provide deeper insights into how different features interact to produce a given output at a particular location and time. For example, a neural network trained to predict the evolution of the El NioSouthern Oscillation (ENSO), which is predominantly associated with changes in sea surface temperature in the equatorial Pacific Ocean, revealed that precursor conditions for ENSO events occur in the South Pacific and Indian Oceans.
A ubiquitous challenge in ESS is to invert observations of a physical entity or process into fundamental information about the entity or the causes of the process (e.g., interpreting seismic data to determine rock properties). Historically, inverse problems are solved in a Bayesian framework requiring multiple runs of a forward model, which can be computationally expensive and often inaccurate. ML offers alternative methods to approach inverse problems, either by using emulators to speed up forward models or by using physics-informed machine learning to discover hidden physical quantities directly. ML models trained on prerun physics-based model outputs can be used for rapid inversion.
Satellite observations often provide global, albeit low-resolution and sometimes indirect (i.e., proxy-based), measurements of quantities of interest, whereas local measurements provide more accurate and direct observations of those quantities at smaller scales. A popular and powerful use for ML models is to estimate the relationship between global proxy satellite observations and local accurate observations, which enables the creation of estimated global observations on the basis of localized measurements. This approach often includes the use of ML to create superresolution images and other data products.
Typically, uncertainty in model outputs is quantified using a single metric such as the root-mean-square of the residual (the difference between model predictions and observations). ML models can be trained to explicitly predict the confidence interval, or inherent uncertainty, of this residual value, which not only serves to indicate conditions under which model predictions are trustworthy (or dubious) but can also be used to generate insights about model performance. For instance, if there is a large error at a certain location in a model output under specific conditions, it could suggest that a particular physical process is not being properly represented in the simulation.
Domain experts analyzing data from a given system, even in relatively small quantities, are often able to extrapolate the behavior of the systemat least conceptuallybecause of their understanding of and trained intuition about the system based on physical principles. In a similar way, laws and relationships that govern physical processes and conserved quantities can be explicitly encoded into neural network algorithms, resulting in more accurate and physically meaningful models that require less training data.
In certain applications, the values of terms or coefficients in PDEs that drive a systemand thus that should be represented in a modelare not known. Various ML algorithms were developed recently that automatically determine PDEs that are consistent with the available physical observations, affording a new and powerful discovery tool.
In still newer work, ML methods are being developed to directly solve PDEs. These methods offer accuracy comparable to traditional numerical integrators but can be dramatically faster, potentially allowing large-scale simulations of complex sets of PDEs that have otherwise been unattainable.
The Earth and space sciences are poised for a revolution centered around the application of existing and rapidly emerging ML techniques to large and complex ESS data sets being collected. These techniques have great potential to help scientists address some of the most urgent challenges and questions about the natural world facing us today. We hope the above list sparks creative and valuable new applications of ML, particularly among students and young scientists, and that it becomes a community resource to which the ESS community can add more ideas.
We thank the AGU Nonlinear Geophysics section for promoting interdisciplinary, data-driven research, for supporting the idea of writing this article, and for suggesting Eos as the ideal venue for dissemination. The authors gratefully acknowledge the following sources of support: J.B. from subgrant 1559841 to the University of California, Los Angeles, from the University of Colorado Boulder under NASA Prime Grant agreement 80NSSC20K1580, the Defense Advanced Research Projects Agency under U.S. Department of the Interior award D19AC00009, and NASA/SWO2R grant 80NSSC19K0239 and E.C. from NASA grants 80NSSC20K1580 and 80NSSC20K1275. Some of the ideas discussed in this paper originated during the 2019 Machine Learning in Heliophysics conference.
Jacob Bortnik ([emailprotected]), University of California, Los Angeles; and Enrico Camporeale, Space Weather Prediction Center, NOAA, Boulder, Colo.; also at Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder
See the original post:
Ten Ways to Apply Machine Learning in Earth and Space Sciences - Eos
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]