Does the life of an astronomer or planetary scientists seem exciting?
Sitting in an observatory, sipping warm cocoa, with high-tech tools at your disposal as you work diligently, surfing along on the wavefront of human knowledge, surrounded by fine, bright people. Then one dayEureka!all your hard work and the work of your colleagues pays off, and you deliver to humanity a critical piece of knowledge. A chunk of knowledge that settles a scientific debate, or that ties a nice bow on a burgeoning theory, bringing it all together. ConferencestenureNobel Prize?
Well, maybe in your first year of university you might imagine something like that. But science is work. And as we all know, not every minute of ones working life is super-exciting and gratifying.
Sometimes it can be dull and repetitious.
Its probably not anyones dream, when they begin their scientific education, to sit in front of a computer poring over photos of the surface of Mars, counting the craters. But someone has to do it. How else would we all know how many craters there are?
Mars is the subject of intense scientific scrutiny. Telescopes, rovers, and orbiters are all working to unlock the planets secrets. There are a thousand questions concerning Mars, and one part of understanding the complex planet is understanding the frequency of meteorite strikes on its surface.
NASAs Mars Reconnaissance Orbiter (MRO) has been orbiting Mars for 14.5 years now. Along with the rest of its payload, the MRO carries cameras. One of them is called the Context (CTX) Camera. As its name says, it provides context for the other cameras and instruments.
MROs powerhouse camera is called HiRISE (High-Resolution Imaging Science Experiment). While the CTX camera takes wider view images, HiRISE zooms in to take precision images of details on the surface. The pair make a potent team, and HiRISE has treated us to more gorgeous and intriguing pictures of Mars than any other instrument.
But the cameras are kind of dumb in a scientific sense. It takes a human being to go over the images. As a NASA press release tells us, it can take 40 minutes for one researcher to go over a CTX image, hunting for small craters. Over the lifetime of the MRO so far, researchers have found over 1,000 craters this way. Theyre not just looking for craters, theyre interested in any changes on the surface: dust devils, shifting dunes, landslides, and the like.
AI researchers at NASAs Jet Propulsion Laboratory in Southern California have been trying to do something about all the time it takes to find things of interest in all of these images. Theyre developing a machine learning tool to handle some of that workload. On August 26th, 2020, the tool had its first success.
On some date between March 2010 and May 2012, a meteor slammed into Mars thin atmosphere. It broke into several pieces before it struck the surface, creating what looks like nothing more than a black speck in CTX camera images of the area. The new AI tool, called an automated fresh impact crater classifier, found it. Once it did, NASA used HiRISE to confirm it.
That was the classifiers first find, and in the future, NASA expects AI tools to do more of this kind of work, freeing human minds up for more demanding thinking. The crater classifier is part of a broader JPL effort named COSMIC (Capturing Onboard Summarization to Monitor Image Change). The goal is to develop these technologies not only for MRO, but for future orbiters. Not only at Mars, but wherever else orbiters find themselves.
Machine learning tools like the crater classifier have to be trained. For its training, it was fed 6,830 CTX camera images. Among those images were ones containing confirmed craters, and others that contained no craters. That taught the tool what to look for and what not to look for.
Once it was trained, JPL took the systems training wheels off and let it loose on over 110,000 images of the Martian surface. JPL has its own supercomputer, a cluster containing dozens of high-performance machines that can work together. The result? The AI running on that powerful machine took only five seconds to complete a task that takes a human about 40 minutes. But it wasnt easy to do.
It wouldnt be possible to process over 112,000 images in a reasonable amount of time without distributing the work across many computers, said JPL computer scientist Gary Doran, in a press release. The strategy is to split the problem into smaller pieces that can be solved in parallel.
But while the system is powerful, and represents a huge savings of human time, it cant operate without human oversight.
AI cant do the kind of skilled analysis a scientist can, said JPL computer scientist Kiri Wagstaff. But tools like this new algorithm can be their assistants. This paves the way for an exciting symbiosis of human and AI investigators working together to accelerate scientific discovery.
Once the crater finder scores a hit in a CTX camera image, its up to HiRISE to confirm it. That happened on August 26th, 2020. After the crater finder flagged a dark smudge in a CTX camera image of a region named Noctis Fossae, the power of the HiRISE took scientists in for a closer look. That confirmed the presence of not one crater, but a cluster of several resulting from the objects that struck Mars between March 2010 and May 2012.
With that initial success behind them, the team developing the AI has submitted more than 20 other CTX images to HiRISE for verification.
This type of software system cant run on an orbiter, yet. Only an Earth-bound supercomputer can perform this complex task. All of the data from CTX and HiRISE is sent back to Earth, where researchers pore over it, looking for images of interest. But the AI researchers developing this system hope that will change in the future.
The hope is that in the future, AI could prioritize orbital imagery that scientists are more likely to be interested in, said Michael Munje, a Georgia Tech graduate student who worked on the classifier as an intern at JPL.
Theres another important aspect to this development. It shows how older, still-operational spacecraft can be sort of re-energized with modern technological power, and how scientists can wring even more results from them.
Ingrid Daubar is one of the scientists working on the system. She thinks that this new tool will help find more craters that are eluding human eyes. And if it can, itll help build our knowledge of the frequency, shape, and size of meteor strikes on Mars.
There are likely many more impacts that we havent found yet, Daubar said. This advance shows you just how much you can do with veteran missions like MRO using modern analysis techniques.
This new machine learning tool is part of a broader-based NASA/JPL initiative called COSMIC (Content-based On-board Summarization to Monitor Infrequent Change.) That initiative has a motto: Observe much, return best.
The idea behind COSMIC is to create a robust, flexible orbital system for conducting planetary surveys and change monitoring in the Martian environment. Due to bandwidth considerations, many images are never downloaded to Earth. Among other goals, the system will autonomously detect changes in non-monitored areas, and provide relevant, informative descriptions of onboard images to advise downlink prioritization. The AI that finds craters is just one component of the system.
Data management is a huge and growing challenge in science. Other missions like NASAs Kepler planet-hunting spacecraft generated an enormous amount of data. In an effort that parallels what COSMIC is trying to do, scientists are using new methods to comb through all of Keplers data, sometimes finding exoplanets that were missed in the original analysis.
And the upcoming Vera C. Rubin Survey Telescope will be another data-generating monster. In fact, managing all of its data is considered to be the most challenging part of that entire project. Itll generate about 200,000 images per year, or about 1.28 petabytes of raw data. Thats far more data than humans will be able to deal with.
In anticipation of so much data, the people behing the Rubin Telescope developed the the LSSTC Data Science Fellowship Program. Its a two-year program designed for grad school curriculums that will explore topics including statistics, machine learning, information theory, and scalable programming.
Its clear that AI and machine learning will have to play a larger role in space science. In the past, the amount of data returned by space missions was much more manageable. The instruments gathering the data were simpler, the cameras were much lower resolution, and the missions didnt last as long (not counting the Viking missions.)
And though a system designed to find small craters on the surface of Mars might not capture the imagination of most people, its indicative of what the future will hold.
One day, more scientists will be freed from sitting for hours at a time going over images. Theyll be able to delegate some of that work to AI systems like COSMIC and its crater finder.
Well probably all benefit from that.
Like Loading...
Here is the original post:
Machine Learning Software is Now Doing the Exhausting Task of Counting Craters On Mars - Universe Today
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]