I am a skeptic of machine learning. There, I've said it. I say this not because I don't think that machine learning is a poor technology - it's actually quite powerful for what it does - but because machine-learning by itself is only half a solution.
To explain this (and the relationship that graphs have to machine learning and AI), it's worth spending a bit of time exploring what exactly machine learning does, how it works. Machine learning isn't actually one particular algorithm or piece of software, but rather the use of statistical algorithms to analyze large amounts of data and from that construct a model that can, at a minimum, classify the data consistently. If it's done right, the reasoning goes, it should then be possible to use that model to classify new information so that it's consistent with what's already known.
Many such systems make use of clustering algorithms - they take a look at data as vectors that can be described in an n-dimensional space. That is to say, there are n different facets that describe a particular thing, such as a thing's color, shape (morphology), size, texture, and so forth. Some of these attributes can be identified by a single binary (does the thing have a tail or not), but in most cases the attributes usually range along a spectrum, such as "does the thing have an an exclusively protein-based diet (an obligate carnivore) or does its does consist of a certain percentage of grains or other plants?". In either case, this means that it is possible to use the attribute as a means to create a number between zero and one (what mathematicians would refer to as a normal orthogonal vector).
Orthogonality is an interesting concept. In mathematics, two vectors are considered orthogonal if there exists some coordinate system in which you cannot express any information about one vector using the other. For instance, if two vectors are at right angles to one another, then there is one coordinate system where one vector aligns with the x-axis and the other with the y-axis. I cannot express any part of the length of a vector along the y axis by multiplying the length of the vector on the x-axis. In this case they are independent of one another.
This independence is important. Mathematically, there is no correlation between the two vectors - they represent different things, and changing one vector tells me nothing about any other vector. When vectors are not orthogonal, one bleeds a bit (or more than a bit) into another. One two vectors are parallel to one another, they are fully correlated - one vector can be expressed as a multiple of the other. A vector in two dimensions can always be expressed as the "sum" of two orthogonal vectors, a vector in three dimensions, can always be expressed as the "sum" of three orthogonal vectors and so forth.
If you can express a thing as a vector consisting of weighted values, this creates a space where related things will generally be near one another in an n-dimensional space. Cats, dogs, and bears are all carnivores, so in a model describing animals, they will tend to be clustered in a different group than rabbits, voles, and squirrels based upon their dietary habits. At the same time cats,, dogs and bears will each tend to cluster in different groups based upon size as even a small adult bear will always be larger than the largest cat and almost all dogs. In a two dimensional space, it becomes possible to carve out a region where you have large carnivores, medium-sized carnivores, small carnivores, large herbivores and so forth.
Machine learning (at its simplest) would recognize that when you have a large carnivore, given a minimal dataset, you're likely to classify that as a bear, because based upon the two vectors size and diet every time you are at the upper end of the vectors for those two values, everything you've already seen (your training set) is a bear, while no vectors outside of this range are classified in this way.
A predictive model with only two independent vectors is going to be pretty useless as a classifier for more than a small set of items. A fox and a dog will be indistinguishable in this model, and for that matter, a small dog such as a Shitsu vs. a Maine Coon cat will confuse the heck out of such a classifier. On the flip side, the more variables that you add, the harder it is to ensure orthogonality, and the more difficult it then becomes determine what exactly is the determining factor(s) for classification, and consequently increasing the chances of misclassification. A panda bear is, anatomically and genetically, a bear. Yet because of a chance genetic mutation it is only able to reasonably digest bamboo, making it a herbivore.
You'd need to go to a very fine-grained classifier, one capable of identifying genomic structures, to identify a panda as a bear. The problem here is not in the mathematics but in the categorization itself. Categorizations are ultimately linguistic structures. Normalization functions are themselves arbitrary, and how you normalize will ultimately impact the kind of clustering that forms. When the number of dimensions in the model (even assuming that they are independent, which gets harder to determine with more variables) gets too large, then the size of hulls for clustering becomes too small, and interpreting what those hulls actually significant become too complex.
This is one reason that I'm always dubious when I hear about machine learning models that have thousands or even millions of dimensions. As with attempting to do linear regressions on curves, there are typically only a handful of parameters that typically drive most of the significant curve fitting, which is ultimately just looking for adequate clustering to identify meaningful patterns - and typically once these patterns are identified, then they are encoded and indexed.
Facial recognition, for instance, is considered a branch of machine learning, but for the most part it works because human faces exist within a skeletal structure that limits the variations of light and dark patterns of the face. This makes it easy to identify the ratios involved between eyes, nose, and mouth, chin and cheekbones, hairlines and other clues, and from that reduce this information to a graph in which the edges reflect relative distances between those parts. This can, in turn, be hashed as a unique number, in essence encoding a face as a graph in a database. Note this pattern. Because the geometry is consistent, rotating a set of vectors to present a consistent pattern is relatively simple (especially for modern GPUs).
Facial recognition then works primarily due to the ability to hash (and consequently compare) graphs in databases. This is the same way that most biometric scans work, taking a large enough sample of datapoints from unique images to encode ratios, then using the corresponding key to retrieve previously encoded graphs. Significantly, there's usually very little actual classification going on here, save perhaps in using courser meshes to reduce the overall dataset being queried. Indeed, the real speed ultimately is a function of indexing.
This is where the world of machine learning collides with that of graphs. I'm going to make an assertion here, one that might get me into trouble with some readers. Right now there's a lot of argument about the benefits and drawbacks of property graphs vs. knowledge graphs. I contend that this argument is moot - it's a discussion about optimization strategies, and the sooner that we get past that argument, the sooner that graphs will make their way into the mainstream.
Ultimately, we need to recognize that the principal value of a graph is to index information so that it does not need to be recalculated. One way to do this is to use machine learning to classify, and semantics to bind that classification to the corresponding resource (as well as to the classifier as an additional resource). If I have a phrase that describes a drink as being nutty or fruity, then these should be identified as classifications that apply to drinks (specifically to coffees, teas or wines). If I come across flavors such as hazelnut, cashew or almond, then these should be correlated with nuttiness, and again stored in a semantic graph.
The reason for this is simple - machine learning without memory is pointless and expensive. Machine learning is fast facing a crisis in that it requires a lot of cycles to train, classify and report. Tie machine learning into a knowledge graph, and you don't have to relearn all the time, and you can also reduce the overall computational costs dramatically. Furthermore, you can make use of inferencing, which are rules that can make use of generalization and faceting in ways that are difficult to pull off in a relational data system. Something is bear-like if it is large, has thick fur, does not have opposable thumbs, has a muzzle, is capable of extended bipedal movement and is omnivorous.
What's more, the heuristic itself is a graph, and as such is a resource that can be referenced. This is something that most people fail to understand about both SPARQL and SHACL. They are each essentially syntactic sugar on top of graph templates. They can be analyzed, encoded and referenced. When a new resource is added into a graph, the ingestion process can and should run against such templates to see if they match, then insert or delete corresponding additional metadata as the data is folded in.
Additionally, one of those pieces of metadata may very well end up being an identifier for the heuristic itself, creating what's often termed a reverse query. Reverse queries are significant because they make it possible to determine which family of classifiers was used to make decisions about how an entity is classified, and from that ascertain the reasons why a given entity was classified a certain way in the first place.
This gets back to one of the biggest challenges seen in both AI and machine learning - understanding why a given resource was classified. When you have potentially thousands of facets that may have potentially been responsible for a given classification, the ability to see causal chains can go a long way towards making such a classification system repeatable and determining whether the reason for a given classification was legitimate or an artifact of the data collection process. This is not something that AI by itself is very good at, because it's a contextual problem. In effect, semantic graphs (and graphs in general) provide a way of making recommendations self-documenting, and hence making it easier to trust the results of AI algorithms.
One of the next major innovations that I see in graph technology is actually a mathematical change. Most graphs that exist right now can be thought of as collections of fixed vectors, entities connected by properties with fixed values. However, it is possible (especially when using property graphs) to create properties that are essentially parameterized over time (or other variables) or that may be passed as functional results from inbound edges. This is, in fact, an alternative approach to describing neural networks (both physical and artificial), and it has the effect of being able to make inferences based upon changing conditions over time.
This approach can be seen as one form of modeling everything from the likelihood of events happening given other events (Bayesian trees) or modeling complex cost-benefit relationships. This can be facilitated even today with some work, but the real value will come with standardization, as such graphs (especially when they are closed network circuits) can in fact act as trainable neuron circuits.
It is also likely that graphs will play a central role in Smart Contracts, "documents" that not only specify partners and conditions but also can update themselves transactional, can trigger events and can spawn other contracts and actions. These do not specifically fall within the mandate of "artificial intelligence" per se, but the impact that smart contracts play in business and society, in general, will be transformative at the very least.
It's unlikely that this is the last chapter on graphs, either (though it is the last in the series about the State of the Graph). Graphs, ultimately, are about connections and context. How do things relate to one another? How are they connected? What do people know, and how do they know them. They underlie contracts and news, research and entertainment, history and how the future is shaped. Graphs promise a means of generating knowledge, creating new models, and even learning. They remind us that, even as forces try to push us apart, we are all ultimately only a few hops from one another in many, many ways.
I'm working on a book calledContext, hopefully out by Summer 2020. Until then, stay connected.
Read more from the original source:
Artificial Intelligence, Machine Learning and the Future of Graphs - BBN Times
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]