Fraud mitigation is one of the most sought-after artificial intelligence (AI) services because it can provide an immediate return on investment. Already, many companies are experiencing lucrative profits thanks to AI and machine learning (ML) systems that detect and prevent fraud in real-time.
According to a new report, Highmark Inc.s Financial Investigations and Provider Review (FIPR) department generated $260 million in savings that would have otherwise been lost to fraud, waste, and abuse in 2019. In the last five years, the company saved $850 million.
We know the overwhelming majority of providers do the right thing. But we also know year after year millions of health care dollars are lost to fraud, waste and abuse, said Melissa Anderson, executive vice president and chief audit and compliance officer, Highmark Health. By using technology and working with other Blue Plans and law enforcement, we have continually evolved our processes and are proud to be among the best nationally.
FIPR detects fraud across its clients services with the help of an internal team made up of investigators, accountants, and programmers, as well as seasoned professionals with an eye for unusual activity such as registered nurses and former law enforcement agents. Human audits performed to detect unusual claims and assess the appropriateness of provider payments are used as training data for AI systems, which can adapt and react more rapidly to suspicious changing consumer behavior.
As fraudulent actors have become increasingly aggressive and cunning with their tactics, organizations are looking to AI to mitigate rising threats.
We know it is much easier to stop these bad actors before the money goes out the door then pay and have to chase them, said Kurt Spear, vice president of financial investigations at Highmark Inc.
Elsewhere, Teradata, an AI firm specialized in selling fraud detection solutions to banks, claims in a case study that it helped Danske Bank reduce its false positives by 60% and increased real fraud detection by 50%.
Other service operators are looking to AI fraud detection with a keen eye, especially in the health care sector. A recent survey performed by Optum found that 43% of health industry leaders said they strongly agree that AI will become an integral part of detecting telehealth fraud, waste, or abuse in reimbursement.
In fact, AI spending is growing tremendously with total operating spending set to reach $15 billion by 2024, the most sought-after solutions being network optimization and fraud mitigation. According to theAssociation of Certified Fraud Examiners (ACFE)inauguralAnti-Fraud Technology Benchmarking Report,the amount organizations are expected to spend on AI and machine learning to reduce online fraud is expected to triple by 2021.
Mitigating fraud in healthcare would be a boon for an industry that is plagued with many structural inefficiencies.
The United States spends about $3.5 trillion on healthcare-related services every year. This staggering sum corresponds to about 18% of the countrys GDP and is more than twice the average among developed countries. However, despite this tremendous spending, healthcare service quality is lacking. According to a now-famous 2017 study, the U.S. has fewer hospital beds and doctors per capita than any other developed country.
A 2019 study found that the countrys healthcare system is incredibly inefficient, burning through roughly 25% of all its finances which basically go to waste thats $760 billion annually in the best case scenario and up to $935 billion annually.
Most money is being wasted due to unnecessary administrative complexity, including billing and coding waste this alone is responsible for $265.6 billion annually. Drug pricing is another major source of waste, account for around $240 billion. Finally, over-treatment and failure of care delivery incurred another $300 billion in wasted costs.
And even these astronomical costs may be underestimated. According to management firm Numerof and Associates, the 25% waste estimate might be conservative. Instead, the firm believes that as much as 40% of the countrys healthcare spending is wasted, mostly due to administrative complexity. The firm adds that fraud and abuse account for roughly 8% of waste in healthcare.
Most cases of fraud in the healthcare sector are committed by organized crime groups and a fraction of some healthcare providers that are dishonest.
According to the National Healthcare Anti-Fraud Association, the most common types of healthcare frauds in the United States are:
Traditionally, the most prevalent method for fraud management has been human-generated rule sets. To this day, this is the most common practice but thanks to a quantum leap in computing and Big Data, AI-based solutions based on machine learning algorithms are becoming increasingly appealing and most importantly practical.
But what is machine learning anyway? Machine learning refers to algorithms that are designed learn like humans do and continuously tweak this learning process over time without human supervision. The algorithms output accuracy can be improved continuously by feeding them data and information in the form of observations and real-world interactions.
In other words, machine learning is the science of getting computers to act without being explicitly programmed.
There are all sorts of various machine learning algorithms, depending on the requirements of each situation and industry. Hundreds of new machine learning algorithms are published on a daily basis. Theyre typically grouped by:
In a healthcare fraud analytics context, machine learning eliminates the use of preprogrammed rule sets even those of phenomenal complexity.
Machine learning enables companies to efficiently determine what transactions or set of behaviors are most likely to be fraudulent, while reducing false positives.
In an industry where there can be billions of different transactions on a daily basis, AI-based analytics can be an amazing fit thanks to their ability to automatically discover patterns across large volumes of data.
The process itself can be complex since the algorithms have to interpret patterns in the data and apply data science in real-time in order to distinguish between normal behavior and abnormal behavior.
This can be a problem since an improper understanding of how AI works and fraud-specific data science techniques can lead you to develop algorithms that essentially learn to do the wrong things. Just like people can learn bad habits, so too can a poorly designed machine learning model.
In order for online fraud detection based on AI technology to succeed, these platforms need to check three very important boxes.
First, supervised machine learning algorithms have to be trained and fine-tuned based on decades worth of transaction data to keep false positives to a minimum and improve reaction time. This is harder said than done because the data needs to be structured and properly labeled depending on the size of the project, this could take staff even years to solve.
Secondly, unsupervised machine learning needs to keep up with increasingly sophisticated forms of online fraud. After all, AI is used by both auditors and fraudsters. And, finally, for AI fraud detection platforms to scale, they require a large-scale, universal data network of activity (i.e. transactions, filed documents, etc) to scale the ML algorithms and improve the accuracy of fraud detection scores.
According to a new market research report released earlier this year, the healthcare fraud analytics market is projected to reach $4.6 billion by 2025 from $1.2 billion in 2020.
This growth is attributed to more numerous and complex fraudulent activity in the healthcare sector.
In order to tackle rising healthcare fraud, companies offer various analytics solutions that flag fraudulent activity some are rule-based models, but AI-based technologies are expected to form the backbone of all types of analytics used in the future. These include descriptive, predictive, and prescriptive analytics.
Some of the most important companies operating today in the healthcare fraud analytics market include IBM Corporation (US), Optum (US), SAS Institute (US), Change Healthcare (US), EXL Service Holdings (US), Cotiviti (US), Wipro Limited (Wipro) (India), Conduent (US), HCL (India), Canadian Global Information Technology Group (Canada), DXC Technology Company (US), Northrop Grumman Corporation (US), LexisNexis Group (US), and Pondera Solutions (US).
That being said, there is a wide range of options in place today to prevent fraud. However, the evolving landscape of e-commerce and hacking pose new challenges all the time. To keep up, these challenges require innovation that can respond and react rapidly to fraud. The common denominator, from payment fraud to abuse, seems to be machine learning, which can easily scale to meet the demands of big data with far more flexibility than traditional methods.
See more here:
Artificial intelligence for fraud detection is bound to save billions - ZME Science
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]