Atos and CSC empower the Finnish quantum research community with Atos Quantum Learning Machine – Quantaneo, the Quantum Computing Source

This announcement marks a new step in the partnership between Atos and CSC, which was initiated in 2018 with the signing of a contract for a supercomputer based on Atos' architecture.

Now with the Atos QLM30, CSC brings together users from academia and industry, in order to acquire skills and develop further expertise in the field of quantum computing. Atos QLM enables the advanced study of applications of quantum theory, thereby creating new technologies and solutions for a wide range of problems.

"Kvasi will bring a novel and interesting addition to CSCs computing environment. The quantum processor simulator enables learning and design of quantum algorithms, supported by an ambitious user program. All end-users of CSCs computing services will have access to Kvasi", says Dr. Pekka Manninen, Program Director, CSC.

The Atos QLM is a quantum simulation platform that consists of an accessible programming environment, optimization modules to adapt the code to targeted quantum hardware constraints, and simulators that allow users to test their algorithms and visualize their computation results. This allows for realistic simulation of existing and future quantum processing units, which suffer from quantum noise, quantum decoherence, and manufacturing biases. Performance bottlenecks can thus be identified and circumvented.

"We are proud to be recognized by CSC as a trusted partner and to demonstrate our ongoing commitment to the competitiveness of the Finnish research and academic community. The Atos Quantum Learning Machine will allow researchers, engineers and students to develop and experiment with quantum software without having to wait for quantum machines to be available", says Harri Saikkonen, Managing Director, Atos in the Nordics.

Finland is at the forefront of quantum research. In 2016, Finnish and American researchers were the first in the world to observe and tie a quantum knot, using CSC computers to drive key simulations. In 2020, researchers from CSC, Aalto University and bo Akademi and their collaborators from Boston University, demonstrated for the first time how the noise impacts on quantum computing in a systematic way.

In November 2016, Atos launched an ambitious program to anticipate the future of quantum computing and to be prepared for the opportunities as well as the risks that come with it. As a result of this initiative, Atos was the first to successfully model quantum noise. To date, the company has installed Quantum Learning Machines in numerous countries including Austria, Denmark, France, Germany, the Netherlands, the UK, the United States and Japan empowering major research programs in various sectors, such as industry or energy.

See the rest here:
Atos and CSC empower the Finnish quantum research community with Atos Quantum Learning Machine - Quantaneo, the Quantum Computing Source

Total partners with Cambridge Quantum Computing on CO2 capture – Green Car Congress

Total is stepping up its research into Carbon Capture, Utilization and Storage (CCUS) technologies by signing a multi-year partnership with UK start-up Cambridge Quantum Computing (CQC). This partnership aims to develop new quantum algorithms to improve materials for CO2 capture.

Totals ambition is to be a major player in CCUS and the Group currently invests up to 10% of its annual research and development effort in this area.

To improve the capture of CO2, Total is working on nanoporous adsorbents, considered to be among the most promising solutions. These materials could eventually be used to trap the CO2 emitted by the Groups industrial operations or those of other players (cement, steel etc.). The CO2 recovered would then be concentrated and reused or stored permanently. These materials could also be used to capture CO2 directly from the air (Direct Air Capture or DAC).

The quantum algorithms which will be developed in the collaboration between Total and CQC will simulate all the physical and chemical mechanisms in these adsorbents as a function of their size, shape and chemical composition, and therefore make it possible to select the most efficient materials to develop.

Currently, such simulations are impossible to perform with a conventional supercomputer, which justifies the use of quantum calculations.

More here:
Total partners with Cambridge Quantum Computing on CO2 capture - Green Car Congress

Quantum Computing Market 2020 Global Overview, Growth, Size, Opportunities, Trends, Leading Company Analysis and Forecast to 2026 – Cole of Duty

1qb Information Technologies

All of the product type and application segments of the Quantum Computing market included in the report are deeply analyzed based on CAGR, market size, and other crucial factors. The segmentation study provided by the report authors could help players and investors to make the right decisions when looking to invest in certain market segments.

The Essential Content Covered in the Quantum Computing Market Report :

* Top Key Company Profiles.* Main Business and Rival Information* SWOT Analysis and PESTEL Analysis* Production, Sales, Revenue, Price and Gross Margin* Market Share and Size

The report is a compilation of different studies, including regional analysis where leading regional Quantum Computing markets are comprehensive studied by market experts. Both developed and developing regions and countries are covered in the report for a 360-degree geographic analysis of the Quantum Computing market. The regional analysis section helps readers to become familiar with the growth patterns of important regional Quantum Computing markets. It also provides information on lucrative opportunities available in key regional Quantum Computing markets.

Ask For Discounts, Click Here @ https://www.verifiedmarketresearch.com/ask-for-discount/?rid=24845&utm_source=COD&utm_medium=001

Table of Content

1 Introduction of Quantum Computing Market

1.1 Overview of the Market1.2 Scope of Report1.3 Assumptions

2 Executive Summary

3 Research Methodology

3.1 Data Mining3.2 Validation3.3 Primary Interviews3.4 List of Data Sources

4 Quantum Computing Market Outlook

4.1 Overview4.2 Market Dynamics4.2.1 Drivers4.2.2 Restraints4.2.3 Opportunities4.3 Porters Five Force Model4.4 Value Chain Analysis

5 Quantum Computing Market, By Deployment Model

5.1 Overview

6 Quantum Computing Market, By Solution

6.1 Overview

7 Quantum Computing Market, By Vertical

7.1 Overview

8 Quantum Computing Market, By Geography

8.1 Overview8.2 North America8.2.1 U.S.8.2.2 Canada8.2.3 Mexico8.3 Europe8.3.1 Germany8.3.2 U.K.8.3.3 France8.3.4 Rest of Europe8.4 Asia Pacific8.4.1 China8.4.2 Japan8.4.3 India8.4.4 Rest of Asia Pacific8.5 Rest of the World8.5.1 Latin America8.5.2 Middle East

9 Quantum Computing Market Competitive Landscape

9.1 Overview9.2 Company Market Ranking9.3 Key Development Strategies

10 Company Profiles

10.1.1 Overview10.1.2 Financial Performance10.1.3 Product Outlook10.1.4 Key Developments

11 Appendix

11.1 Related Research

Get Complete Report @ https://www.verifiedmarketresearch.com/product/Quantum-Computing-Market/?utm_source=COD&utm_medium=001

About us:

Verified Market Research is a leading Global Research and Consulting firm servicing over 5000+ customers. Verified Market Research provides advanced analytical research solutions while offering information enriched research studies. We offer insight into strategic and growth analyses, Data necessary to achieve corporate goals and critical revenue decisions.

Our 250 Analysts and SMEs offer a high level of expertise in data collection and governance use industrial techniques to collect and analyse data on more than 15,000 high impact and niche markets. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise and years of collective experience to produce informative and accurate research.

We study 14+ categories from Semiconductor & Electronics, Chemicals, Advanced Materials, Aerospace & Defence, Energy & Power, Healthcare, Pharmaceuticals, Automotive & Transportation, Information & Communication Technology, Software & Services, Information Security, Mining, Minerals & Metals, Building & construction, Agriculture industry and Medical Devices from over 100 countries.

Contact us:

Mr. Edwyne Fernandes

US: +1 (650)-781-4080UK: +44 (203)-411-9686APAC: +91 (902)-863-5784US Toll Free: +1 (800)-7821768

Email: [emailprotected]

Tags: Quantum Computing Market Size, Quantum Computing Market Trends, Quantum Computing Market Growth, Quantum Computing Market Forecast, Quantum Computing Market Analysis NMK, Majhi Naukri, Sarkari Naukri, Sarkari Result

Our Trending Reports

Rugged Display Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Quantum Computing Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Read the rest here:
Quantum Computing Market 2020 Global Overview, Growth, Size, Opportunities, Trends, Leading Company Analysis and Forecast to 2026 - Cole of Duty

Weekly Update: Global Coronavirus Impact and Implications on Quantum Computing Market Forecast Report Offers Key Insights, Key Drivers, Technology -…

Transportation restrictions and stringent government policies are causing a downturn in the growth scale of the Quantum Computing market amidst the COVID-19 (Coronavirus) lockdown period. Hence, analysts at Market Research Reports Search Engine (MRRSE) have collated a research study that provides an in-depth outlook on Coronavirus and how the novel virus can leave long-term effects in trade practices post lockdown period in the Quantum Computing market.

Why Choose MRRSE?

Request Sample Report @https://www.mrrse.com/sample/10699?source=atm

The report on the global Quantum Computing market published by MRRSE provides a clear understanding of the flight of the Quantum Computing market over the forecast period (20XX-20XX). The study introspects the various factors that are tipped to influence the growth of the Quantum Computing market in the upcoming years. The current trends, growth opportunities, restraints, and major challenges faced by market players in the Quantum Computing market are analyzed in the report.

The study reveals that the global Quantum Computing market is projected to reach a market value of ~US$XX by the end of 20XX and grow at a CAGR of ~XX% during the assessment period. Further, a qualitative and quantitative analysis of the Quantum Computing market based on data collected from various credible sources in the market value chain is included in the report along with relevant tables, graphs, and figures.

Key Takeaways of the Report:

Request For Discount On This Report @ https://www.mrrse.com/checkdiscount/10699?source=atm

Quantum Computing Market Segmentation

The presented study throws light on the current and future prospects of the Quantum Computing market in various geographies such as:

The report highlights the product adoption pattern of various products in the Quantum Computing market and provides intricate insights such as the consumption volume, supply-demand ratio, and pricing models of the following products:

Market Segmentation

By Component

Buy This Report @ https://www.mrrse.com/checkout/10699?source=atm

The report addresses the following doubts related to the Quantum Computing market:

See the article here:
Weekly Update: Global Coronavirus Impact and Implications on Quantum Computing Market Forecast Report Offers Key Insights, Key Drivers, Technology -...

Total Partners with CQC to Improve CO2 Capture – Energy Industry Review

Total is stepping up its research into Carbon Capture, Utilization and Storage (CCUS) technologies by signing a multi-year partnership with UK start-up Cambridge Quantum Computing (CQC). This partnership aims to develop new quantum algorithms to improve materials for CO2 capture. Totals ambition is to be a major player in CCUS and the Group currently invests up to 10% of its annual research and development effort in this area.

To improve the capture of CO2, Total is working on nanoporous materials called adsorbents, considered to be among the most promising solutions. These materials could eventually be used to trap the CO2 emitted by the Groups industrial operations or those of other players (cement, steel etc.). The CO2 recovered would then be concentrated and reused or stored permanently. These materials could also be used to capture CO2 directly from the air (Direct Air Capture or DAC).

The quantum algorithms which will be developed in the collaboration between Total and CQC will simulate all the physical and chemical mechanisms in these adsorbents as a function of their size, shape and chemical composition, and therefore make it possible to select the most efficient materials to develop. Currently, such simulations are impossible to perform with a conventional supercomputer, which justifies the use of quantum calculations.

Total is very pleased to be launching this new collaboration with Cambridge Quantum Computing: quantum computing opens up new possibilities for solving extremely complex problems. We are therefore among the first to use quantum computing in our research to design new materials capable of capturing CO2 more efficiently. In this way, Total intends to accelerate the development of the CCUS technologies that are essential to achieve carbon neutrality in 2050, said Marie-Nolle Semeria, Totals CTO.

We are very excited to be working with Total, a demonstrated thought-leader in CCUS technology. Carbon neutrality is one of the most significant topics of our time and incredibly important to the future of the planet. Total has a proven long-term commitment to CCUS solutions. We are hopeful that our work will lead to meaningful contributions and an acceleration on the path to carbon neutrality, Ilyas Khan, CEO of CQC, mentioned.

Total is deploying an ambitious R&D programme, worth nearly USD 1 billion a year. Total R&D relies on a network of more than 4,300 employees in 18 research centres around the world, as well as on numerous partnerships with universities, start-ups and industrial companies. Its investments are mainly devoted to a low-carbon energy mix (40%) as well as to digital, safety and the environment, operational efficiency and new products. It files more than 200 patents every year.

Read more from the original source:
Total Partners with CQC to Improve CO2 Capture - Energy Industry Review

Quantum computing will (eventually) help us discover vaccines in days – VentureBeat

The coronavirus is proving that we have to move faster in identifying and mitigating epidemics before they become pandemics because, in todays global world, viruses spread much faster, further, and more frequently than ever before.

If COVID-19 has taught us anything, its that while our ability to identify and treat pandemics has improved greatly since the outbreak of the Spanish Flu in 1918, there is still a lot of room for improvement. Over the past few decades, weve taken huge strides to improve quick detection capabilities. It took a mere 12 days to map the outer spike protein of the COVID-19 virus using new techniques. In the 1980s, a similar structural analysis for HIV took four years.

But developing a cure or vaccine still takes a long time and involves such high costs that big pharma doesnt always have incentive to try.

Drug discovery entrepreneur Prof. Noor Shaker posited that Whenever a disease is identified, a new journey into the chemical space starts seeking a medicine that could become useful in contending diseases. The journey takes approximately 15 years and costs $2.6 billion, and starts with a process to filter millions of molecules to identify the promising hundreds with high potential to become medicines. Around 99% of selected leads fail later in the process due to inaccurate prediction of behavior and the limited pool from which they were sampled.

Prof. Shaker highlights one of the main problems with our current drug discovery process: The development of pharmaceuticals is highly empirical. Molecules are made and then tested, without being able to accurately predict performance beforehand. The testing process itself is long, tedious, cumbersome, and may not predict future complications that will surface only when the molecule is deployed at scale, further eroding the cost/benefit ratio of the field. And while AI/ML tools are already being developed and implemented to optimize certain processes, theres a limit to their efficiency at key tasks in the process.

Ideally, a great way to cut down the time and cost would be to transfer the discovery and testing from the expensive and time-inefficient laboratory process (in-vitro) we utilize today, to computer simulations (in-silico). Databases of molecules are already available to us today. If we had infinite computing power we could simply scan these databases and calculate whether each molecule could serve as a cure or vaccine to the COVID-19 virus. We would simply input our factors into the simulation and screen the chemical space for a solution to our problem.

In principle, this is possible. After all, chemical structures can be measured, and the laws of physics governing chemistry are well known. However, as the great British physicist Paul Dirac observed: The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

In other words, we simply dont have the computing power to solve the equations, and if we stick to classical computers we never will.

This is a bit of a simplification, but the fundamental problem of chemistry is to figure out where electrons sit inside a molecule and calculate the total energy of such a configuration. With this data, one could calculate the properties of a molecule and predict its behavior. Accurate calculations of these properties will allow the screening of molecular databases for compounds that exhibit particular functions, such as a drug molecule that is able to attach to the coronavirus spike and attack it. Essentially, if we could use a computer to accurately calculate the properties of a molecule and predict its behavior in a given situation, it would speed up the process of identifying a cure and improve its efficiency.

Why are quantum computers much better than classical computers at simulating molecules?

Electrons spread out over the molecule in a strongly correlated fashion, and the characteristics of each electron depend greatly on those of its neighbors. These quantum correlations (or entanglement) are at the heart of the quantum theory and make simulating electrons with a classical computer very tricky.

The electrons of the COVID-19 virus, for example, must be treated in general as being part of a single entity having many degrees of freedom, and the description of this ensemble cannot be divided into the sum of its individual, distinguishable electrons. The electrons, due to their strong correlations, have lost their individuality and must be treated as a whole. So to solve the equations, you need to take into account all of the electrons simultaneously. Although classical computers can in principle simulate such molecules, every multi-electron configuration must be stored in memory separately.

Lets say you have a molecule with only 10 electrons (forget the rest of the atom for now), and each electron can be in two different positions within the molecule. Essentially, you have 2^10=1024 different configurations to keep track of rather just 10 electrons which would have been the case if the electrons were individual, distinguishable entities. Youd need 1024 classical bits to store the state of this molecule. Quantum computers, on the other hand, have quantum bits (qubits), which can be made to strongly correlate with one another in the same way electrons within molecules do. So in principle, you would need only about 10 such qubits to represent the strongly correlated electrons in this model system.

The exponentially large parameter space of electron configurations in molecules is exactly the space qubits naturally occupy. Thus, qubits are much more adapted to the simulation of quantum phenomena. This scaling difference between classical and quantum computation gets very big very quickly. For instance, simulating penicillin, a molecule with 41 atoms (and many more electrons) will require 10^86 classical bits, or more bits than the number of atoms in the universe. With a quantum computer, you would only need about 286 qubits. This is still far more qubits than we have today, but certainly a more reasonable and achievable number.The COVID-19 virus outer spike protein, for comparison, contains many thousands of atoms and is thus completely intractable for classical computation. The size of proteins makes them intractable to classical simulation with any degree of accuracy even on todays most powerful supercomputers. Chemists and pharma companies do simulate molecules with supercomputers (albeit not as large as the proteins), but they must resort to making very rough molecule models that dont capture the details a full simulation would, leading to large errors in estimation.

It might take several decades until a sufficiently large quantum computer capable of simulating molecules as large as proteins will emerge. But when such a computer is available, it will mean a complete revolution in the way the pharma and the chemical industries operate.

The holy grail end-to-end in-silico drug discovery involves evaluating and breaking down the entire chemical structures of the virus and the cure.

The continued development of quantum computers, if successful, will allow for end-to-end in-silico drug discovery and the discovery of procedures to fabricate the drug. Several decades from now, with the right technology in place, we could move the entire process into a computer simulation, allowing us to reach results with amazing speed. Computer simulations could eliminate 99.9% of false leads in a fraction of the time it now takes with in-vitro methods. With the appearance of a new epidemic, scientists could identify and develop a potential vaccine/drug in a matter of days.

The bottleneck for drug development would then move from drug discovery to the human testing phases including toxicity and other safety tests. Eventually, even these last stage tests could potentially be expedited with the help of a large scale quantum computer, but that would require an even greater level of quantum computing than described here. Tests at this level would require a quantum computer with enough power to contain a simulation of the human body (or part thereof) that will screen candidate compounds and simulate their impact on the human body.

Achieving all of these dreams will demand a continuous investment into the development of quantum computing as a technology. As Prof. Shohini Ghose said in her 2018 Ted Talk: You cannot build a light bulb by building better and better candles. A light bulb is a different technology based on a deeper scientific understanding. Todays computers are marvels of modern technology and will continue to improve as we move forward. However, we will not be able to solve this task with a more powerful classical computer. It requires new technology, more suited for the task.

(Special thanks Dr. Ilan Richter, MD MPH for assuring the accuracy of the medical details in this article.)

Ramon Szmuk is a Quantum Hardware Engineer at Quantum Machines.

Read more:
Quantum computing will (eventually) help us discover vaccines in days - VentureBeat

Quantum computing analytics: Put this on your IT roadmap – TechRepublic

Quantum is the next step toward the future of analytics and computing. Is your organization ready for it?

Quantum computing can solve challenges that modern computers can't--or it might take them a billion years to do so. It can crack any encryption and make your data completely safe. Google reports that it has seen a quantum computer that performed at least 100 million times faster than any classical computer in its lab.

Quantum blows away the processing of data and algorithms on conventional computers because of its ability to operate on electrical circuits that can be in more than one state at once. A quantum computer operates on Qubits (quantum bits) instead of on the standard bits that are used in conventional computing.

SEE: Managing AI and ML in the enterprise 2020: Tech leaders increase project development and implementation (TechRepublic Premium)

Quantum results can quickly make an impact on life science and pharmaceutical companies, for financial institutions evaluating portfolio risks, and for other organizations that want to expedite time-to-results for processing that on conventional computing platforms would take days to complete.

Few corporate CEOs are comfortable trying to explain to their boards what quantum computing is and why it is important to invest in it.

"There are three major areas where we see immediate corporate engagement with quantum computing," said Christopher Savoie, CEO and co-founder of Zapata Quantum Computing Software Company, a quantum computing solutions provider backed by Honeywell. "These areas are machine learning, optimization problems, and molecular simulation."

Savoie said quantum computing can bring better results in machine learning than conventional computing because of its speed. This rapid processing of data enables a machine learning application to consume large amounts of multi-dimensional data that can generate more sophisticated models of a particular problem or phenomenon under study.

SEE: Forget quantum supremacy: This quantum-computing milestone could be just as important (TechRepublic)

Quantum computing is also well suited for solving problems in optimization. "The mathematics of optimization in supply and distribution chains is highly complex," Savoie said. "You can optimize five nodes of a supply chain with conventional computing, but what about 15 nodes with over 85 million different routes? Add to this the optimization of work processes and people, and you have a very complex problem that can be overwhelming for a conventional computing approach."

A third application area is molecular simulation in chemistry and pharmaceuticals, which can be quite complex.

In each of these cases, models of circumstances, events, and problems can be rapidly developed and evaluated from a variety of dimensions that collate data from many diverse sources into a model.

SEE:Inside UPS: The logistics company's never-ending digital transformation (free PDF)(TechRepublic)

"The current COVID-19 crisis is a prime example," Savoie said. "Bill Gates knew in 2015 that handling such a pandemic would present enormous challengesbut until recently, we didn't have the models to understand the complexities of those challenges."

For those engaging in quantum computing and analytics today, the relative newness of the technology presents its own share of glitches. This makes it important to have quantum computing experts on board. For this reason, most early adopter companies elect to go to the cloud for their quantum computing, partnering with a vendor that has the specialized expertise needed to run and maintain quantum analytics.

SEE: Rural America is in the midst of a mental health crisis. Tech could help some patients see a way forward. (cover story PDF) (TechRepublic)

"These companies typically use a Kubernetes cluster and management stack on premises," Savoie said. "They code a quantum circuit that contains information on how operations are to be performed on quantum qubits. From there, the circuit and the prepared data are sent to the cloud, which performs the quantum operations on the data. The data is processed in the cloud and sent back to the on-prem stack, and the process repeats itself until processing is complete."

Savoie estimated that broad adoption of quantum computing for analytics will occur within a three- to five-year timeframe, with early innovators in sectors like oil and gas, and chemistry, that already understand the value of the technology and are adopting sooner.

"Whether or not you adopt quantum analytics now, you should minimally have it on your IT roadmap," Savoie said. "Quantum computing is a bit like the COVID-19 crisis. At first, there were only two deaths; then two weeks later, there were ten thousand. Quantum computing and analytics is a highly disruptive technology that can exponentially advance some companies over others."

Learn the latest news and best practices about data science, big data analytics, and artificial intelligence. Delivered Mondays

Image: sakkmesterke, Getty Images/iStockphoto

See the original post here:
Quantum computing analytics: Put this on your IT roadmap - TechRepublic

Seeqc UK Awarded 1.8M In Grants To Advance Quantum Computing Initiatives – Quantaneo, the Quantum Computing Source

Seeqc, the Digital Quantum Computing company, today announced its UK team has been selected to receive two British grants totaling 1.8 million from Innovate UKs Industrial Challenge Strategy Fund.

We are looking forward to applying our deep expertise in design, testing and manufacturing of quantum-ready superconductors, along with our resource-efficient approach to qubit control and readout to this collaborative development of quantum circuits.

Quantum Foundry

The first 800,000 grant from Innovate UK is part of a 7M project dedicated to advancing the commercialization of superconducting technology. Its goal is to bring quantum computing closer to business-applicable solutions, cost-efficiently and at scale.

Seeqc UK is joining six UK-based companies and universities in a consortium to collaborate on the initiative. This is the first concerted effort to bring all leading experts across industry and academia together to advance the development of quantum technologies in the UK.

Other grant recipients include Oxford Quantum Circuits, Oxford Instruments, Kelvin Nanotechnology, University of Glasgow and the Royal Holloway University of London.

Quantum Operating System

The second 1 million grant is part of a 7.6 million seven-organization consortium dedicated to advancing the commercialization of quantum computers in the UK by building a highly innovative quantum operating system. A quantum operating system, Deltaflow.OS, will be installed on all quantum computers in the UK in order to accelerate the commercialization and collaboration of the British quantum computing community. The universal operating system promises to greatly increase the performance and accessibility of quantum computers in the UK.

Seeqc UK is joined by other grant recipients, Riverlane, Hitachi Europe, Universal Quantum, Duality Quantum Photonics, Oxford Ionics, and Oxford Quantum Circuits, along with UK-based chip designer, ARM, and the National Physical Laboratory.

Advancing Digital Quantum Computing

Seeqc owns and operates a multi-layer superconductive electronics chip fabrication facility, which is among the most advanced in the world. The foundry serves as a testing and benchmarking facility for Seeqc and the global quantum community to deliver quantum technologies for specific use cases. This foundry and expertise will be critical to the success of the grants. Seeqcs Digital Quantum Computing solution is designed to manage and control qubits in quantum computers in a way that is cost-efficient and scalable for real-world business applications in industries such as pharmaceuticals, logistics and chemical manufacturing.

Seeqcs participation in these new industry-leading British grants accelerates our work in making quantum computing useful, commercially and at scale, said Dr. Matthew Hutchings, chief product officer and co-founder at Seeqc, Inc. We are looking forward to applying our deep expertise in design, testing and manufacturing of quantum-ready superconductors, along with our resource-efficient approach to qubit control and readout to this collaborative development of quantum circuits.

We strongly support the Deltaflow.OS initiative and believe Seeqc can provide a strong contribution to both consortiums work and advance quantum technologies from the lab and into the hands of businesses via ultra-focused and problem-specific quantum computers, continued Hutchings.

Seeqcs solution combines classical and quantum computing to form an all-digital architecture through a system-on-a-chip design that utilizes 10-40 GHz superconductive classical co-processing to address the efficiency, stability and cost issues endemic to quantum computing systems.

Seeqc is receiving the nearly $2.3 million in grant funding weeks after closing its $6.8 million seed round from investors including BlueYard Capital, Cambium, NewLab and the Partnership Fund for New York City. The recent funding round is in addition to a $5 million investment from M Ventures, the strategic corporate venture capital arm of Merck KGaA, Darmstadt, Germany.

Go here to read the rest:
Seeqc UK Awarded 1.8M In Grants To Advance Quantum Computing Initiatives - Quantaneo, the Quantum Computing Source

Quantum Computing Market Research Report 2020 By Size, Share, Trends, Analysis and Forecast to 2026 – Cole of Duty

1qb Information Technologies

Quantum Computing Market Competitive Analysis:

In addition, the projections offered in this report were derived using proven research assumptions and methods. In this way, the Quantum Computing research study offers a collection of information and analysis for every facet of the Quantum Computing market such as technology, regional markets, applications and types. The Quantum Computing market report also offers some market presentations and illustrations that include pie charts, diagrams and charts that show the percentage of different strategies implemented by service providers in the Quantum Computing market. In addition, the report was created using complete surveys, primary research interviews, observations and secondary research.

In addition, the Quantum Computing market report introduced the market through various factors such as classifications, definitions, market overview, product specifications, cost structures, manufacturing processes, raw materials and applications. This report also provides key data on SWOT analysis, return data for investments and feasibility analysis for investments. The Quantum Computing market study also highlights the extremely lucrative market opportunities that are influencing the growth of the global market. In addition, the study offers a complete analysis of market size, segmentation and market share. In addition, the Quantum Computing report contains market dynamics such as market restrictions, growth drivers, opportunities, service providers, stakeholders, investors, important market participants, profile assessment and challenges of the global market.

Quantum Computing Market Segments:

The report also underscores their strategics planning including mergers, acquisitions, ventures, partnerships, product launches, and brand developments. Additionally, the report renders the exhaustive analysis of crucial market segments, which includes Quantum Computing types, applications, and regions. The segmentation sections cover analytical and forecast details of each segment based on their profitability, global demand, current revue, and development prospects. The report further scrutinizes diverse regions including North America, Asia Pacific, Europe, Middle East, and Africa, and South America. The report eventually helps clients in driving their Quantum Computing business wisely and building superior strategies for their Quantum Computing businesses.

To get Incredible Discounts on this Premium Report, Click Here @ https://www.verifiedmarketresearch.com/ask-for-discount/?rid=24845&utm_source=COD&utm_medium=003

Table of Content

1 Introduction of Quantum Computing Market

1.1 Overview of the Market1.2 Scope of Report1.3 Assumptions

2 Executive Summary

3 Research Methodology

3.1 Data Mining3.2 Validation3.3 Primary Interviews3.4 List of Data Sources

4 Quantum Computing Market Outlook

4.1 Overview4.2 Market Dynamics4.2.1 Drivers4.2.2 Restraints4.2.3 Opportunities4.3 Porters Five Force Model4.4 Value Chain Analysis

5 Quantum Computing Market, By Deployment Model

5.1 Overview

6 Quantum Computing Market, By Solution

6.1 Overview

7 Quantum Computing Market, By Vertical

7.1 Overview

8 Quantum Computing Market, By Geography

8.1 Overview8.2 North America8.2.1 U.S.8.2.2 Canada8.2.3 Mexico8.3 Europe8.3.1 Germany8.3.2 U.K.8.3.3 France8.3.4 Rest of Europe8.4 Asia Pacific8.4.1 China8.4.2 Japan8.4.3 India8.4.4 Rest of Asia Pacific8.5 Rest of the World8.5.1 Latin America8.5.2 Middle East

9 Quantum Computing Market Competitive Landscape

9.1 Overview9.2 Company Market Ranking9.3 Key Development Strategies

10 Company Profiles

10.1.1 Overview10.1.2 Financial Performance10.1.3 Product Outlook10.1.4 Key Developments

11 Appendix

11.1 Related Research

Get Complete Report @ https://www.verifiedmarketresearch.com/product/Quantum-Computing-Market/?utm_source=COD&utm_medium=003

About us:

Verified Market Research is a leading Global Research and Consulting firm servicing over 5000+ customers. Verified Market Research provides advanced analytical research solutions while offering information enriched research studies. We offer insight into strategic and growth analyses, Data necessary to achieve corporate goals and critical revenue decisions.

Our 250 Analysts and SMEs offer a high level of expertise in data collection and governance use industrial techniques to collect and analyse data on more than 15,000 high impact and niche markets. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise and years of collective experience to produce informative and accurate research.

We study 14+ categories from Semiconductor & Electronics, Chemicals, Advanced Materials, Aerospace & Defence, Energy & Power, Healthcare, Pharmaceuticals, Automotive & Transportation, Information & Communication Technology, Software & Services, Information Security, Mining, Minerals & Metals, Building & construction, Agriculture industry and Medical Devices from over 100 countries.

Contact us:

Mr. Edwyne Fernandes

US: +1 (650)-781-4080UK: +44 (203)-411-9686APAC: +91 (902)-863-5784US Toll Free: +1 (800)-7821768

Email: [emailprotected]

Tags: Quantum Computing Market Size, Quantum Computing Market Trends, Quantum Computing Market Growth, Quantum Computing Market Forecast, Quantum Computing Market Analysis NMK, Majhi Naukri, Sarkari Naukri, Sarkari Result

Our Trending Reports

Rugged Display Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Quantum Computing Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Go here to read the rest:
Quantum Computing Market Research Report 2020 By Size, Share, Trends, Analysis and Forecast to 2026 - Cole of Duty

Highest-performing quantum simulator IN THE WORLD delivered to Japan – TechGeek

Atos, a global leader in digital transformation, introduced the worlds first commercially available quantum simulator capable of simulating up to 40 quantum bits, or Qubits, which translates to very fucking fast.

The simulator, named Atos Quantum Learning Machine, is powered by an ultra-compact supercomputer and a universal programming language.

Quantum computing is a key priority for Japan. It launched a dedicated ten-year, 30 billion yen (.. aka US$280 million / AUD$433 million) quantum research program in 2017, followed by a 100 billion yen (.. aka US$900 million / AUD $1 billion) investment into its Moonshot R&D Program one focus of which will be to create a fault-tolerant universal quantum computer to revolutionise the economy, industry, and security sectors by 2050.

Were delighted to have sold our first QLM in Japan, thanks to our strong working partnership with Intelligent Wave Inc.. We are proud to be part of this growing momentum as the country plans to boost innovation through quantum

Combining a high-powered, ultra-compact machine with a universal programming language, the Atos Quantum Learning Machine (enables researchers and engineers to develop an experiment with quantum software. It is the worlds only quantum software development and simulation appliance for the coming quantum computer era.

It simulates the laws of physics, which are at the very heart of quantum computing, to compute the exact execution of a quantum program with double-digit precision.

Read the original here:
Highest-performing quantum simulator IN THE WORLD delivered to Japan - TechGeek