The future of artificial intelligence and quantum computing – Military & Aerospace Electronics

NASHUA, N.H. -Until the 21st Century, artificial intelligence (AI) and quantum computers were largely the stuff of science fiction, although quantum theory and quantum mechanics had been around for about a century. A century of great controversy, largely because Albert Einstein rejected quantum theory as originally formulated, leading to his famous statement, God does not play dice with the universe.

Today, however, the debate over quantum computing is largely about when not if these kinds of devices will come into full operation. Meanwhile, other forms of quantum technology, such as sensors, already are finding their way into military and civilian applications.

Quantum technology will be as transformational in the 21st Century as harnessing electricity was in the 19th, Michael J. Biercuk, founder and CEO of Q-CTRL Pty Ltd in Sydney, Australia, and professor of Quantum Physics & Quantum Technologies at the University of Sydney, told the U.S. Office of Naval Research in a January 2019 presentation.

On that, there is virtually universal agreement. But when and how remains undetermined.

For example, asked how and when quantum computing eventually may be applied to high-performance embedded computing (HPEC), Tatjana Curcic, program manager for Optimization with Noisy Intermediate-Scale Quantum devices (ONISQ) of the U.S. Defense Advanced Research Projects Agency in Arlington, Va., says its an open question.

Until just recently, quantum computing stood on its own, but as of a few years ago people are looking more and more into hybrid approaches, Curcic says. Im not aware of much work on actually getting quantum computing into HPEC architecture, however. Its definitely not mainstream, probably because its too early.

As to how quantum computing eventually may influence the development, scale, and use of AI, she adds:

Thats another open question. Quantum machine learning is a very active research area, but is quite new. A lot of people are working on that, but its not clear at this time what the results will be. The interface between classical data, which AI is primarily involved with, and quantum computing is still a technical challenge.

Quantum information processing

According to DARPAs ONISQ webpage, the program aims to exploit quantum information processing before fully fault-tolerant quantum computers are realized.This quantum computer based on superconducting qubits is inserted into a dilution refrigerator and cooled to a temperature less than 1 Kelvin. It was built at IBM Research in Zurich.

This effort will pursue a hybrid concept that combines intermediate-sized quantum devices with classical systems to solve a particularly challenging set of problems known as combinatorial optimization. ONISQ seeks to demonstrate the quantitative advantage of quantum information processing by leapfrogging the performance of classical-only systems in solving optimization challenges, the agency states. ONISQ researchers will be tasked with developing quantum systems that are scalable to hundreds or thousands of qubits with longer coherence times and improved noise control.

Researchers will also be required to efficiently implement a quantum optimization algorithm on noisy intermediate-scale quantum devices, optimizing allocation of quantum and classical resources. Benchmarking will also be part of the program, with researchers making a quantitative comparison of classical and quantum approaches. In addition, the program will identify classes of problems in combinatorial optimization where quantum information processing is likely to have the biggest impact. It will also seek to develop methods for extending quantum advantage on limited size processors to large combinatorial optimization problems via techniques such as problem decomposition.

The U.S. government has been the leader in quantum computing research since the founding of the field, but that too is beginning to change.

In the mid-90s, NSA [the U.S. National Security Agency at Fort Meade, Md.] decided to begin on an open academic effort to see if such a thing could be developed. All that research has been conducted by universities for the most part, with a few outliers, such as IBM, says Q-CTRLs Biercuk. In the past five years, there has been a shift toward industry-led development, often in cooperation with academic efforts. Microsoft has partnered with universities all over the world and Google bought a university program. Today many of the biggest hardware developments are coming from the commercial sector.

Quantum computing remains in deep space research, but there are hardware demonstrations all over the world. In the next five years, we expect the performance of these machines to be agented to the point where we believe they will demonstrate a quantum advantage for the first time. For now, however, quantum computing has no advantages over standard computing technology. quantum computers are research demonstrators and do not solve any computing problems at all. Right now, there is no reason to use quantum computers except to be ready when they are truly available.

AI and quantum computing

Nonetheless, the race to develop and deploy AI and quantum computing is global, with the worlds leading military powers seeing them along with other breakthrough technologies like hypersonics making the first to successfully deploy as dominant as the U.S. was following the first detonations of atomic bombs. That is especially true for autonomous mobile platforms, such as unmanned aerial vehicles (UAVs), interfacing with those vehicles onboard HPEC.

Of the two, AI is the closest to deployment, but also the most controversial. A growing number of the worlds leading scientists, including the late Stephen Hawking, warn real-world AI could easily duplicate the actions of the fictional Skynet in the Terminator movie series. Launched with total control over the U.S. nuclear arsenal, Skynet became sentient and decided the human race was a dangerous infestation that needed to be destroyed.

The development of full artificial intelligence could spell the end of the human race. Once humans develop artificial intelligence, it will take off on its own and redesign itself at an ever-increasing rate. Humans, who are limited by slow biological evolution, couldnt compete and would be superseded. Stephen Hawking (2014)

Such dangers have been recognized at least as far back as the publication of Isaac Asimovs short story, Runabout, in 1942, which included his Three Laws of Robotics, designed to control otherwise autonomous robots. In the story, the laws were set down in 2058:

First Law A robot may not injure a human being or, through inaction, allow a human being to come to harm.

Second Law A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.

Third Law A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

Whether it would be possible to embed and ensure unbreakable compliance with such laws in an AI system is unknown. But limited degrees of AI, known as machine learning, already are in widespread use by the military and advanced stages of the technology, such as deep learning, almost certainly will be deployed by one or more nations as they become available. More than 50 nations already are actively researching battlefield robots.

Military quantum computing

AI-HPEC would give UAVs, next-generation cruise missiles, and even maneuverable ballistic missiles the ability to alter course to new targets at any point after launch, recognize counter measures, avoid, and misdirect or even destroy them.

Quantum computing, on the other hand, is seen by some as providing little, if any, advantage over traditional computer technologies, by many as requiring cooling and size, weight and power (SWaP) improvements not possible with current technologies to make it applicable to mobile platforms and by most as being little more than a research tool for perhaps decades to come.

Perhaps the biggest stumbling block to a mobile platform-based quantum computing is cooling it currently requires a cooling unit, at near absolute zero, the Military trusted computing experts are considering new generations of quantum computing for creating nearly unbreakable encryption for super-secure defense applications.size of a refrigerator to handle a fractional piece of quantum computing.

A lot of work has been done and things are being touted as operational, but the most important thing to understand is this isnt some simple physical thing you throw in suddenly and it works. That makes it harder to call it deployable youre not going to strap a quantum computing to a handheld device. A lot of solutions are still trying to deal with cryogenics and how do you deal with deployment of cryo, says Tammy Carter, senior product manager for GPGPUs and software products at Curtiss-Wright Defense Solutions in Ashburn, Va.

AI is now a technology in deployment. Machine learning is pretty much in use worldwide, Carter says. Were in a migration of figuring out how to use it with the systems we have. quantum computing will require a lot of engineering work and demand may not be great enough to push the effort. From a cryogenically cooled electronics perspective, I dont think there is any insurmountable problem. It absolutely can be done, its just a matter of decision making to do it, prioritization to get it done. These are not easily deployed technologies, but certainly can be deployed.

Given its current and expected near-term limitations, research has increased on the development of hybrid systems.

The longer term reality is a hybrid approach, with the quantum system not going mobile any time soon, says Brian Kirby, physicist in the Army Research Laboratory Computational & Informational Sciences Directorate in Adelphi, Md. Its a mistake to forecast a timeline, but Im not sure putting a quantum computing on such systems would be valuable. Having the quantum computing in a fixed location and linked to the mobile platform makes more sense, for now at least. There can be multiple quantum computers throughout the country; while individually they may have trouble solving some problems, networking them would be more secure and able to solve larger problems.

Broadly, however, quantum computing cant do anything a practical home computer cant do, but can potentially solve certain problems more efficiently, Kirby continues. So youre looking at potential speed-up, but there is no problem a quantum computing can solve a normal computer cant. Beyond the basics of code-breaking and quantum simulations affecting material design, right now we cant necessarily predict military applications.

Raising concerns

In some ways similar to AI, quantum computing raises nearly as many concerns as it does expectations, especially in the area of security. The latest Thales Data Threat Report says 72 percent of surveyed security experts worldwide believe quantum computing will have a negative impact on data security within the next five years.

At the same time, quantum computing is forecast to offer more robust cryptography and security solutions. For HPEC, that duality is significant: quantum computing can make it more difficult to break the security of mobile platforms, while simultaneously making it easier to do just that.

Quantum computers that can run Shors algorithm [leveraging quantum properties to factor very large numbers efficiently] are expected to become available in the next decade. These algorithms can be used to break conventional digital signature schemes (e.g. RSA or ECDSA), which are widely used in embedded systems today. This puts these systems at risk when they are used in safety-relevant long-term applications, such as automotive systems or critical infrastructures. To mitigate this risk, classical digital signature schemes used must be replaced by schemes secure against quantum computing-based attacks, according to the August 2019 proceedings of the 14th International Conference on Availability, Reliability & Securitys Post-Quantum Cryptography in Embedded Systems report.

The security question is not quite so clean-cut as armor/anti-armor, but there is a developing bifurcation between defensive and offensive applications. On the defense side, deployed quantum systems are looked at to provide encoded communications. Experts say it seems likely the level of activity in China about quantum communications, which has been a major focus for years, runs up against the development of quantum computing in the U.S. The two aspects are not clearly one-against-one, but the two moving independently.

Googles quantum supremacy demonstration has led to a rush on finding algorithms robust against quantum attack. On the quantum communications side, the development of attacks on such systems has been underway for years, leading to a whole field of research based on identifying and exploiting quantum attacks.

Quantum computing could also help develop revolutionary AI systems. Recent efforts have demonstrated a strong and unexpected link between quantum computation and artificial neural networks, potentially portending new approaches to machine learning. Such advances could lead to vastly improved pattern recognition, which in turn would permit far better machine-based target identification. For example, the hidden submarine in our vast oceans may become less-hidden in a world with AI-empowered quantum computers, particularly if they are combined with vast data sets acquired through powerful quantum-enabled sensors, according to Q-CTRLs Biercuk.

Even the relatively mundane near-term development of new quantum-enhanced clocks may impact security, beyond just making GPS devices more accurate, Biercuk continues. Quantum-enabled clocks are so sensitive that they can discern minor gravitational anomalies from a distance. They thus could be deployed by military personnel to detect underground, hardened structures, submarines or hidden weapons systems. Given their potential for remote sensing, advanced clocks may become a key embedded technology for tomorrows warfighter.

Warfighter capabilities

The early applications of quantum computing, while not embedded on mobile platforms, are expected to enhance warfighter capabilities significantly.

Jim Clark, director of quantum hardware at Intel Corp. in Santa Clara, Calif., shows one of the companys quantum processors.There is a high likelihood quantum computing will impact ISR [intelligence, surveillance and reconnaissance], solving logistics problems more quickly. But so much of this is in the basic research stage. While we know the types of problems and general application space, optimization problems will be some of the first where we will see advantages from quantum computing, says Sara Gamble, quantum information sciences program manager at ARL.

Biercuk says he agrees: Were not really sure there is a role for quantum computing in embedded computing just yet. quantum computing is right now very large systems embedded in mainframes, with access by the cloud. You can envision embedded computing accessing quantum computing via the cloud, but they are not likely to be very small, agile processors you would embed in a SWAP-constrained environment.

But there are many aspects of quantum technology beyond quantum computing; the combination of quantum sensors could allow much better detection in the field, Biercuk continues. The biggest potential impact comes in the areas of GPS denial, which has become one of the biggest risk factors identified in every blueprint around the world. quantum computing plays directly into this to perform dead reckoning navigation in GPS denial areas.

DARPAs Curcic also says the full power of quantum computing is still decades away, but believes ONISQ has the potential to help speed its development.

The main two approaches industry is using is superconducting quantum computing and trapped ions. We use both of those, plus cold atoms [Rydberg atoms]. We are very excited about ONISQ and seeing if we can get anything useful over classical computing. Four teams are doing hardware development with those three approaches, she says.

Because these are noisy systems, its very difficult to determine if there will be any advantages. The hope is we can address the optimization problem faster than today, which is what were working on with ONISQ. Optimization problems are everywhere, so even a small improvement would be valuable.

Beyond todays capabilities

As to how quantum computing and AI may impact future warfare, especially through HPEC, she adds: I have no doubt quantum computing will be revolutionary and well be able to do things beyond todays capabilities. The possibilities are pretty much endless, but what they are is not crystal clear at this point. Its very difficult, with great certainly, to predict what quantum computing will be able to do. Well just have to build and try. Thats why today is such an exciting time.

Curtiss Wrights Carter says he believes quantum computing and AI will be closely linked with HPEC in the future, once current limitations with both are resolved.

AI itself is based on a lot of math being done in parallel for probability answers, similar to modeling the neurons in the brain highly interconnected nodes and interdependent math calculations. Imagine a small device trying to recognize handwriting, Carter says. You run every pixel of that through lots and lots of math, combining and mixing, cutting some, amplifying others, until you get a 98 percent answer at the other end. quantum computing could help with that and researchers are looking at how you would do that, using a different level of parallel math.

How quantum computing will be applied to HPEC will be the big trick, how to get that deployed. Imagine were a SIGINT [signals intelligence] platform land, air or sea there are a lot of challenges, such as picking the right signal out of the air, which is not particularly easy, Carter continues. Once you achieve pattern recognition, you want to do code breaking to get that encrypted traffic immediately. Getting that on a deployed platform could be useful; otherwise you bring your data back to a quantum computing in a building, but that means you dont get the results immediately.

The technology research underway today is expected to show progress toward making quantum computing more applicable to military needs, but it is unlikely to produce major results quickly, especially in the area of HPEC.

Trapped ions and superconducting circuits still require a lot of infrastructure to make them work. Some teams are working on that problem, but the systems still remain room-sized. The idea of quantum computing being like an integrated circuit you just put on a circuit board were a very long way from that, Biercuk says. The systems are getting smaller, more compact, but there is a very long way to go to deployable, embeddable systems. Position, navigation and timing systems are being reduced and can be easily deployed on aircraft. Thats probably where the technology will remain in the next 20 years; but, eventually, with new technology development, quantum computing may be reduced to more mobile sizes.

The next 10 years are about achieving quantum advantage with the systems available now or iterations. Despite the acceleration we have seen, there are things that are just hard and require a lot of creativity, Biercuk continues. Were shrinking the hardware, but that hardware still may not be relevant to any deployable system. In 20 years, we may have machines that can do the work required, but in that time we may only be able to shrink them to a size that can fit on an aircraft carrier local code-breaking engines. To miniaturize this technology to put it on, say, a body-carried system, we just dont have any technology basis to claim we will get there even in 20 years. Thats open to creativity and discovery.

Even with all of the research underway worldwide, one question remains dominant.

The general challenge is it is not clear what we will use quantum computing for, notes Rad Balu, a computer scientist in ARLs Computational & Informational Sciences Directorate.

Continued here:
The future of artificial intelligence and quantum computing - Military & Aerospace Electronics

Fermilab to lead $115 million National Quantum Information Science Research Center to build revolutionary quantum computer with Rigetti Computing,…

One of the goals of theSuperconducting Quantum Materials and Systems Centeris to build a beyond-state-of-the-art quantum computer based on superconducting technologies.The center also will develop new quantum sensors, which could lead to the discovery of the nature of dark matter and other elusive subatomic particles.

The U.S. Department of Energys Fermilab has been selected to lead one of five national centers to bring about transformational advances in quantum information science as a part of the U.S. National Quantum Initiative.

The initiative provides the newSuperconducting Quantum Materials and Systems Centerfunding with the goal of building and deploying a beyond-state-of-the-art quantum computer based on superconducting technologies. The center also will develop new quantum sensors, which could lead to the discovery of the nature of dark matter and other elusive subatomic particles. Total planned DOE funding for the center is $115 million over five years, with $15 million in fiscal year 2020 dollars and outyear funding contingent on congressional appropriations. SQMS will also receive an additional $8 million in matching contributions from center partners.

The SQMS Center is part of a federal program to facilitate and foster quantum innovation in the United States. The 2018 National Quantum Initiative Act called for a long-term, large-scale commitment of U.S. scientific and technological resources to quantum science.

The revolutionary leaps in quantum computing and sensing that SQMS aims for will be enabled by a unique multidisciplinary collaboration that includes 20 partners national laboratories, academic institutions and industry. The collaboration brings together world-leading expertise in all key aspects: from identifying qubits quality limitations at the nanometer scale to fabrication and scale-up capabilities into multiqubit quantum computers to the exploration of new applications enabled by quantum computers and sensors.

The breadth of the SQMS physics, materials science, device fabrication and characterization technology combined with the expertise in large-scale integration capabilities by the SQMS Center is unprecedented for superconducting quantum science and technology, said SQMS Deputy Director James Sauls of Northwestern University. As part of the network of National QIS Research centers, SQMS will contribute to U.S. leadership in quantum science for the years to come.

SQMS researchers are developing long-coherence-time qubits based on Rigetti Computings state-of-the-art quantum processors. Image: Rigetti Computing

At the heart of SQMS research will be solving one of the most pressing problems in quantum information science: the length of time that a qubit, the basic element of a quantum computer, can maintain information, also called quantum coherence. Understanding and mitigating sources of decoherence that limit performance of quantum devices is critical to engineering in next-generation quantum computers and sensors.

Unless we address and overcome the issue of quantum system decoherence, we will not be able to build quantum computers that solve new complex and important problems. The same applies to quantum sensors with the range of sensitivity needed to address long-standing questions in many fields of science, said SQMS Center Director Anna Grassellino of Fermilab. Overcoming this crucial limitation would allow us to have a great impact in the life sciences, biology, medicine, and national security, and enable measurements of incomparable precision and sensitivity in basic science.

The SQMS Centers ambitious goals in computing and sensing are driven by Fermilabs achievement of world-leading coherence times in components called superconducting cavities, which were developed for particle accelerators used in Fermilabs particle physics experiments. Researchers have expanded the use of Fermilab cavities into the quantum regime.

We have the most coherent by a factor of more than 200 3-D superconducting cavities in the world, which will be turned into quantum processors with unprecedented performance by combining them with Rigettis state-of-the-art planar structures, said Fermilab scientist Alexander Romanenko, SQMS technology thrust leader and Fermilab SRF program manager. This long coherence would not only enable qubits to be long-lived, but it would also allow them to be all connected to each other, opening qualitatively new opportunities for applications.

The SQMS Centers goals in computing and sensing are driven by Fermilabs achievement of world-leading coherence times in components called superconducting cavities, which were developed for particle accelerators used in Fermilabs particle physics experiments. Photo: Reidar Hahn, Fermilab

To advance the coherence even further, SQMS collaborators will launch a materials-science investigation of unprecedented scale to gain insights into the fundamental limiting mechanisms of cavities and qubits, working to understand the quantum properties of superconductors and other materials used at the nanoscale and in the microwave regime.

Now is the time to harness the strengths of the DOE laboratories and partners to identify the underlying mechanisms limiting quantum devices in order to push their performance to the next level for quantum computing and sensing applications, said SQMS Chief Engineer Matt Kramer, Ames Laboratory.

Northwestern University, Ames Laboratory, Fermilab, Rigetti Computing, the National Institute of Standards and Technology, the Italian National Institute for Nuclear Physics and several universities are partnering to contribute world-class materials science and superconductivity expertise to target sources of decoherence.

SQMS partner Rigetti Computing will provide crucial state-of-the-art qubit fabrication and full stack quantum computing capabilities required for building the SQMS quantum computer.

By partnering with world-class experts, our work will translate ground-breaking science into scalable superconducting quantum computing systems and commercialize capabilities that will further the energy, economic and national security interests of the United States, said Rigetti Computing CEO Chad Rigetti.

SQMS will also partner with the NASA Ames Research Center quantum group, led by SQMS Chief Scientist Eleanor Rieffel. Their strengths in quantum algorithms, programming and simulation will be crucial to use the quantum processors developed by the SQMS Center.

The Italian National Institute for Nuclear Physics has been successfully collaborating with Fermilab for more than 40 years and is excited to be a member of the extraordinary SQMS team, said INFN President Antonio Zoccoli. With its strong know-how in detector development, cryogenics and environmental measurements, including the Gran Sasso national laboratories, the largest underground laboratory in the world devoted to fundamental physics, INFN looks forward to exciting joint progress in fundamental physics and in quantum science and technology.

Fermilab is excited to host this National Quantum Information Science Research Center and work with this extraordinary network of collaborators, said Fermilab Director Nigel Lockyer. This initiative aligns with Fermilab and its mission. It will help us answer important particle physics questions, and, at the same time, we will contribute to advancements in quantum information science with our strengths in particle accelerator technologies, such as superconducting radio-frequency devices and cryogenics.

We are thankful and honored to have this unique opportunity to be a national center for advancing quantum science and technology, Grassellino said. We have a focused mission: build something revolutionary. This center brings together the right expertise and motivation to accomplish that mission.

The Superconducting Quantum Materials and Systems Center at Fermilab is supported by the DOE Office of Science.

Fermilab is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

See the original post here:
Fermilab to lead $115 million National Quantum Information Science Research Center to build revolutionary quantum computer with Rigetti Computing,...

Quantum Computing in Aerospace and Defense Market 2020-2025 Covid-19 Updates With Key Players D-Wave Systems Inc, Qxbranch LLC, IBM Corporation -…

Market Scenario of the Quantum Computing in Aerospace and Defense Market:

The most recent Quantum Computing in Aerospace and Defense Market Research study includes some significant activities of the current market size for the worldwide Quantum Computing in Aerospace and Defense market. It presents a point by point analysis dependent on the exhaustive research of the market elements like market size, development situation, potential opportunities, and operation landscape and trend analysis. This report centers around the Quantum Computing in Aerospace and Defense-business status, presents volume and worth, key market, product type, consumers, regions, and key players.

Sample Copy of This Report @ https://www.quincemarketinsights.com/request-sample-29723?utm_source=BL/komal

The prominent players covered in this report: D-Wave Systems Inc, Qxbranch LLC, IBM Corporation, Cambridge Quantum Computing Ltd, 1qb Information Technologies Inc., QC Ware Corp., Magiq Technologies Inc., Station Q-Microsoft Corporation, and Rigetti Computing

The market is segmented into By Component (Hardware, Software, Services), By Application (QKD, Quantum Cryptanalysis, Quantum Sensing, Naval)

Geographical segments are North America, Europe, Asia Pacific, Middle East & Africa, and South America.

A 360 degree outline of the competitive scenario of the Global Quantum Computing in Aerospace and Defense Market is presented by Quince Market Insights. It has a massive data allied to the recent product and technological developments in the markets.

It has a wide-ranging analysis of the impact of these advancements on the markets future growth, wide-ranging analysis of these extensions on the markets future growth. The research report studies the market in a detailed manner by explaining the key facets of the market that are foreseeable to have a countable stimulus on its developing extrapolations over the forecast period.

Get ToC for the overview of the premium report @ https://www.quincemarketinsights.com/request-toc-29723?utm_source=BL/komal

This is anticipated to drive the Global Quantum Computing in Aerospace and Defense Market over the forecast period. This research report covers the market landscape and its progress prospects in the near future. After studying key companies, the report focuses on the new entrants contributing to the growth of the market. Most companies in the Global Quantum Computing in Aerospace and Defense Market are currently adopting new technological trends in the market.

Quantum Computing in Aerospace and Defense

Finally, the researchers throw light on different ways to discover the strengths, weaknesses, opportunities, and threats affecting the growth of the Global Quantum Computing in Aerospace and Defense Market. The feasibility of the new report is also measured in this research report.

Reasons for buying this report:

Make an Enquiry for purchasing this Report @ https://www.quincemarketinsights.com/enquiry-before-buying/enquiry-before-buying-29723?utm_source=BL/komal

About Us:

QMI has the most comprehensive collection of market research products and services available on the web. We deliver reports from virtually all major publications and refresh our list regularly to provide you with immediate online access to the worlds most extensive and up-to-date archive of professional insights into global markets, companies, goods, and patterns.

Contact Us:

Quince Market Insights

Ajay D. (Knowledge Partner)

Office No- A109

Pune, Maharashtra 411028

Phone: APAC +91 706 672 4848 / US +1 208 405 2835 / UK +44 1444 39 0986

Email: [emailprotected]

Web: https://www.quincemarketinsights.com

Read more from the original source:
Quantum Computing in Aerospace and Defense Market 2020-2025 Covid-19 Updates With Key Players D-Wave Systems Inc, Qxbranch LLC, IBM Corporation -...

BBVA Uncovers The Promise Of Quantum Computing For Banking And Financial Services – Forbes

Computers have underpinned the digital transformation of the banking and financial services sector, and quantum computing promises to elevate this transformation to a radically new level. BBVA, the digital bank for the 21st centuryestablished in 1857 and today the second largest bank in Spainis at the forefront of investigating the benefits of quantum computing.

Will quantum computing move banking to a new level of digital transformation?

We are trying to understand the potential impact of quantum computing over the next 5 years, says Carlos Kuchkovsky, global head of research and patents at BBVA. Last month, BBVA announced initial results from their recent exploration of quantum computings advantage over traditional computer methods. Kuchkovskys team looked at complex financial problems with many dimensions or variables that require computational calculations that sometimes take days to complete. In the case of investment portfolio optimization, for example, they found that the use of quantum and quantum-inspired algorithms could represent a significant speed-up compared to traditional techniques when there are more than 100 variables.

Carlos Kuchkovsky, Global Head of Research and Patents, BBVA

After hiring researchers with expertise in quantum computing, BBVA identified fifteen challenges that could be solved better with quantum computing, faster and with greater accuracy, says Kuchkovsky. The results released last month were for six of these challenges, serving as proofs-of-concept for, first and foremost, the development of quantum algorithms and also for their application in the following five financial services tasks: Static and dynamic portfolio optimization, credit scoring process optimization, currency arbitrage optimization, and derivative valuations and adjustments.

Another important dimension of BBVAs quantum computing journey is developing an external network. The above six proofs-of-concept were pursued in collaboration with external partners bringing to the various investigations their own set of skills and expertise: The Spanish National Research Council (CSIC), the startups Zapata Computing and Multiverse, the technology firm Fujitsu, and the consulting firm Accenture.

Kuchkovsky advises technology and business executives in other companies, in any industry, to follow BBVAs initial stepssurveying the current state of the technology and the major players, developing internal expertise and experience with quantum computing and consolidating the internal team, identifying specific business problems, activities and opportunities where quantum computing could provide an advantage over todays computers, and develop an external network by connecting to and collaborating with relevant research centers and companies.

As for how to organize internally for quantum computing explorations, Kuchkovsky thinks there could be different possibilities, depending on the level of maturity of the research and technology functions of the business. In BBVAs case, the effort started in the research function and he thinks will evolve in a year or two to a full-fledged quantum computing center of excellence.

Quantum computing is evolving rapidly and Kuchkovsky predicts that in five years, companies around the world will enjoy full access to quantum computing as a service and will benefit from the application of quantum algorithms, also provided as a service. Specifically, he thinks we will see the successful application of quantum computing to machine learning (e.g., improving fraud detection in the banking sector). With the growing interest in quantum computing, Kuchkovsky believes that in five years there will be a sufficient supply of quantum computing talent to satisfy the demand for quantum computing expertise.

The development of a talent pool of experienced and knowledgeable quantum computing professionals depends among other things on close working relationships between academia and industry. These relationships tend to steer researchers towards practical problems and specific business challenges and, in turn, helps in upgrading the skills of engineers working in large corporations and orient them toward quantum computing.

In Kuchocvskys estimation, the connection between academia and industry is relatively weaker in Europe compared to the United States. But there are examples of such collaboration, such as BBVAs work with CSIC and the European Unions Quantum Technologies Flagship, bringing together research centers, industry, and public funding agencies.

On July 29, Fujitsu announced a new collaboration with BBVA, to test whether a quantum computer could outperform traditional computing techniques in optimizing asset portfolios, helping minimize risk while maximizing returns, based on a decades worth of historical data. In the release, Kuchkovsky summarized BBVAs motivation for exploring quantum computing: Our research is helping us identify the areas where quantum computing could represent a greater competitive advantage, once the tools have sufficiently matured. At BBVA, we believe that quantum technology will be key to solving some of the major challenges facing society this decade. Addressing these challenges dovetails with BBVAs strategic priorities, such as fostering the more efficient use of increasingly greater volumes of data for better decision-making as well as supporting the transition to a more sustainable future.

Continued here:
BBVA Uncovers The Promise Of Quantum Computing For Banking And Financial Services - Forbes

Microsoft to train 900 teachers as part of the Train the Trainer initiative to develop quantum computing workforce in India – Jagran Josh

Microsoft will be launching a new programme to build quantum computing skills and capabilities among the academic community in India. The tech giant will be training 900 faculty members in the country from top institutions in India.

Organized by Microsoft Garage the Train the Trainer programme will be conducted in collaboration with Electronic and ICT Academies as part of the initiative at Malaviya National Institute of Technology, Jaipur and National Institute of Technology, Patna.

According to the details provided, the company will train 900 faculty members from universities and institutions across the country through Electronic and ICT academies at institutes of national importance including MNIT Jaipur, IIT Guwahati, IIT Kanpur, IIT Roorkee, NIT Patna, IIIT-D Jabalpur, and NIT Warangal. The faculty members will be equipped with the required skills to start building their quantum future.

Quantum Computing applies the properties of quantum physics to process information and enables new discoveries in healthcare, energy, environmental systems, smart materials, and more. The capabilities to develop this quantum future will be brought by Microsoft to the cloud with Azure Quantum which is an open cloud ecosystem enabling developers to access diverse quantum software, hardware along with solutions from Microsoft and its partners. Built on the Azure Cloud platform of Azure, it will continue to adapt to the rapidly evolving cloud future of Microsoft.

The quantum training programme by Microsoft will support the initiative by the Ministry of Electronics and Information Technology through E&ICT academies, to enhance the skills of the academicians in imparting next level technological skills for the future.

According to a statement released, the important aspects which will be covered includes an introduction to quantum information, quantum concepts including superposition and entanglement, processing of information using qubits and quantum gates along with the introduction of quantum machine learning and quantum programming.

Managing Director and Corporate Vice President - Microsoft India Development Center, Enterprise+Devices India - Rajiv Kumar stated that India is well known across the world for its science, technology, engineering, mathematics, and computing workforce, and its tech capable people and through this initiative the company aims to develop the skills in quantum which has the potential to trigger the new concepts of innovation which will shape the future of the IT industry in the country.

Also Read: Jadavpur University starts Virtual Classes for Arts and Science students, Study materials available on official website jaduniv.edu.in

Read the original here:
Microsoft to train 900 teachers as part of the Train the Trainer initiative to develop quantum computing workforce in India - Jagran Josh

What Is Quantum Supremacy And Quantum Computing? (And How Excited Should We Be?) – Forbes

In 2019, Google announced with much fanfare that it had achieved quantum supremacy the point at which a quantum computer can perform a task that would be impossible for a conventional computer (or would take so long it would be entirely impractical for a conventional computer).

What Is Quantum Supremacy And Quantum Computing? (And How Excited Should We Be?)

To achieve quantum supremacy, Googles quantum computer completed a calculation in 200 seconds that Google claimed would have taken even the most powerful supercomputer 10,000 years to complete. IBM loudly protested this claim, stating that Google had massively underestimated the capacity of its supercomputers (hardly surprising since IBM also has skin in the quantum computing game). Nonetheless, Googles announcement was hailed as a significant milestone in the quantum computing journey.

But what exactly is quantum computing?

Not sure what quantum computing is? Dont worry, youre not alone. In very simple terms, quantum computers are unimaginably fast computers capable of solving seemingly unsolvable problems. If you think your smartphone makes computers from the 1980s seem painfully old fashioned, quantum computers will make our current state-of-the-art technology look like something out of the Stone Age. Thats how big a leap quantum computing represents.

Traditional computers are, at their heart, very fast versions of the simplest electronic calculators. They are only capable of processing one bit of information at a time, in the form of a binary 1 or 0. Each bit is like an on/off switch with 0 meaning "off" and 1 meaning "on." Every task you complete on a traditional computer, no matter how complex, is ultimately using millions of bits, each one representing either a 0 or a 1.

But quantum computers dont rely on bits; they use qubits. And qubits, thanks to the marvels of quantum mechanics, arent limited to being either on or off. They could be both at the same time, or exist somewhere in between. Thats because quantum computing harnesses the peculiar phenomena that take place at a sub-atomic level in particular, the ability of quantum particles to exist in multiple states at the same time (known as superposition).

This allows quantum computers to look at many different variables at the same time, which means they can crunch through more scenarios in a much shorter space of time than even the fastest computers available today.

What does this mean for our everyday lives?

Reaching quantum supremacy is clearly an important milestone, yet were still a long way from commercially available quantum computers hitting the market. Right now, current quantum computing work is limited to labs and major tech players like Google, IBM, and Microsoft.

Most technology experts, myself included, would admit we dont yet fully understand how quantum computing will transform our world we just know that it will. Its like trying to imagine how the internet or social media would transform our world before they were introduced.

Here are just some of the ways in which quantum computers could be put to good use:

Strengthening cyber security. Quantum computers could change the landscape of data security by creating virtually unbreakable encryption.

Accelerating artificial intelligence. Quantum computing could provide a massive boost to AI, since these superfast computers will prove far more effective at recognizing patterns in data.

Modeling traffic flows to improve our cities. Modeling traffic is an enormously complex process with a huge number of variables, but researchers at Volkswagen have been running quantum pilot programs to model and optimize the flow of traffic through city centers in Beijing, Barcelona, and Lisbon.

Making the weather forecast more accurate. Just about anything that involves complex modeling could be made more efficient with quantum computing. The UKs Met Office has said that it believes quantum computers offer the potential for carrying out far more advanced modeling than is currently possible today, and it is one of the avenues being explored for building next-generation forecasting systems.

Developing new medicines. Biotech startup ProteinQure has been exploring the potential of quantum computing in modeling protein, a key route in drug development. In other words, quantum computing could lead to the discovery of effective new drugs for some of the worlds biggest killers, including cancer and heart disease.

Most experts agree that truly useful quantum computing is not likely to be a feature of everyday life for some time. And even when quantum computers are commercially available, we as individuals will hardly be lining up to buy one. For most of the tasks we carry out on computers and smartphones, a traditional binary computer or smartphone will be all we need. But at an industry and society level, quantum computing could bring many exciting opportunities in the future.

Quantum computing is just one of 25 technology trends that I believe will transform our society. Read more about these key trends including plenty of real-world examples in my new book, Tech Trends in Practice: The 25 Technologies That Are Driving The 4th Industrial Revolution.

See original here:
What Is Quantum Supremacy And Quantum Computing? (And How Excited Should We Be?) - Forbes

IBM Flexes Its Quantum-Computing Muscle. Will That Translate to Its Stock? – Barron’s

Text size

The 109-year-old original tech giant IBM, it turns out, is a huge quantum computing player. It has made one of the fastest quantum computers ever assembled. But as is often the case with the weird world of quantum, investors dont know what to do with that information.

IBM (ticker: IBM) published a paper on Thursday, in conjunction with Cornell University, demonstrating that the companys quantum computers have achieved quantum volume of 64. That matches the quantum volume achieved by Honeywell (HON) earlier this year.

Thats great, but what does that mean? Its fast.

Quantum volume measures performance. Its a useful measure, Paul Smith-Goodson said in an interview. It accounts for [factors such as] error correction and noise. Goodson worked at AT&T (T) Bell Labs in the 1980s, back when physicist Richard Feynman was talking about building quantum machines. He now consults for tech consulting firm Moor Insights & Strategy.

Goodson explained that the error rate when punching, say, 10 times 10 into a calculator is about one in a billion. The error rate for a quantum computer is about one in 200. That means quantum computers have to run calculations again and have more qubits to compensate for noise. All the adjustments, noise and error correction boil down to quantum volume.

It isnt directly comparable to classical computing, because the quantum world is weird, with quantum bits, or qubits, having multiple values at the same time. But the goal is to keep increasing volume and getting faster. Honeywells goal is to improve quantum volume by 10x a year, Goodson said. Go from 64 to 640 in 2021 and 6400 in 2022.

Is the magnitude in quantum computing like Moores law for quantum computers? Not really, Goodson said. We are in the noisy phase of quantum computing, still working on error correction.

Moores law says, roughly speaking, that the number of transistors on microchips doubles every two years. Transistors store information referred to as bits. Transistors are laid down on silicon chips. Qubits can also be stored on chips.

IBM uses extreme cold to put its equipment into a quantum state. What are, essentially, quantum microchips are cooled to minus 459 degrees Fahrenheit. That is just above absolute zero, as cold as anything can get.

Our first superconducting qubit was in 2007, IBM Quantum Vice President Bob Sutor said in an interview. He is quick to emphasize that IBM has been doing quantum for a long time. On the IBM cloud now [we have] 20 quantum computers available20 machines.

Wondering how many computations have been run on IBM quantum computers since they became available? Barrons guessed 40,000. Three hundred billion, Sutor said, adding that 1.1 billion circuits ran on Aug. 7. A circuit is, essentially, quantum jargon for a computation.

IBMs quantum business is real, and for now it is essentially free. Companies, researchers or individuals can access the machines via the cloud to program and preform calculations. Down the road, quantum as a service could be come big business for IBM, Honeywell and other players. For now, IBM is creating machines and enabling use cases, Sutor explained.

IBM and Honeywell are quantum players. Google parent Alphabet (GOOGL), Amazon.com (AMZN) and Intel (INTC) are other quantum players Goodson is familiar with. Apple isnt really into this, as far as he knows.

Investors dont trade any of those stocks based on quantum yet. IBM stock, for instance, is down about 8% year to date. Honeywell shares are down about 11%. Both returns trail behind comparable gains of the S&P 500 and Dow Jones Industrial Average. Quantum gains arent enough to move the stocks yet.

In the case of Honeywella large aerospace supplierpandemic-induced air-travel declines have hurt its shares. Other tech names have performed better than IBM shares. The Nasdaq Composite, for instance, is up almost 25% and Apple (AAPL) stock touched $2 trillion in market value Wednesday.

IBM investors would surely like the company to get more credit as a tech giant with cloud computing as well as a burgeoning quantum computing business.

Thats down the road, according to both Sutor and Goodson. What will be the killer app that brings quantum into the mainstream and how will quantum change the world? Both men answered: I have no idea.

They are both experts in the field and know that new technology tends to change things in unforeseeable ways.

Write to Al Root at allen.root@dowjones.com

Read the rest here:
IBM Flexes Its Quantum-Computing Muscle. Will That Translate to Its Stock? - Barron's

Has the world’s most powerful computer arrived? – The National

The quest to build the ultimate computer has taken a big step forward following breakthroughs in ensuring its answers can be trusted.

Known as a quantum computer, such a machine exploits bizarre effects in the sub-atomic world to perform calculations beyond the reach of conventional computers.

First proposed almost 40 years ago, tech giants Microsoft, Google and IBM are among those racing to exploit the power of quantum computing, which is expected to transform fields ranging from weather forecasting and drug design to artificial intelligence.

The power of quantum computers comes from their use of so-called qubits, the quantum equivalent of the 1s and 0s bits used by conventional number-crunchers.

Unlike bits, qubits exploit a quantum effect allowing them to be both 1s and 0s at the same time. The impact on processing power is astonishing. Instead of processing, say, 100 bits in one go, a quantum computer could crunch 100 qubits, equivalent to 2 to the power 100, or a million trillion trillion bits.

At least, that is the theory. The problem is that the property of qubits that gives them their abilities known as quantum superposition is very unstable.

Once created, even the slightest vibration, temperature shift or electromagnetic signal can disturb the qubits, causing errors in calculations. Unless the superposition can be maintained long enough, the quantum computer either does a few calculations well or a vast amount badly.

For years, the biggest achievement of any quantum computer involved using a few qubits to find the prime factors of 15 (which every schoolchild knows are 3 and 5).

Using complex shielding methods, researchers can now stabilise around 50 qubits long enough to perform impressive calculations.

Last October, Google claimed to have built a quantum computer that solved in 200 seconds a maths problem that would have taken an ultra-fast conventional computer more than 10,000 years.

Yet even this billion-fold speed-up is just a shadow of what would be possible if qubits could be kept stable for longer. At present, many of the qubits have their powers wasted being used to spot and fix errors.

Now two teams of researchers have independently found new ways of tackling the error problem.

Physicists at the University of Chicago have found a way of keeping qubits stable for longer not by blocking disturbances, but by blurring them.

It is like sitting on a merry-go-round with people yelling all around you

Dr Kevin Miao, computing expert

In some quantum computers, the qubits take the form of electrons whose direction of spin is a superposition of both up and down. By adding a constantly flipping magnetic field, the team found that the electrons rotated so quickly that they barely noticed outside disturbances. The researchers explain the trick with an analogy: It's like sitting on a merry-go-round with people yelling all around you, says team member Dr Kevin Miao. When the ride is still, you can hear them perfectly, but if you're rapidly spinning, the noise blurs into a background.

Describing their work in the journal Science, the team reported keeping the qubits working for about 1/50th of a second - around 10,000 times longer than their lifetime if left unshielded. According to the team, the technique is simple to use but effective against all the standard sources of disturbance. Meanwhile, researchers at the University of Sydney have come up with an algorithm that allows a quantum computer to work out how its qubits are being affected by disturbances and fix the resulting errors. Reporting their discovery in Nature Physics, the team says their method is ready for use with current quantum computers, and could work with up to 100 qubits.

These breakthroughs come at a key moment for quantum computing. Even without them, the technology is already spreading beyond research laboratories.

In June, the title of worlds most powerful quantum computer was claimed not by a tech giant but by Honeywell a company perhaps best known for central heating thermostats.

Needless to say, the claim is contested by some, not least because the machine is reported to have only six qubits. But Honeywell points out that it has focused its research on making those qubits ultra-stable which allows them to work reliably for far longer than rival systems. Numbers of qubits alone, in other words, are not everything.

And the company insists this is just the start. It plans to boost the performance of its quantum computer ten-fold each year for the next five years, making it 100,000 times more powerful still.

But apart from bragging rights, why is a company like Honeywell trying to take on the tech giants in the race for the ultimate computer ?

A key clue can be found in remarks made by Honeywell insiders to Forbes magazine earlier this month. These reveal that the company wants to use quantum computers to discover new kinds of materials.

Doing this involves working out how different molecules interact together to form materials with the right properties. Thats something conventional computers are already used for. But quantum computers wont just bring extra number-crunching power to bear. Crucially, like molecules themselves, their behaviour reflects the bizarre laws of quantum theory. And this makes them ideal for creating accurate simulations of quantum phenomena like the creation of new materials.

This often-overlooked feature of quantum computers was, in fact, the original motivation of the brilliant American physicist Richard Feynman, who first proposed their development in 1981.

Honeywell already has plans to use quantum computers to identify better refrigerants. These compounds were once notorious for attacking the Earths ozone layer, but replacements still have unwanted environmental effects. Being relatively simple chemicals, the search for better refrigerants is already within the reach of current quantum computers.

But Honeywell sees a time when far more complex molecules such as drugs will also be discovered using the technology.

For the time being, no quantum computer can match the all-round number-crunching power of standard computers. Just as Honeywell made its claim, the Japanese computer maker Fujitsu unveiled a supercomputer capable of over 500 million billion calculations a second.

Even so, the quantum computer is now a reality and before long it will make even the fastest supercomputer seem like an abacus.

Robert Matthews is Visiting Professor of Science at Aston University, Birmingham, UK

Updated: August 21, 2020 12:06 PM

Go here to see the original:
Has the world's most powerful computer arrived? - The National

Latest Research report on Quantum Computing Technologies Market Size predicts favorable growth and forecast 2020 2025 – Scientect

Latest Research Report: Quantum Computing Technologies industry

This has brought along several changes in This report also covers the impact of COVID-19 on the global market.

Global Quantum Computing Technologies Market documents a detailed study of different aspects of the Global Market. It shows the steady growth in market in spite of the fluctuations and changing market trends. The report is based on certain important parameters.

Get a Sample PDF copy of the report @ https://reportsinsights.com/sample/127081

Quantum Computing Technologies Market competition by top manufacturers as follow: , Airbus Group, Cambridge Quantum Computing, IBM, Google Quantum AI Lab, Microsoft Quantum Architectures, Nokia Bell Labs, Alibaba Group Holding Limited, Intel Corporation, Toshiba

The risingtechnology in Quantum Computing Technologiesmarketis also depicted in thisresearchreport. Factors that are boosting the growth of the market, and giving a positive push to thrive in the global market is explained in detail. It includes a meticulous analysis of market trends, market shares and revenue growth patterns and the volume and value of the market. It is also based on a meticulously structured methodology. These methods help to analyze markets on the basis of thorough research and analysis.

The Type Coverage in the Market are: SoftwareHardware

Market Segment by Applications, covers:GovernmentBusinessHigh-TechBanking & SecuritiesManufacturing & LogisticsInsuranceOther

The research report summarizes companies from different industries. This Quantum Computing Technologies Market report has been combined with a variety of market segments such as applications, end users and sales. Focus on existing market analysis and future innovation to provide better insight into your business. This study includes sophisticated technology for the market and diverse perspectives of various industry professionals.

Quantum Computing Technologies is the arena of accounting worried with the summary, analysis and reporting of financial dealings pertaining to a business. This includes the training of financial statements available for public ingesting. The service involves brief, studying, checking and reporting of the financial contacts to tax collection activities and objects. It also involves checking and making financial declarations, scheming accounting systems, emerging finances and accounting advisory.

To get this report at a profitable rate.: https://reportsinsights.com/discount/127081

Market segment by Regions/Countries, this report coversNorth AmericaEuropeChinaRest of Asia PacificCentral & South AmericaMiddle East & Africa

Report Highlights: Detailed overview of parent market Changing market dynamics in the industry In-depth market segmentation Historical, current and projected market size in terms of volume and value Recent industry trends and developments Competitive landscape Strategies of key players and products offered Potential and niche segments, geographical regions exhibiting promising growth A neutral perspective on market performance Must-have information for market players to sustain and enhance their market footprint

Access full Report Description, TOC, Table of Figure, Chart, [emailprotected] https://reportsinsights.com/industry-forecast/Quantum-Computing-Technologies-Market-127081

About US:

Reports Insights is the leading research industry that offers contextual and data-centric research services to its customers across the globe. The firm assists its clients to strategize business policies and accomplish sustainable growth in their respective market domain. The industry provides consulting services, syndicated research reports, and customized research reports.

Contact US:

:(US) +1-214-272-0234

:(APAC) +91-7972263819

Email:[emailprotected]

Sales:[emailprotected]

Read the original:
Latest Research report on Quantum Computing Technologies Market Size predicts favorable growth and forecast 2020 2025 - Scientect

Does the Butterfly Effect Exist? Maybe, But Not in the Quantum Realm – Discover Magazine

In A Sound of Thunder, the short story by Ray Bradbury, the main character travels back in time to hunt dinosaurs. He crushes a butterfly underfoot in the prehistoric jungle, and when he returns to the present, the world he knows is changed: the feel of the air, a sign in an office, the election of a U.S. president. The butterfly was a small thing that could upset balances and knock down a line of small dominoes and then big dominoes and then gigantic dominoes, all down the years across Time.

This butterfly effect that Bradbury illustrated where a small change in the past can result in enormous future effects is not reserved for fiction. As the famed mathematician and meteorologist Edward Lorenz discovered by accident, natural systems do exist in which tiny shifts in initial conditions can lead to highly variable outcomes. These systems, including weather and even how fluids mix are known as chaotic. Chaotic systems are normally understood within the realm of classical physics, which is the method we use to predict how objects will move to a certain degree of accuracy (think motion, force or momentum from your high school science class.)

But a new study shows that the effect doesnt work in a quantum realm. Two researchers at Los Alamos National Labs in New Mexico, created a simulation where a qubit, a quantum bit, moved backwards and forwards in time on a quantum computer. Despite being damaged, the qubit held on to its original information instead of becoming unrecognizable like the time travelers world after he killed the butterfly. In the study, the process used to simulate time travel forwards and backwards is known as evolution.

From the point of view of classical physics, it's very unexpected because classical physics predicts that complex evolution has a butterfly effect, so that small changes deep in the past lead to huge changes in our world, says Nikolai Sinitsyn, a theoretical physicist and one of the researchers who conducted the study.

The finding furthers our understanding of quantum systems, and also has potential applications in securing information systems and even determining the quantum-ness of a quantum processor.

The rules of the quantum realm, which explain how subatomic particles move, can be truly mind-boggling because they defy traditional logic. But briefly: Particles as small as electrons and protons don't just exist in one point in space, they can occupy many at a time. The mathematical framework of quantum mechanics tries to explain the motion of these particles.

The laws of quantum mechanics can also be applied to quantum computers. These are very different from computers we use today, and can solve certain problems exponentially faster than normal computers can because they adhere to these completely different laws of physics. A standard computer uses bits with a value of either 0 or 1. A quantum computer uses qubits, which can attain a kind of combined state of 0 or 1, a unique characteristic of quantum systems for example, an electron called superposition.

In a quantum system, small changes to qubits even looking at or measuring them can have immense effects. So in the new study, the researchers wanted to see what would happen when they simulated sending a qubit back in time while also damaging it. Researchers constructing quantum experiments often use the stand-ins Alice and Bob to illustrate their theoretical process. In this case, they let Alice bring her qubit back in time, scrambling the information as part of what they call reverse evolution. Once in the past, Bob, an intruder, measures Alices qubit, changing it. Alice brings her qubit forward in time.

If the butterfly effect had held, the original information in Alices qubit would have been exponentially changed. But instead, the evolution forward in time allowed Alice to recover the original information, even though Bobs intrusion had destroyed all the connections between her qubit and others that travelled with hers.

So normally, many people believe that if you go back in time, and scramble the information, that information is lost forever, says Jordan Kyriakidis, an expert in quantum computing and former physicist at Dalhousie University in Nova Scotia. What they have shown in this paper is that for quantum systems, that under certain circumstances, if you go back in time, you can recover the original information even though someone tried to scramble it on you.

So does this mean that the butterfly effect doesnt exist at all? No. Sinitsyn and his coauthor, Bin Yan, showed it doesnt exist within the quantum realm, specifically.

But this does have implications for real-world problems. One is information encryption. Encryption has two important principles: It should be hidden so well that no one can get to it, but who it was intended for should to be able to reliably decipher it. For example, explains Kyriakidis, if a hacker attempts to crack a code that hides information in todays world, the hacker might not be able to get to it, but they could damage it irreparably, preventing anyone from reading the original message. This study may point to a way to avoid this by protecting information, even after its damaged, so the intended recipient can interpret it.

And because this effect (or non-effect) is so particular to quantum systems, it could theoretically be used to test the integrity of a quantum computer. If one were to replicate Yan and Sinitsyns protocol in a quantum computer, according to the study, it would confirm that the system was truly operating by quantum principles. Because quantum computers are highly prone to errors, a tool to easily test how well they work has huge value. A reliable quantum computer can solve incredibly complex problems, which have applications from chemistry and medicine to traffic direction and financial strategy.

Quantum computing is only in its birth but if Yan and Sinitsyns quantum time machine can exist in a realm usually saved for subatomic particles, well, the possibilities could be endless.

Link:
Does the Butterfly Effect Exist? Maybe, But Not in the Quantum Realm - Discover Magazine