What is quantum computing? | McKinsey

Qubit bloch sphere

Flip a coin. Heads or tails, right? Sure, once we see how the coin lands. But while the coin is still spinning in the air, its neither heads nor tails. Its some probability of both.

This grey area is the simplified foundation of quantum computing.

Digital computers have been making it easier for us to process information for decades. But quantum computers are poised to take computing to a whole new level. Quantum computersrepresent a completely new approach to computing. And while they wont replace todays computers, by using the principles of quantum physics, they will be able to solvevery complex statistical problems that todays computers cant. Quantum computing has so much potential and momentum that McKinsey has identified it as one of the next big trends in tech. Quantum computing alonejust one of three main areas of emerging quantum technologycould account for nearly $1.3 trillion in valueby 2035.

Heres how it works: classical computing, the technology that powers your laptop and smartphone, is built on bits. A bit is a unit of information that can store either a zero or a one. By contrast, quantum computing is built on quantum bits, or qubits, which can store zeros and ones. Qubits can represent any combination of both zero and one simultaneouslythis is called a superposition.

When classical computers solve a problem with multiple variables, they must conduct a new calculation every time a variable changes. Each calculation is a single path to a single result. Quantum computers, however, have a larger working space, which means they can explore a massive number of paths simultaneously. This possibility means that quantum computers can be much, much fasterthan classical computers.

But the first real proof that quantum computers could handle problems too complicated for classical computers didnt arrive until 2019, when Google announced that its quantum computer had made a major breakthrough: it solved a problem in 200 seconds that would have taken a classical computer 10,000 years.

Although this was an important milestone in computing, it was more of a theoretical leap forward rather than a practical one, since the problem the quantum computer solved had no real-world use at all. But were rapidly approaching a time when quantum computers will have a real impact on our lives. Read on to find out how.

Learn more about McKinsey Digital.

Todays classical computers are relatively straightforward. They work with a limited set of inputs and use an algorithm and spit out an answerand the bits that encode the inputs do not share information about one another. Quantum computers are different. For one thing, when data are input into the qubits, the qubits interact with other qubits, allowing for many different calculations to be done simultaneously. This is why quantum computers are able to work so much faster than classical computers. But thats not the end of the story: quantum computers dont deliver one clear answer like classical computers do; rather, they deliver a range of possible answers.

For calculations that are limited in scope, classical computers are still the preferred tools. But for very complex problems, quantum computers can save time by narrowing down the range of possible answers.

Quantum computers arent like your average desktop computer. Its unlikely that you will be able to wander down to a store and pick one up. The kind of quantum computers that are capable of solving major problems will be expensive, complicated machines operated by just a few key players.

Over the next few years, the major players in quantum computing, as well as a small cohort of start-ups, will steadily increase the number of qubits that their computers can handle. Progress is expected to be slow: McKinsey estimates that by 2030, only about 5,000 quantum computerswill be operational. The hardware and software required to handle the most complex problems may not exist until 2035 or later.

But some businesses will begin to derive value from quantum well before then. At first, businesses will receive quantum services via the cloud, from the same providers they use now. Several major computing companies have already announced their quantum cloud offerings.

Learn more about McKinsey Digital.

One major obstacle to the advancement of quantum computing is that qubits are volatile. Whereas a bit in todays computers can be in a state of either one or zero, a qubit can be any possible combination of the two. When a qubit changes its status, inputs can be lost or altered, throwing off the accuracy of the results. Another obstacle to development is that a quantum computer operating at the scale needed to deliver significant breakthroughs will require potentially millions of qubits to be connected. The few quantum computers that exist today are nowhere near that number.

Slowly, at first. For the time being, quantum computing will be used alongsideclassical computing to solve multivariable problems. One example? Quantum computers can narrow the range of possible solutions to a finance or logistics problem, helping a company reach the best solution a little bit faster. This kind of slower progress will be the norm until quantum computing advances enough to deliver massive breakthroughs.

Learn more about McKinsey Digital.

Quantum computers can narrow the range of possible solutions to a finance or logistics problem, helping a company reach the best solution a little bit faster.

Quantum computers have four fundamental capabilitiesthat differentiate them from todays classical computers:

As these capabilities develop at pace with quantum computing power, use cases will proliferate.

Experts believe that quantum computers are powerful enough to eventually be able to model even the most complex molecules in the human body.

Research suggests that four industries stand to reap the greatest short-term benefits from quantum computing based on the use cases discussed in the previous section. Collectivelyand conservativelythe value at stake for these industries could be as much as $1.3 trillion.

These four industries likely stand to gain the most from quantum computing. But leaders in every sector canand shouldprepare for the inevitable quantum advancements of the next few years.

Learn more about McKinsey Digital.

According to McKinseys analysis, quantum computing is still years away from widespread commercial application. Other quantum technologies such as quantum communication (QComms) and quantum sensing (QS) could become available much earlier. Quantum communication will enable strong encryption protocols that could greatly increase the security of sensitive information. QComms enables the following functions:

Quantum sensing allows for more accurate measurements than ever before, including of physical properties like temperature, magnetic fields, and rotation. Plus, once optimized and decreased in size, quantum sensors will be able to measure data that cant be captured by current sensors.

The markets for QComms and QS are currently smaller than those for quantum computing, which has so far attracted most of the headlines and funding. But McKinsey expects both Qcomms and QS to attract serious interest and funding in the future. The risks are significant, but the potential payoff is high: by 2030, QS and QComms could generate $13 billion in revenues.

Learn more about quantum sensors and quantum communications.

A wide talent gap exists between the business need for quantum computing and the number of quantum professionals available to meet that need. This skill gap could jeopardize potential value creation, which McKinsey estimates to be as much as $1.3 trillion.

McKinsey research has found that there is only one qualified quantum candidatefor every three quantum job openings. By 2025, McKinsey predicts that less than 50 percent of quantum jobs will be filled, unless there are significant changes to the talent pool or predicted rate of quantum-job creation.

Here are five lessons derived from the AI talent journey that can help organizations build the quantum talent they need to capture value:

Learn more about McKinsey Digitaland check out quantum-computing job opportunities if youre interested in working at McKinsey.

Articles referenced:

See the original post here:
What is quantum computing? | McKinsey

Wave Photonics and Partners Receive s 500 Thousand ($627K USD) Grant from Innovate UK for Researching Photonics Chips for Trapped Ion Processors -…

Wave Photonics and Partners Receive s 500 Thousand ($627K USD) Grant from Innovate UK for Researching Photonics Chips for Trapped Ion Processors  Quantum Computing Report

Read more:
Wave Photonics and Partners Receive s 500 Thousand ($627K USD) Grant from Innovate UK for Researching Photonics Chips for Trapped Ion Processors -...

What is Quantum Computing? – Quantum Computing Explained – AWS

No one has shown the best way to build a fault-tolerant quantum computer, and multiple companies and research groups are investigating different types of qubits. We give a brief example of some of these qubit technologies below.

A gate-based quantum computer is a device that takes input data and transforms it according to a predefined unitary operation. The operation is typically represented by a quantum circuit and is analogous to gate operations in traditional electronics. However, quantum gates are totally different from electronic gates.

Trapped ion quantum computers implement qubits using electronic states of charged atoms called ions. The ions are confined and suspended above the microfabricated trap using electromagnetic fields. Trapped-ion based systems apply quantum gates using lasers to manipulate the electronic state of the ion. Trapped ion qubits use atoms that come from nature, rather than manufacturing the qubits synthetically.

Superconductivity is a set of physical properties that you can observe in certain materials like mercury and helium at very low temperatures. In these materials, you can observe a characteristic critical temperature below which electrical resistance is zero and magnetic flux fields are expelled. An electric current through a loop of superconducting wire can persist indefinitely with no power source.

Superconducting quantum computing is an implementation of a quantum computer in superconducting electronic circuits. Superconducting qubits are built with superconducting electric circuits that operate at cryogenic temperatures.

Neutral atom qubit technology is similar to trapped ion technology. However, it uses light instead of electromagnetic forces to trap the qubit and hold it in position. The atoms are not charged and the circuits can operate at room temperatures

A Rydberg atom is an excited atom with one or more electrons that are further away from the nucleus, on average. Rydberg atoms have a number of peculiar properties including an exaggerated response to electric and magnetic fields, and long life. When used as qubits, they offer strong and controllable atomic interactions that you can tune by selecting different states.

Quantum annealing uses a physical process to place a quantum system's qubits in an absolute energy minimum. From there, the hardware gently alters the system's configuration so that its energy landscape reflects the problem that needs to be solved. The advantage of quantum annealers is that the number of qubits can be much larger than those available in a gate-based system. However, their use is limited to specific cases only.

See the article here:
What is Quantum Computing? - Quantum Computing Explained - AWS

Quantum computing: Definition, facts & uses | Live Science

Quantum computing is a new generation of technology that involves a type of computer 158 million times faster than the most sophisticated supercomputer we have in the world today. It is a device so powerful that it could do in four minutes what it would take a traditional supercomputer 10,000 years to accomplish.

For decades, our computers have all been built around the same design. Whether it is the huge machines at NASA, or your laptop at home, they are all essentially just glorified calculators, but crucially they can only do one thing at a time.

The key to the way all computers work is that they process and store information made of binary digits called bits. These bits only have two possible values, a one or a zero. It is these numbers that create binary code, which a computer needs to read in order to carry out a specific task, according to the book Fundamentals of Computers.

Quantum theory is a branch of physics which deals in the tiny world of atoms and the smaller (subatomic) particles inside them, according to the journal Documenta Mathematica. When you delve into this minuscule world, the laws of physics are very different to what we see around us. For instance, quantum particles can exist in multiple states at the same time. This is known as superposition.

Instead of bits, quantum computers use something called quantum bits, 'qubits' for short. While a traditional bit can only be a one or a zero, a qubit can be a one, a zero or it can be both at the same time, according to a paper published from IEEE International Conference on Big Data.

This means that a quantum computer does not have to wait for one process to end before it can begin another, it can do them at the same time.

Imagine you had lots of doors which were all locked except for one, and you needed to find out which one was open. A traditional computer would keep trying each door, one after the other, until it found the one which was unlocked. It might take five minutes, it might take a million years, depending on how many doors there were. But a quantum computer could try all the doors at once. This is what makes them so much faster.

As well as superposition, quantum particles also exhibit another strange behaviour called entanglement which also makes this tech so potentially ground-breaking. When two quantum particles are entangled, they form a connection to each other no matter how far apart they are. When you alter one, the other responds the same way even if they're thousands of miles apart. Einstein called this particle property "spooky action at a distance", according to the journal Nature.

As well as speed, another advantage quantum computers have over traditional computers is size. According to Moore's Law, computing power doubles roughly every two years, according to the journal IEEE Annals of the History of Computing. But in order to enable this, engineers have to fit more and more transistors onto a circuit board. A transistor is like a microscopic light switch which can be either off or on. This is how a computer processes a zero or a one that you find in binary code.

To solve more complex problems, you need more of those transistors. But no matter how small you make them there's only so many you can fit onto a circuit board. So what does that mean? It means sooner or later, traditional computers are going to be as smart as we can possibly make them, according to the Young Scientists Journal. That is where quantum machines can change things.

The quest to build quantum computers has turned into something of a global race, with some of the biggest companies and indeed governments on the planet vying to push the technology ever further, prompting a rise in interest in quantum computing stocks on the money markets.

One example is the device created by D-Wave. It has built the Advantage system which it says is the first and only quantum computer designed for business use, according to a press release from the company.

D-wave said it has been designed with a new processor architecture with over 5,000 qubits and 15-way qubit connectivity, which it said enables companies to solve their largest and most complex business problems.

The firm claims the machine is the first and only quantum computer that enables customers to develop and run real-world, in-production quantum applications at scale in the cloud. The firm said the Advantage is 30 times faster and delivers equal or better solutions 94% of the time compared to its previous generation system.

But despite the huge, theoretical computational power of quantum computers, there is no need to consign your old laptop to the wheelie bin just yet. Conventional computers will still have a role to play in any new era, and are far more suited to everyday tasks such as spreadsheets, emailing and word processing, according to Quantum Computing Inc. (QCI).

Where quantum computing could really bring about radical change though is in predictive analytics. Because a quantum computer can make analyses and predictions at breakneck speeds, it would be able to predict weather patterns and perform traffic modelling, things where there are millions if not billions of variables that are constantly changing.

Standard computers can do what they are told well enough if they are fed the right computer programme by a human. But when it comes to predicting things, they are not so smart. This is why the weather forecast is not always accurate. There are too many variables, too many things changing too quickly for any conventional computer to keep up.

Because of their limitations, there are some computations which an ordinary computer may never be able to solve, or it might take literally a billion years. Not much good if you need a quick prediction or piece of analysis.

But a quantum computer is so fast, almost infinitely so, that it could respond to changing information quickly and examine a limitless number of outcomes and permutations simultaneously, according to research by Rigetti Computing.

Quantum computers are also relatively small because they do not rely on transistors like traditional machines. They also consume comparatively less power, meaning they could in theory be better for the environment.

You can read about how to get started in quantum computing in this article by Nature. To learn more about the future of quantum computing, you can watch this TED Talk by PhD student Jason Ball.

See more here:
Quantum computing: Definition, facts & uses | Live Science

Explained: Quantum engineering – MIT News

Since the 1940s, classical computers have improved at breakneck speed. Today you can buy a wristwatch with more computing power than the state-of-the-art, room-sized computer from half a century ago. These advances have typically come through electrical engineers ability to fashion ever smaller transistors and circuits, and to pack them ever closer together.

But that downsizing will eventually hit a physical limit as computer electronics approach the atomic level, it will become impossible to control individual components without impacting neighboring ones. Classical computers cannot keep improving indefinitely using conventional scaling.

Quantum computing, an idea spawned in the 1980s, could one day carry the baton into a new era of powerful high-speed computing. The method uses quantum mechanical phenomena to run complex calculations not feasible for classical computers. In theory, quantum computing could solve problems in minutes that would take classical computers millennia. Already, Google has demonstrated quantum computings ability to outperform the worlds best supercomputer for certain tasks.

But its still early days quantum computing must clear a number of science and engineering hurdles before it can reliably solve practical problems. More than 100 researchers across MIT are helping develop the fundamental technologies necessary scale up quantum computing and turn its potential into reality.

What is quantum computing?

It helps to first understand the basics of classical computers, like the one youre using to read this story. Classical computers store and process information in binary bits, each of which holds a value of 0 or 1. A typical laptop could contain billions of transistors that use different levels of electrical voltage to represent either of these two values. While the shape, size, and power of classical computers vary widely, they all operate on the same basic system of binary logic.

Quantum computers are fundamentally different. Their quantum bits, called qubits, can each hold a value of 0, 1, or a simultaneous combination of the two states. Thats thanks to a quantum mechanical phenomenon called superposition. A quantum particle can act as if its in two places at once, explains John Chiaverini, a researcher at the MIT Lincoln Laboratorys Quantum Information and Integrated Nanosystems Group.

Particles can also be entangled with each other, as their quantum states become inextricably linked. Superposition and entanglement allow quantum computers to solve some kinds of problems exponentially faster than classical computers, Chiaverini says.

Chiaverini points to particular applications where quantum computers can shine. For example, theyre great at factoring large numbers, a vital tool in cryptography and digital security. They could also simulate complex molecular systems, which could aid drug discovery. In principle, quantum computers could turbocharge many areas of research and industry if only we could build reliable ones.

How do you build a quantum computer?

Quantum systems are not easy to manage, thanks to two related challenges. The first is that a qubits superposition state is highly sensitive. Minor environmental disturbances or material defects can cause qubits to err and lose their quantum information. This process, called decoherence, limits the useful lifetime of a qubit.

The second challenge lies in controlling the qubit to perform logical functions, often achieved through a finely tuned pulse of electromagnetic radiation. This manipulation process itself can generate enough incidental electromagnetic noise to cause decoherence. To scale up quantum computers, engineers will have to strike a balance between protecting qubits from potential disturbance and still allowing them to be manipulated for calculations. This balance could theoretically be attained by a range of physical systems, though two technologies currently show the most promise: superconductors and trapped ions.

A superconducting quantum computer uses the flow of paired electrons called Cooper pairs through a resistance-free circuit as the qubit. A superconductor is quite special, because below a certain temperature, its resistance goes away, says William Oliver, who is an associate professor in MITs Department of Electrical Engineering and Computer Science, a Lincoln Laboratory Fellow, and the director of the MIT Center for Quantum Engineering.

The computers Oliver engineers use qubits composed of superconducting aluminum circuits chilled close to absolute zero. The system acts as an anharmonic oscillator with two energy states, corresponding to 0 and 1, as current flows through the circuit one way or the other. These superconducting qubits are relatively large, about one tenth of a millimeter along each edge thats hundreds of thousands of times larger than a classical transistor. A superconducting qubits bulk makes it easy to manipulate for calculations.

But it also means Oliver is constantly fighting decoherence, seeking new ways to protect the qubits from environmental noise. His research mission is to iron out these technological kinks that could enable the fabrication of reliable superconducting quantum computers. I like to do fundamental research, but I like to do it in a way thats practical and scalable, Oliver says. Quantum engineering bridges quantum science and conventional engineering. Both science and engineering will be required to make quantum computing a reality.

Another solution to the challenge of manipulating qubits while protecting them against decoherence is a trapped ion quantum computer, which uses individual atoms and their natural quantum mechanical behavior as qubits. Atoms make for simpler qubits than supercooled circuits, according to Chiaverini. Luckily, I dont have to engineer the qubits themselves, he says. Nature gives me these really nice qubits. But the key is engineering the system and getting ahold of those things.

Chiaverinis qubits are charged ions, rather than neutral atoms, because theyre easier to contain and localize. He uses lasers to control the ions quantum behavior. Were manipulating the state of an electron. Were promoting one of the electrons in the atom to a higher energy level or a lower energy level, he says.

The ions themselves are held in place by applying voltage to an array of electrodes on a chip. If I do that correctly, then I can create an electromagnetic field that can hold on to a trapped ion just above the surface of the chip. By changing the voltages applied to the electrodes, Chiaverini can move the ions across the surface of the chip, allowing for multiqubit operations between separately trapped ions.

So, while the qubits themselves are simple, fine-tuning the system that surrounds them is an immense challenge. You need to engineer the control systems things like lasers, voltages, and radio frequency signals. Getting them all into a chip that also traps the ions is what we think is a key enabler.

Chiaverini notes that the engineering challenges facing trapped ion quantum computers generally relate to qubit control rather than preventing decoherence; the reverse is true for superconducting-based quantum computers. And of course, there are myriad other physical systems under investigation for their feasibility as quantum computers.

Where do we go from here?

If youre saving up to buy a quantum computer, dont hold your breath. Oliver and Chiaverini agree that quantum information processing will hit the commercial market only gradually in the coming years and decades as the science and engineering advance.

In the meantime, Chiaverini notes another application of the trapped ion technology hes developing: highly precise optical clocks, which could aid navigation and GPS. For his part, Oliver envisions a linked classical-quantum system, where a classical machine could run most of an algorithm, sending select calculations for the quantum machine to run before its qubits decohere. In the longer term, quantum computers could operate with more independence as improved error-correcting codes allow them to function indefinitely.

Quantum computing has been the future for several years, Chiaverini says. But now the technology appears to be reaching an inflection point, shifting from solely a scientific problem to a joint science and engineering one quantum engineering a shift aided in part by Chiaverini, Oliver, and dozens of other researchers at MITs Center for Quantum Engineering (CQE) and elsewhere.

The rest is here:
Explained: Quantum engineering - MIT News

What is Quantum Computing? – NASA

Harnessing the quantum realm for NASAs future complex computing needs

NASAs Ames Research Center in Californias Silicon Valley is the heart of the agencys advanced computing efforts, including its exploration and research of quantum computing. Ames leverages its location in the heart of Silicon Valley to forge partnerships with private industry as well. Using these collaborations, the NASA Advanced Supercomputing facilitys resources, and expertise in quantum computing, Ames works to evaluate the potential of quantum computing for NASA missions.

The properties that govern physics at the extremely small scales and low temperatures of the quantum realm are puzzling and unique. Quantum computing is the practice of harnessing those properties to enable revolutionary algorithms that traditional computers wouldnt be able to run. Algorithms are a set of instructions to solve a problem or accomplish a task in computing. Quantum algorithms require descriptions of what operations should do during computation on a quantum computer, which often takes the form of a software program called a quantum circuit.

NASAs computing needs are escalating as the agency aims for more complex missions across the solar system, as well as continued research in the Earth sciences and aeronautics. Quantum computing, as it matures in the coming years, could provide powerful solutions.

Quantum mechanics describes effects such as superposition, where a particle can be in many different states at once. Quantum entanglement allows particles to be correlated with each other in unique ways that can be utilized by quantum computing. Though why these properties and more occur is still a mystery of science, the way in which they function has been well characterized and researched, allowing quantum computing experts to design hardware and algorithms to use these properties to their advantage.

Ames Role

Since 1972, when Ames center director Hans Mark brought the first massively parallel computer a kind of computer that uses multiple processors at the same time, or in parallelthe center has been at the forefront of developing advances in computing.

Today, the Quantum Artificial Intelligence Laboratory (QuAIL), is where NASA conducts research to determine the capabilities of quantum computers and their potential to support the agencys goals in the decades to come. Located at Ames, the lab conducts research on quantum applications and algorithms, develops tools for quantum computing, and investigates the fundamental physics behind quantum computing. The lab also partners with other quantum labs across the country, such as those at Google; Oak Ridge National Laboratory, or ORNL; Rigetti; and is part of two of the Department of Energys centers under the National Quantum Initiative, specifically the Co-design Center for Quantum Advantage and Superconducting Quantum Materials and Systems Center.

Applications and Algorithms

What future missions could quantum computing help realize?

Quantum computing is a field of study in its infancy. So far, it is too early to implement quantum computing into NASA missions. The role of QuAIL is to investigate quantum computings potential to serve the agencys future needs, for missions yet to be proposed or even imagined.

The key to quantum computing is quantum algorithms special algorithms uniquely constructed to take advantage of quantum properties, like quantum superposition and quantum entanglement. The properties of the quantum world allow for computations that would take billions of years on classical machines. By experimenting with designing quantum algorithms, QuAIL hopes to use quantum computers to tackle calculations that otherwise would be impossible.

Current research looks into applying quantum algorithms to optimize the planning and scheduling of mission operations, machine learning for Earth science data, and simulations for the design of new materials for use in aeronautics and space exploration. In the future, quantum algorithms could impact NASAs missions broadly. QuAILs role is to help define that future.

Quantum Computing Tools

How can software support quantum algorithms and their applications?

There are a variety of tools QuAIL is developing to support quantum computing. Those tools can help characterize noise in quantum devices, assist in error mitigation, compile algorithms for specific hardware, and simulate quantum algorithms.

Because quantum computers need extremely precise and stable conditions to operate, seemingly small issues such as impurities on a superconducting chip or accumulated charged particles can impact a computation. Thus, error mitigation will play a critical role in realizing mature quantum computers.

By modeling what kind of errors occur and the effect they have on calculations, a process called noise characterization, quantum researchers can design error mitigation techniques that can run alongside quantum algorithms to keep them on track.

All algorithms need to be compiled for use on specific hardware. Because quantum hardware is so distinct from traditional computers, researchers must make special efforts to compile quantum algorithms for quantum hardware. In the same way software needs to be coded to a particular operating system, quantum algorithms need to be coded to function on a quantum computers specific operating system, which also takes hardware into account.

Tools that allow researchers to simulate quantum circuits using non-quantum hardware are key to QuAILs objective to evaluate the potential of quantum hardware. By testing the same algorithm on both a traditional supercomputer using a quantum circuit simulator and on real quantum hardware, researchers can find the limits of the supercomputer.

NASA can also use these simulated quantum circuits to check the work of quantum hardware, ensuring that algorithms are being properly executed up until the limit at which the simulated quantum circuit is reached. This was an essential component of confirming that a recent milestone achieved by Google in collaboration with NASA and ORNL, demonstrating the ability to compute in seconds what would take even the largest and most advanced supercomputers days or weeks, had indeed been achieved.

Learn more:

For researchers:

For news media:

Members of the news media interested in covering this topic should reach out to theAmes newsroom.

Visit link:
What is Quantum Computing? - NASA

Another Quantum Networking Test Bed Being Set up in Quebec, Canada with $10.1 Million CAD ($7.3M USD) in Funding – Quantum Computing Report

Another Quantum Networking Test Bed Being Set up in Quebec, Canada with $10.1 Million CAD ($7.3M USD) in Funding  Quantum Computing Report

Original post:
Another Quantum Networking Test Bed Being Set up in Quebec, Canada with $10.1 Million CAD ($7.3M USD) in Funding - Quantum Computing Report

Quantum Computing Is Coming. What Can It Do? – Harvard Business Review

Digital computing has limitations in regards to an important category of calculation called combinatorics, in which the order of data is important to the optimal solution. These complex, iterative calculations can take even the fastest computers a long time to process. Computers and software that are predicated on the assumptions of quantum mechanics have the potential to perform combinatorics and other calculations much faster, and as a result many firms are already exploring the technology, whose known and probable applications already include cybersecurity, bio-engineering, AI, finance, and complex manufacturing.

Quantum technology is approaching the mainstream. Goldman Sachs recently announced that they could introduce quantum algorithms to price financial instruments in as soon as five years. Honeywell anticipates that quantum will form a $1 trillion industry in the decades ahead. But why are firms like Goldman taking this leap especially with commercial quantum computers being possibly years away?

To understand whats going on, its useful to take a step back and examine what exactly it is that computers do.

Lets start with todays digital technology. At its core, the digital computer is an arithmetic machine. It made performing mathematical calculations cheap and its impact on society has been immense. Advances in both hardware and software have made possible the application of all sorts of computing to products and services. Todays cars, dishwashers, and boilers all have some kind of computer embedded in them and thats before we even get to smartphones and the internet. Without computers we would never have reached the moon or put satellites in orbit.

These computers use binary signals (the famous 1s and 0s of code) that are measured in bits or bytes. The more complicated the code, the more processing power required and the longer the processing takes. What this means is that for all their advances from self-driving cars to beating grandmasters at Chess and Go there remain tasks that traditional computing devices struggle with, even when the task is dispersed across millions of machines.

A particular problem they struggle with is a category of calculation called combinatorics. These calculations involve finding an arrangement of items that optimizes some goal. As the number of items grows, the number of possible arrangements grows exponentially. To find the best arrangement, todays digital computers basically have to iterate through each permutation to find an outcome and then identify which does best at achieving the goal. In many cases this can require an enormous number of calculations (think about breaking passwords, for example). The challenge of combinatorics calculations, as well see in a minute, applies in many important fields, from finance to pharmaceuticals. It is also a critical bottleneck in the evolution of AI.

And this is where quantum computers come in. Just as classical computers reduced the cost of arithmetic, quantum presents a similar cost reduction to calculating daunting combinatoric problems.

Quantum computers (and quantum software) are based on a completely different model of how the world works. In classical physics, an object exists in a well-defined state. In the world of quantum mechanics, objects only occur in a well-defined state after we observe them. Prior to our observation, two objects states and how they are related are matters of probability.From a computing perspective, this means that data is recorded and stored in a different way through non-binary qubits of information rather than binary bits, reflecting the multiplicity of states in the quantum world. This multiplicity can enable faster and lower cost calculation for combinatoric arithmetic.

If that sounds mind-bending, its because it is. Even particle physicists struggle to get their minds around quantum mechanics and the many extraordinary properties of the subatomic world it describes, and this is not the place to attempt a full explanation. But what we can say is quantum mechanics does a better job of explaining many aspects of the natural world than classical physics does, and it accommodates nearly all of the theories that classical physics has produced.

Quantum translates, in the world of commercial computing, to machines and software that can, in principle, do many of the things that classical digital computers can and in addition do one big thing classical computers cant: perform combinatorics calculations quickly. As we describe in our paper, Commercial Applications of Quantum Computing, thats going to be a big deal in some important domains. In some cases, the importance of combinatorics is already known to be central to the domain.

As more people turn their attention to the potential of quantum computing, applications beyond quantum simulation and encryption are emerging:

The opportunity for quantum computing to solve large scale combinatorics problems faster and cheaper has encouraged billions of dollars of investment in recent years. The biggest opportunity may be in finding more new applications that benefit from the solutions offered through quantum. As professor and entrepreneur Alan Aspuru-Guzik said, there is a role for imagination, intuition, and adventure. Maybe its not about how many qubits we have; maybe its about how many hackers we have.

Read more:
Quantum Computing Is Coming. What Can It Do? - Harvard Business Review

How Quantum Computing Will Transform Our World

One of the secrets to building the worlds most powerful computer is probably perched by your bathroom sink.

At IBMs Thomas J. Watson Research Center in New York States Westchester County, scientists always keep a box of dental flossReach is the preferred brandclose by in case they need to tinker with their oil-drum-size quantum computers, the latest of which can complete certain tasks millions of times as fast as your laptop.

Inside the shimmering aluminum canister of IBMs System One, which sits shielded by the same kind of protective glass as the Mona Lisa, are three cylinders of diminishing circumference, rather like a set of Russian dolls. Together, these encase a chandelier of looping silver wires that cascade through chunky gold plates to a quantum chip in the base. To work properly, this chip requires super-cooling to 0.015 kelvinsa smidgen above absolute zero and colder than outer space. Most materials contract or grow brittle and snap under such intense chill. But ordinary dental floss, it turns out, maintains its integrity remarkably well if you need to secure wayward wires.

But only the unwaxed, unflavored kind, says Jay Gambetta, IBMs vice president of quantum. Otherwise, released vapors mess everything up.

Photograph by Thomas Prior for TIME

Buy a print of the Quantum cover here

Its a curiously homespun facet of a technology that is set to transform pretty much everything. Quantums unique ability to crunch stacks of data is already optimizing the routes of thousands of fuel tankers traversing the globe, helping decide which ICU patients require the most urgent care, and mimicking chemical processes at the atomic level to better design new materials. It also promises to supercharge artificial intelligence, with the power to better train algorithms that can finally turn driverless cars and drone taxis into a reality. Quantum AI simulations exhibit a degree of effectiveness and efficiency that is mind-boggling, U.S. National Cyber Director Chris Inglis tells TIME.

Read More: DeepMinds CEO Helped Take AI Mainstream. Now Hes Urging Caution

Quantums earliest adopters are asset-management firmsfor which incorporating quantum calculations involves few increased overhead costsbut commercial uses arent far behind. Spanish firm Multiverse Computing has run successful pilot projects with multinational clients like BASF and Bosch that show its quantum algorithms can double foreign-exchange trading profits and catch almost four times as many production-line defects. Quantum deep-learning algorithms are completely different from classical ones, says Multiverse CEO Enrique Lizaso Olmos. You can train them faster, try more strategies, and they are much better at getting the correlations that matter from a lot of data.

Quantum chandeliers may look spectacular but they arent practical for next generation computers. IBM has instead designed flexible cabling to replace the looped wires.

Thomas Prior for TIME

Data received from quantum computers must be fed to rack of classical control electronic systems to process the calculations.

Thomas Prior for TIME

Tech giants from Google to Amazon and Alibabanot to mention nation-states vying for technological supremacyare racing to dominate this space. The global quantum-computing industry is projected to grow from $412 million in 2020 to $8.6 billion in 2027, according to an International Data Corp. analysis.

Whereas traditional computers rely on binary bitsswitches either on or off, denoted as 1s and 0sto process information, the qubits that underpin quantum computing are tiny subatomic particles that can exist in some percentage of both states simultaneously, rather like a coin spinning in midair. This leap from dual to multivariate processing exponentially boosts computing power. Complex problems that currently take the most powerful supercomputer several years could potentially be solved in seconds. Future quantum computers could open hitherto unfathomable frontiers in mathematics and science, helping to solve existential challenges like climate change and food security. A flurry of recent breakthroughs and government investment means we now sit on the cusp of a quantum revolution. I believe we will do more in the next five years in quantum innovation than we did in the last 30, says Gambetta.

But any disrupter comes with risks, and quantum has become a national-security migraine. Its problem-solving capacity will soon render all existing cryptography obsolete, jeopardizing communications, financial transactions, and even military defenses. People describe quantum as a new space race, says Dan OShea, operations manager for Inside Quantum Technology, an industry publication. In October, U.S. President Joe Biden toured IBMs quantum data center in Poughkeepsie, N.Y., calling quantum vital to our economy and equally important to our national security. In this new era of great-power competition, China and the U.S. are particularly hell-bent on conquering the technology lest they lose vital ground. This technology is going to be the next industrial revolution, says Tony Uttley, president and COO for Quantinuum, a Colorado-based firm that offers commercial quantum applications. Its like the beginning of the internet, or the beginning of classical computing.

Quantum chips are extremely sensitive. This decade-old IBM quantum processor was used in an experiment that proved how background microwaves affect qubits.

Thomas Prior for TIME

If anything, its surprising that traditional computing has taken us so far. From the trail-blazing Apple II of the late 1970s to todays smartphones and supercomputers, all processors break down tasks into binary. But life is so complex that rendering information in such a rudimentary manner is like playing a Rachmaninoff concerto in Morse code.

Quantum is also more in tune with nature. Moleculesthe building blocks of the universeare multiple atoms bound together by electrons that exist as part of each. The way these electrons essentially occupy two states at once is what quantum particles replicate, presenting applications for natural and material sciences by predicting how drugs interact with the human body, or substances perform under corrosion. Traditional manufacturing takes calculated guesses to make breakthroughs through trial and error; by mirroring the natural world, quantum should allow advances to be purposefully designed.

Read More: Column: How Our Cells Strategize To Keep Us Alive

While the worlds biggest companies, alongside hundreds of startups, are clamoring to harness quantum, IBM has emerged in recent years as the industry leader. Today, the firm has over 60 functioning quantum computersmore than the rest of the world combinedand a roster of collaborators that include titans of practically every industry from Exxon-Mobil to Sony. Its a welcome return to technologys zenith for the storied firm, founded over a century ago to produce tabulating machines fed with punch cards. In recent years, IBM had fallen behind rivals like Apple and Microsoft by not seizing the initiative with cloud computing and AI. Quantum offers some redemption. Its great to be back at the top again, says one executive. Its no secret that we let things slip by not jumping on cloud.

In November, IBM unveiled its new 433-qubit Osprey chipthe worlds most powerful quantum processor, the speed of which, if represented in traditional bits, would far exceed the total number of atoms in the known universe. IBM has more than 20 quantum computers available on its open-source quantum tool kit Qiskit, which has been downloaded more than 450,000 times to date. In order to build an industry around quantum, some machines are free to use, while paying clients such as startups and scholars can access more powerful ones remotely on a lease basis. IBM has a bold road map to launch a 1,121-qubit processor this year and, by 2025, surpass 4,000 qubits by creating modular quantum circuits that link multiple processor chips in the same computer. Modularity is a big inflection point, says Dario Gil, IBM senior vice president and director of research. We now have a way to engineer machines that will have tens of thousands of qubits.

Inside the IBM research lab in Yorktown Heights, New York

Thomas Prior for TIME

IBM research lab in Yorktown Heights, New York.

Thomas Prior for TIME

Quantums industrial uses are boundless. Inside BMWs headquarters in Munich there stands a wall that gives vehicle designers sleepless nights. Creating a new car model from scratch takes at least four years. First, designers use computer-aided styling to sketch an exterior that combines beauty with practicality. Next, a scale model is carved in clay and placed in a wind tunnel to assess aerodynamics. After countless decisions on interior, engine performance, and so on comes the ultimate test: a prototype is driven at 35 m.p.h. into that fabled wall to test how it performs in a crash. Should the car fail to meet various safety criteria, its back to the drawing board.

This is where quantum can help by accurately predicting how complex materials of different shapes will perform under stress. Robust simulated crash tests can save up to six months in the whole process, says Carsten Sapia, vice president of strategy, governance, and IT security at BMW Group, which has partnered with French quantum firm Pasqal. Quantum computing will also help us find the new optimum between design, maximum interior space, and best aerodynamics.

Thats just the start. Modern business teems with optimization problems that are ideally suited to quantum algorithms and could save time, energy, and resources. Were not just building the technology, we have to enable the workforce to use it, explains Katie Pizzolato, IBMs director of quantum strategy and applications research.

Sapia says finding uses for the technology is easy; the challenge will be ensuring that all divisions of BMW are able to utilize it. Already, BMW is unable to communicate from Europe to its cars in China for driving software maintenance and monitoring because of increasingly strict curbs on the transfer of data across borders. In the future, we will rely on everywhere in the world having access to quantum technology to run our business, Sapia says. So how can we set it up so no matter what happens on a geopolitical scale that we still have access to this technology?

The full chandelier inside a quantum computer.

Thomas Prior for TIME

Over the past few years quantum has moved from a footnote to the top of the global security agenda. To date, 17 countries have national quantum strategies and four more are developing them. China has invested an estimated $25 billion in quantum research since the mid-1980s, according to Quantum Computing Report. Its top quantum scientist, Pan Jianwei, led the launch of the worlds first quantum satellite in 2016 and in 2021 unveiled a then record-breaking 56-qubit quantum computer. Chinas 14th Five-Year Plan, published in March 2021, made mastery of quantum a policy priority. The blurred line between industry and national security in China gives them an advantage, says David Spirk, former chief data officer at the Department of Defense.

In response, the White House in May published a National Security Memorandum that ordered all federal agencies to transition to post-quantum security owing to significant risks to economic and national security. Given that upgrading critical infrastructure can take decades, and literally everything connected to the internet is at risk, the impetus is to act now. We realized that while [quantum is] wonderful for humanity, the first thing people are going to do is weaponize these systems, says Skip Sanzeri, founder and COO of QuSecure, a post-quantum cybersecurity firm enlisted by the U.S. military and federal government to handle what he says could be a $1 trillion cybersecurity upgrade.

Still, Spirk worries that the U.S. risks falling behind and is calling for a Manhattan Projectlike focus on quantum. Of the over $30 billion spent globally on quantum last year, according to the World Economic Forum, China accounted for roughly half and the E.U. almost a quarter. The U.S. National Quantum Initiative, meanwhile, spent just $1.2 billiona figure Spirk calls trivial against $1 trillion in total defense spending. This is not a coming wave, he says, its here.

Read More: The World Economic Forums Klaus Schwab on What Lies Ahead

The stakes couldnt be higher. Today, practically all cybersecuritywhether WhatsApp messages, bank transfers, or digital handshakesis based on RSA, an asymmetric cryptography algorithm used to safely transfer data. But while a regular computer needs billions of years to crack RSA, a fast quantum computer would take just hours. In December, a team of scientists in China published a paper that claimed it had a quantum algorithm that could break RSA with a 372-qubit computer (though its conclusions are hotly debated). The race is now on to devise postquantum securitya job that falls to the U.S. National Institute of Standards and Technology, or NIST. In 2016, NIST announced a competition for programmers to propose new post-quantum encryption algorithms. The results were mixed: one of the finalists announced on July 5, 2022, has since been cracked by a regular laptop in a little over an hour.

In some ways, its already too late. Even though quantum computers powerful enough to crack RSA are a few years away from being openly available, hackers are already seizing and storing sensitive data in the knowledge that they will be able to access it via quantum very soon. Every day that you dont convert to a quantum-safe protocol, theres no recovery plan, Gil says.

The glass shell around the quantum computer allows IBM to tightly control the temperature inside. This is critical for the quantum chip, which has to be kept at a fraction above absolute zero.

Thomas Prior for TIME

The war in Ukraine has also served as a wake-up call. It is historys first hot conflict to begin with cyber-attacks, as Russia targeted vital -communications and infrastructure to lay the groundwork for its military assault. Public services, energy grids, media, banks, businesses, and nonprofit organizations were subjected to a cyberblitzkrieg, impacting the distribution of medicines, food, and relief supplies. Modern warfare and nationalsecurity mechanisms are grounded in the speed and precision of decisionmaking. If your computer is faster than theirs, you win, its pretty simple, says Spirk. Quantum is that next leap.

Read More: Exclusive: OpenAI Used Kenyan Workers on Less Than $2 Per Hour to Make ChatGPT Less Toxic

But malign intentions are just one hazard. With the U.S. embroiled in a new Cold War, its also unclear if China and Russia would adopt new NIST protocols, not least since in the past, RSA cryptography has allegedly been breached by the U.S. National Security Agency. In September, National Security Adviser Jake Sullivan said quantum would have an outsized importance over the coming decade, adding that export controls could be used to maintain U.S. advantage. Competing post-quantum security standards across Washingtons and Beijings spheres of influence have the potential to cleave the world into divergent blocs, with grave implications for global trade. [The] balkanization of what we know today as a free and open internet is distinctly possible, Inglis says.

The trepidation surrounding quantum doesnt stem solely from security risks. We trust classical computers in part because we can verify their computations with pen and paper. But quantum computers involve such arcane physics, and deal with such complex problems, that traditional verification is extremely tricky. For now, its possible to simulate many quantum calculations on a traditional super-computer to check the outcome. But soon will come a time when trusting a quantum computer will require a leap of faith. Trust building across the entire ecosystem right now is really important, says Uttley.

Boeing, for one, has been working with IBMs quantum team since 2020 on designing new materials for its next generation of aircraft. But given the colossal reputational stakes, the firm is in no rush. The modeling tools that we use to design our airplanes are closely monitored, says Jay Lowell, chief engineer for disruptive computing and networks at Boeing. To turn [quantum] into an operational code is a huge, huge hurdle.

One that IBM knows only too well. But by making its quantum computers open source, and welcoming academics and entrepreneurs from all over, the firm hopes to mitigate the hesitancy. As Gil puts it, this is a new frontier of humanity.

With reporting by Leslie Dickstein

Correction, Jan. 28

The original version of this story misstated the name of a French quantum firm. It is Pasqal, not Pascal.

More Must-Reads From TIME

Write to Charlie Campbell at charlie.campbell@time.com.

Visit link:
How Quantum Computing Will Transform Our World