Quantum Summer School Is Just Around the Corner – Campus Technology

C-Level View | Feature

A Q&A with Dr. David Stewart

As higher education embraces quantum computing, quantum information science, and all things quantum, numerous programs, courses, and events exist to connect the leading researchers, industry innovators, students in an emerging workforce, national labs and government funding organizations, and interdisciplinary faculty who form the core of the quantum movement. Here, Campus Technology asks the managing director of Purdue University's Quantum Science and Engineering Institute about efforts in quantum education, especially this year's Quantum Summer School, an initiative of the Quantum Science Center hosted at Purdue May 8-12, 2022.

"We are in the nascent stages of this second quantum revolution, and the technologies that will revolutionize the field are still being realized. We need academic researchers willing to push boundaries in order to make innovative breakthroughs." David Stewart

Mary Grush: Where are we with quantum computing today? Are we in a new quantum computing revolution? What kind of timeline might we see for the growth of widely available quantum computing resources?

David Stewart: Quantum computing is advancing rapidly. For example, the number of qubits, which are quantum analogs to classical bits, in quantum machines has increased by more than an order of magnitude in the past decade. Additionally, several organizations have shown "quantum supremacy" where they have solved problems that would overwhelm a classical computer.

We are certainly in a quantum computing revolution. Quantum computing resources are actually already widely available as access is provided by a number of companies. However, due to size of the machines and operating conditions such as extreme low temperatures, we are still many years from quantum computers coming to our homes.

Grush: How important is it for academic institutions to establish some kind of quantum computing footprint?

Stewart: It is vital for two main reasons. First, the quantum workforce is extremely shorthanded. Academic institutions are essential to grow this workforce to ensure we have the manpower to advance the field. And second, we are in the nascent stages of this second quantum revolution, and the technologies that will revolutionize the field are still being realized. We need academic researchers willing to push boundaries in order to make innovative breakthroughs.

Grush: What is the second annual Quantum Summer School and can you tell us about some of its goals, content, and speakers?

Stewart: The Quantum Summer School is a part of the workforce development efforts of the Quantum Science Center (QSC). Purdue University leads these efforts under the direction of Professor Alexandra Boltasseva. The goal is to provide students and postdoctoral researchers a unique, world-class educational experience in our mission to grow the quantum workforce. This exciting event will feature lectures from world-leading experts from industry, academia, and national labs, interactive panel discussions, hands-on training sessions from QSC-affiliated companies, student poster sessions, and communication and presentation training. It will also provide networking opportunities for students and postdoctoral researchers.

Grush: Is quantum computing maturing as an academic discipline? Is it primarily in physics and computer engineering now? Could we soon see quantum computing as an essential part of the computer science curriculum?

See the original post:
Quantum Summer School Is Just Around the Corner - Campus Technology

The U.S. and Sweden Agree to Cooperate on Quantum Technology – Quantum Computing Report

The U.S. and Sweden Agree to Cooperate on Quantum Technology

The U.S. and Sweden has also signed a signed a Joint Statement on Cooperation in Quantum Information Science and Technology (QIST). Just a few days earlier, the U.S. had signed a similar agreement with Finland. The Joint Statement advances the shared agendas of both countries to engage in good-faith cooperation in QIST for building a global market and supply chain, and to create respectful and inclusive scientific research communities. In 2018, Sweden established the Wallenberg Centre for Quantum Technology with several universities and industrial partners and is investing 1 billion Swedish Krona ($105M USD) to support advanced research in quantum computing, simulation, communication, and sensing. A news release announcing this signing can be accessed on the U.S. governments Quantum.gov website here.

April 12, 2022

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Original post:
The U.S. and Sweden Agree to Cooperate on Quantum Technology - Quantum Computing Report

Quantum computing and the bigger picture – ComputerWeekly.com

Every few years IBM brings out a new addition to its Z series mainframe family. From the information accompanying the release of the new enterprise system, IBM appears to be touting the new z16 machines ability to handle real time fraud detection for instant payments across the financial sector. It also offers an AI (artificial intelligence) accelerator, using IBMs Telum chip. This will certainly be good news for many financial institutes. For instance, speaking at a recent IBM-hosted roundtable, Steve Suarez, global head of innovation, finance & risk at HSBC, described how the bank was drowning in data. Suarez sees a need to have technology that can help the bank provide insights that actually benefit people.

What is interesting from the virtual z16 briefing Computer Weekly attended is IBMs focus on the new machines ability to protect against hackers using quantum computing to break the strong encryption that underpins financial transactions.

IBM distinguished engineer, Anne Dames said: Good technology can be used to do bad things. In other words, a quantum computer could be used to break the cryptographic keys that are used to encrypt data.

We are entering a new cryptographic era, she warns, adding that the IT industry needs to act now before there is an effective quantum computing based attack.

The worst case scenario IBM paints is where a successful hacking attack gains access to a large quantity of encrypted data. Since this data is encrypted, it is near impossible to decipher it in a realistic timescale. The US National Institute of Standards and Technology warns that if large-scale quantum computers are ever built, they will be able to break many of the public-key cryptosystems currently in use. This would seriously compromise the confidentiality and integrity of digital communications on the Internet and elsewhere. Nist is encouraging the IT sector to develop post-quantum cryptography and IBMs z16 is one of the first systems to claim it is quantum safe.

While this is clearly an important development and IBMs efforts should be applauded, one cant help worrying that IBM, Nist and the IT sector at large, are somehow missing the bigger picture. Breaking cryptography is one thing, but quantum computers have the potential to revolutionise drug development and the ability to create new chemical processes such as to reduce carbon emissions. The flip side is that these techniques may also be used to develop devastatingly effective, targeted chemical and biological weapons. As such, policy makers need to wake up to the risk, and track quantum computing in the same way that atomic, biological and chemical weapon materials are monitored.

The rest is here:
Quantum computing and the bigger picture - ComputerWeekly.com

QpiAI and QuantrolOx Sign a MoU to Jointly Develop India’s First 25-Qubit Quantum Computing Testbed and Offerings for the European and Indian Markets…

Having Quantum technology development in India will create next generation high-technology jobs in cutting edge research and technology development. This also builds ecosystem for leading inter-disciplinary R&D. I am very glad to see QpiAI forge partnership with QuantrolOx and lay the foundation for India-Finland partnership in the area of Quantum technology. We are glad that we will be working with Dr Andrew and Vishal to make Quantum computing commercially available across India, Europe and southeast Asia for industrial sectors," Dr Atre suggested."When we were first discussing Quantum hardware in India in 2020, that was before pandemic, Dr Nagendra was suggesting 20 qubit setup by 2024 in Bangalore. Now with this partnership it looks like we will be having multiple 25 Qubit testbeds right here in Bangalore by the end of 2022. This should enable a thriving Quantum ecosystem.Currently 25 qubits is based on superconductors and eventually 2048 qubits based on CMOS spin qubits will be very exciting. 2048 logical qubits can enable a lot of commercial applications. We would like to use all our expertise in CMOS fabrication to make this technology breakthrough happen. That would be a major technology breakthrough from India. We would like to see Dr Nagendra and team achieve the same as soon as possible with a lot of collaborationwith Quantum ecosystems including QuantrolOx, Oxford and the IISc community. QpiAI has an excellent team and building commercial grade Quantum computers right here in Bangalore is very exciting. It is great to see collaboration between India and Finland to form this thriving Quantum ecosystem. The association of QpiAIwith Dr Andrew and Vishal is a major step forwardin achievingthis goal," added Dr Navakant.This partnership will create revenue generation opportunities for both the companies, QpiAI has QpiAISense hardware platform for controlling qubits ready to be shipped, on which QuantrolOx will develop control software for both superconducting and semiconductor-based spin qubits.QpiAI is building its own quantum computing lab to house cryogenic electronics and is in process to acquire land for Indias first private quantum computing lab facility. The QpiAI quantum lab will be part of bigger Qpi Technology Quantum Park, which houses the labs and manufacturing facility for its subsidiaries like super conductor based single photon detector, single photon source, HTS tapes and HTS cables for SuperQ, solid state battery prototyping facility for Qpivolta using Quantum and AI technologies and labs for Qpivolta-ET for Energy transition experiments using material discovery and carbon capture, Silicon photonics testing lab for Qpisemi for its AI20P AI processors and lab scale model Quantum data center designed by Qpicloud. Currently Qpicloud which is incubated in DSCI (Data security Council of India) NCoE (National Center of Excellence) for cybersecurity, is also working on Quantum security for data centers and cloud computing, whose lab will be enabled in Qpi Technology Quantum ParkQpiAI is expanding in Finland to enable partnership with European quantum ecosystems. QpiAI already has a subsidiary in the US QpiAI Inc. QpiAI also intends to open an office in Japan for customer support and after sales support for Japanese customers.With partnerships and global presence, QpiAI which is a revenue generating and profitable Quantum compute and AI company, which is vertically integrating AI and Quantum compute and has customers across the world, is scaling its business to next level to become major global player in AI and Quantum compute.

About QpiAIQpiAI (https://www.qpiai.tech) is World leader in AI and Quantum computing. QpiAI is integrating Quantum computing and AI vertically to offer solutions to areas like manufacturing, industrial, transportation, finance, pharma and materials. It has various software platforms and products including QpiAI-pro, QpiAI-explorer, QpiAI-logistics, QpiAIopt, QpiAIsim, QpiAIML. It is building complete hardware stack based on 3 chip solutions of Trion (universal optimizer Chip), Bumblebee (scalable cryogenic control chip) and scalable spin-qubit based QPU (Quantum processing unit) , which can be scalable to 2048 logical qubits. QpiAI is currently ready with room temperature control electronics based on its hardware platform QpiAIsense. QpiAI is subsidiary of Qpi Technology (https://www.qpitech.holdings ).About QuantrolOx

QuantrolOx (https://quantrolox.com/ ), an Anglo-Finnish spinout from University of Oxford, is building automated machine learning based control software for quantum technologies to tune, stabilise, and optimise qubits. QuantrolOxs software is technology agnostic and applicable to all types of quantum technologies. Initially the company is targeting solid-state qubits where the team has already demonstrated substantial practical benefits.

Submit your press release

More here:
QpiAI and QuantrolOx Sign a MoU to Jointly Develop India's First 25-Qubit Quantum Computing Testbed and Offerings for the European and Indian Markets...

Quantum Week at Yale geared toward novices and experts alike – Yale News

Yales hub for quantum research will soon entangle the campus in the best possible sense in a full week of mind-bending science, artistry, and discussion devoted to the wonders of quantum research.

Quantum Week at Yale, organized by the Yale Quantum Institute (YQI), will feature a hackathon, a lab tour, a movie screening, a record launch party, hands-on computer programming, a superconductive jewelry display, and an assortment of quantum-related library and museum exhibits.

The activities begin April 8 and run through April 14. A full list of events is available here.

Yales quantum scientists are at the very top of this field, said Florian Carle, YQI manager and coordinator for the event. We want to take some of the excitement we see in the labs and at YQI and share it with the rest of the campus.

Quantum science delves into the physical properties that explain the behavior of subatomic particles, atoms, and molecules. Over the past century, quantum research has transformed disciplines as diverse as physics, engineering, mathematics, chemistry, computer science, and materials science.

Over the past 20 years, Yale researchers have propelled quantum research, particularly in quantum information science and quantum computing, with a series of groundbreaking discoveries including the first demonstration of two-qubit algorithms with a superconducting quantum processor.

Yales research has led to unprecedented control over individual quantum objects, whether those objects are naturally occurring microscopic systems such as atoms, or macroscopic, human-made systems with engineered properties. Researchers say these advances may soon enable them to perform otherwise intractable computations, ensure privacy in communications, better understand and design novel states of matter, and develop new types of sensors and measurement devices.

This is the time when computer scientists, mathematicians, physicists, and engineers are all coming together, said Yongshan Ding, assistant professor of computer science, who will lead a programming workshop on April 14 that shows visitors including those without any experience with quantum computing how to play with quantum interference patterns.

People can just code away, Ding said. My vision is that by exposing people to these activities, we can build a quantum-native programming language. This is a new paradigm of computation, so were going to need new ways to program for it.

YQI has partnered with 18 Yale departments and centers to create 23 events for Quantum Week at Yale. One of the challenges in organizing the week, Carle explained, was developing an engaging mix of activities suited for both experienced researchers and quantum science novices.

To that end, the week is organized around four components: Understanding Quantum, Art & Quantum, Career and Entrepreneurship, and For Researchers.

The hands-on programming event, for example, comes under the Understanding Quantum banner. Other include an April 9-10 Quantum Coalition Hack, hosted by the Yale Undergraduate Quantum Computer Club; an April 11 tour of superconducting qubit laboratories; and a quantum-related exhibit of rare books at the Beinecke Rare Book and Manuscript Library on April 11.

Were always looking for ways that our libraries can engage with the academic work going on at Yale, said Andrew Shimp, who consulted on Quantum Week events at Yale libraries. Shimp is Yales librarian for engineering, applied science, chemistry, and mathematics. One of the unique things a Yale library can offer is the chance to view rare collections that arent necessarily digitized yet.

The quantum exhibit at the Beinecke Library, for example, includes materials from quantum science pioneers such as Albert Einstein, Werner Heisenberg, and Max Planck. There is also an astronomy textbook, published in 1511, that includes the word quantum in its title. The title is Textus de Sphera Johannis de Sacrobosco: cum additione (quantum necessarium est) adiecta / Nouo commentario nuper edito ad vtilitate[m] studentiu[m] philosophice Parisien[em]. A brief English translation would be Sphere of Sacrobosco.

Under the Art & Quantum heading, there will be an April 8 screening of the 2013 indie thriller Coherence; a visual arts competition called Visualize Science hosted by Wright Lab on April 13; a launch party for Quantum Sound (a record project begun at YQI in 2018) on April 13; a display of Superconductive Jewelry throughout the week at YQI; a Quantum and the Arts exhibit all week at the Arts Library; an April 13 event hosted by the Yale Schwarzman Center devoted to historical preservation of technology ephemera, called Dumpster Diving: Historical Memory and Quantum Physics at Yale; and a new exhibit at the New Haven Museum, The Quantum Revolution, that opens April 13 and features drawings by former YQI artist in residence Martha Willette Lewis.

Carle is curator for the New Haven Museum exhibit. We wanted to show the evolution of quantum science at Yale, he said. It will take people from some of the first qubits in 1998 to Badger, the dilution refrigerator that ran the first two-qubit algorithms with a superconducting quantum processor in 2009.

Quantum computers require extremely cold temperatures near absolute zero in order to reduce operational errors.

The weeks Career and Entrepreneurship component will include a discussion of quantum startups hosted by The Tsai Center for Innovative Thinking at Yale (Tsai CITY) on April 12; a conversation with IBMs Mark Ritter on the global implications of quantum research, hosted by the Jackson Institute for Global Affairs on April 12; a session on how to access market research for major industry analysts, hosted by the Yale University Library, on April 12; and a series of panel discussions on how to join the quantum workforce.

Finally, the For Researchers component of Quantum Week at Yale will feature a quantum sensing workshop at Wright Lab on April 8; and an April 14 lecture by quantum researcher Nathan Wiebe of the University of Washington.

The final day for Quantum Week at Yale, April 14, also happens to be World Quantum Day, Carle said. Our hope is that by then, students all over campus will be aware of quantum work being done here and want to explore it themselves in some way.

More:
Quantum Week at Yale geared toward novices and experts alike - Yale News

Learn quantum computing: a field guide – IBM Quantum

Quantum theory is a revolutionary advancement in physics and chemistrythat emerged in the early twentieth century. It is an elegantmathematical theory able to explain the counterintuitive behavior ofsubatomic particles, most notably the phenomenon of entanglement. Inthe late twentieth century it was discovered that quantum theory appliesnot only to atoms and molecules, but to bits and logic operations in acomputer. This realization has brought about a revolution in thescience and technology of information processing, making possible kindsof computing and communication hitherto unknown in the Information Age.

Our everyday computers perform calculations and process information using thestandard (or classical) model ofcomputation, which dates back toTuring and vonNeumann. In thismodel, all information is reducible to bits, which can take the valuesof either 0 or 1. Additionally, all processing can be performed via simple logicgates (AND, OR, NOT, XOR, XNOR)acting on one or two bits at a time, or be entirely described by NAND (or NOR).At any point in its computation, aclassical computers state is entirely determined by the states of allits bits, so that a computer with n bits can exist in one of2^n possible states, ranging from 00...0 to11...1 .

The power of the quantum computer, meanwhile, lies in its much richerrepertoire of states. A quantum computer also has bits but instead of0 and 1, its quantum bits, or qubits, can represent a 0, 1, or linearcombination of both, which is a property known as superposition.This on its own is no special thing, since a computer whose bits can beintermediate between 0 and 1 is just an analog computer, scarcely morepowerful than an ordinary digital computer. However, a quantum computertakes advantage of a special kind of superposition that allows forexponentially many logical states at once, all the states from|00...0rangle to |11...1rangle . This is a powerfulfeat, and no classical computer can achieve it.

The vast majority of quantum superpositions, and the ones most useful for quantumcomputation, are entangled. Entangled states are states of the whole computerthat do not correspond to any assignment of digital or analog states ofthe individual qubits. A quantum computer is therefore significantly more powerfulthan any one classical computer whether it be deterministic,probabilistic, or analog.

While todays quantum processors are modest in size, their complexity growscontinuously. We believe this is the right time to build and engage a communityof new quantum learners, spark further interest in those who are curious,and foster a quantum intuition in the greater community.By making quantum concepts more widely understood even on a generallevel we can more deeply explore all the possibilities quantumcomputing offers, and more rapidly bring its exciting power to a worldwhose perspective is limited by classical physics.

With this in mind, we created the IBM Quantum Composer to provide the hands-onopportunity to experiment with operations on a real quantum computingprocessor. This field guide contains a series of topicsto accompany your journey as you create your own experiments, run them insimulation, and execute them on real quantum processorsavailable via IBM Cloud.

If quantum physics sounds challenging to you, you are not alone. But ifyou think the difficulty lies in hard math, think again. Quantum conceptscan, for the most part, be described by undergraduate-level linear algebra,so if you have ever taken a linear algebra course, the math will seem familiar.

The true challenge of quantum physics is internalizing ideas that arecounterintuitive to our day-to-day experiences in the physical world,which of course are constrained by classical physics. To comprehendthe quantum world, you must build a new intuition for a set of simple butvery different (and often surprising) laws.

The counterintuitive principles of quantum physics are:

1.A physical system in a definite state can still behaverandomly.

2.Two systems that are too far apart to influence each other cannevertheless behave in ways that, though individually random,are somehow strongly correlated.

Unfortunately, there is no single simple physicalprinciple from which these conclusions follow and we must guard againstattempting to describe quantum concepts in classical terms!The best we can do is to distill quantum mechanics down to a fewabstract-sounding mathematical laws, from which all the observed behaviorof quantum particles (and qubits in a quantum computer) can be deduced andpredicted.

Keep those two counterintuitive ideas in the back of your mind, let goof your beliefs about how the physical world works, and begin exploringthe quantum world!

Originally posted here:
Learn quantum computing: a field guide - IBM Quantum

Google AI Blog: Quantum Supremacy Using a Programmable …

This result is the first experimental challenge against the extended Church-Turing thesis, which states that classical computers can efficiently implement any reasonable model of computation. With the first quantum computation that cannot reasonably be emulated on a classical computer, we have opened up a new realm of computing to be explored.

The Sycamore ProcessorThe quantum supremacy experiment was run on a fully programmable 54-qubit processor named Sycamore. Its comprised of a two-dimensional grid where each qubit is connected to four other qubits. As a consequence, the chip has enough connectivity that the qubit states quickly interact throughout the entire processor, making the overall state impossible to emulate efficiently with a classical computer.

The success of the quantum supremacy experiment was due to our improved two-qubit gates with enhanced parallelism that reliably achieve record performance, even when operating many gates simultaneously. We achieved this performance using a new type of control knob that is able to turn off interactions between neighboring qubits. This greatly reduces the errors in such a multi-connected qubit system. We made further performance gains by optimizing the chip design to lower crosstalk, and by developing new control calibrations that avoid qubit defects.

We designed the circuit in a two-dimensional square grid, with each qubit connected to four other qubits. This architecture is also forward compatible for the implementation of quantum error-correction. We see our 54-qubit Sycamore processor as the first in a series of ever more powerful quantum processors.

ApplicationsThe Sycamore quantum computer is fully programmable and can run general-purpose quantum algorithms. Since achieving quantum supremacy results last spring, our team has already been working on near-term applications, including quantum physics simulation and quantum chemistry, as well as new applications in generative machine learning, among other areas.

We also now have the first widely useful quantum algorithm for computer science applications: certifiable quantum randomness. Randomness is an important resource in computer science, and quantum randomness is the gold standard, especially if the numbers can be self-checked (certified) to come from a quantum computer. Testing of this algorithm is ongoing, and in the coming months we plan to implement it in a prototype that can provide certifiable random numbers.

Whats Next?Our team has two main objectives going forward, both towards finding valuable applications in quantum computing. First, in the future we will make our supremacy-class processors available to collaborators and academic researchers, as well as companies that are interested in developing algorithms and searching for applications for todays NISQ processors. Creative researchers are the most important resource for innovation now that we have a new computational resource, we hope more researchers will enter the field motivated by trying to invent something useful.

Second, were investing in our team and technology to build a fault-tolerant quantum computer as quickly as possible. Such a device promises a number of valuable applications. For example, we can envision quantum computing helping to design new materials lightweight batteries for cars and airplanes, new catalysts that can produce fertilizer more efficiently (a process that today produces over 2% of the worlds carbon emissions), and more effective medicines. Achieving the necessary computational capabilities will still require years of hard engineering and scientific work. But we see a path clearly now, and were eager to move ahead.

AcknowledgementsWed like to thank our collaborators and contributors University of California Santa Barbara, NASA Ames Research Center, Oak Ridge National Laboratory, Forschungszentrum Jlich, and many others who helped along the way.

Today we published the results of this quantum supremacy experiment in the Nature article, Quantum Supremacy Using a Programmable Superconducting Processor. We developed a new 54-qubit processor, named Sycamore, that is comprised of fast, high-fidelity quantum logic gates, in order to perform the benchmark testing. Our machine performed the target computation in 200 seconds, and from measurements in our experiment we determined that it would take the worlds fastest supercomputer 10,000 years to produce a similar output.

Each run of a random quantum circuit on a quantum computer produces a bitstring, for example 0000101. Owing to quantum interference, some bitstrings are much more likely to occur than others when we repeat the experiment many times. However, finding the most likely bitstrings for a random quantum circuit on a classical computer becomes exponentially more difficult as the number of qubits (width) and number of gate cycles (depth) grow.

The Sycamore ProcessorThe quantum supremacy experiment was run on a fully programmable 54-qubit processor named Sycamore. Its comprised of a two-dimensional grid where each qubit is connected to four other qubits. As a consequence, the chip has enough connectivity that the qubit states quickly interact throughout the entire processor, making the overall state impossible to emulate efficiently with a classical computer.

The success of the quantum supremacy experiment was due to our improved two-qubit gates with enhanced parallelism that reliably achieve record performance, even when operating many gates simultaneously. We achieved this performance using a new type of control knob that is able to turn off interactions between neighboring qubits. This greatly reduces the errors in such a multi-connected qubit system. We made further performance gains by optimizing the chip design to lower crosstalk, and by developing new control calibrations that avoid qubit defects.

We designed the circuit in a two-dimensional square grid, with each qubit connected to four other qubits. This architecture is also forward compatible for the implementation of quantum error-correction. We see our 54-qubit Sycamore processor as the first in a series of ever more powerful quantum processors.

ApplicationsThe Sycamore quantum computer is fully programmable and can run general-purpose quantum algorithms. Since achieving quantum supremacy results last spring, our team has already been working on near-term applications, including quantum physics simulation and quantum chemistry, as well as new applications in generative machine learning, among other areas.

We also now have the first widely useful quantum algorithm for computer science applications: certifiable quantum randomness. Randomness is an important resource in computer science, and quantum randomness is the gold standard, especially if the numbers can be self-checked (certified) to come from a quantum computer. Testing of this algorithm is ongoing, and in the coming months we plan to implement it in a prototype that can provide certifiable random numbers.

Whats Next?Our team has two main objectives going forward, both towards finding valuable applications in quantum computing. First, in the future we will make our supremacy-class processors available to collaborators and academic researchers, as well as companies that are interested in developing algorithms and searching for applications for todays NISQ processors. Creative researchers are the most important resource for innovation now that we have a new computational resource, we hope more researchers will enter the field motivated by trying to invent something useful.

Second, were investing in our team and technology to build a fault-tolerant quantum computer as quickly as possible. Such a device promises a number of valuable applications. For example, we can envision quantum computing helping to design new materials lightweight batteries for cars and airplanes, new catalysts that can produce fertilizer more efficiently (a process that today produces over 2% of the worlds carbon emissions), and more effective medicines. Achieving the necessary computational capabilities will still require years of hard engineering and scientific work. But we see a path clearly now, and were eager to move ahead.

AcknowledgementsWed like to thank our collaborators and contributors University of California Santa Barbara, NASA Ames Research Center, Oak Ridge National Laboratory, Forschungszentrum Jlich, and many others who helped along the way.

Read the rest here:
Google AI Blog: Quantum Supremacy Using a Programmable ...

Researchers Have Achieved Sustained Long-Distance Quantum …

Image:Yuichiro Chino via Getty Images

In a major breakthrough for the quest toward quantum internet, a technology that would revolutionize computing in myriad ways, a consortium of well-regarded institutions have announced the first demonstration of sustained, high-fidelity quantum teleportation over long distances.

Led by Caltech, a collaboration between Fermilab, AT&T, Harvard University, NASAs Jet Propulsion Laboratory, and the University of Calgary reports the successful teleportation of qubits, basic units of quantum information, across 22 kilometers of fiber in two testbeds: the Caltech Quantum Network and the Fermilab Quantum Network.

The team has been working persistently and keeping our heads down in the past few years, said Maria Spiropulu, a particle physicist at Caltech who directs the INQNET research programand co-authored the new paper, in an email.

Though the collaboration knew it had achieved significant results by the spring of 2020, Spiropulu added, they refrained from sharing the news, even informally on social media, until the publication of the full study this week.

We wanted to push the envelope for this type of research and take important steps on a path to realize both real-life applications for quantum communications and networks and test fundamental physics ideas, said Panagiotis Spentzouris, head of the Quantum Science Program at Fermilab, in an email.

So, when we finally did it, the team was elated, very proud for achieving these high-quality, record-breaking results, he continued. And we are very excited that we can move to the next phase, utilizing the know-how and the technologies from this work towards the deployment of quantum networks.

The researchers say their experiment used "off-the-shelf" equipment that is compatible with both existing telecommunications infrastructure and emerging quantum technologies. The results provide a realistic foundation for a high-fidelity quantum Internet with practical devices, according to a study released on Tuesday in the journal PRX Quantum report.

Quantum teleportation does not involve the actual transfer of matter. Rather, quantum particles are entangled (dependent on each other, even over long distances) and somehow know the property of their other half. From our explainer earlier this year:

In a way, entangled particles behave as if they are aware of how the other particle is behaving. Quantum particles, at any point, are in a quantum state of probabilities, where properties like position, momentum, and spin of the particle are not precisely determined until there is some measurement. For entangled particles, the quantum state of each depends on the quantum state of the other; if one particle is measured and changes state, for example, the other particles state will change accordingly.

The study aimed to teleport the state of quantum qubits, or "quantum bits," which are the basic units of quantum computing. According to the study, the researchers set up what is basically a compact network with three nodes: Alice, Charlie, and Bob. In this experiment, Alice sends a qubit to Charlie. Bob has an entangled pair of qubits, and also sends one qubit to Charlie, where it interferes with Alice's qubit. Charlie projects Alice's qubit onto an entangled quantum Bell State that transfers the state of Alice's original qubit to Bob's remaining qubit.

The breakthrough is notable for a few reasons. Many previous demonstrations of quantum teleportation have proven to be unstable over long distances. For example, in 2016, researchers at the University of Calgary were able to perform quantum teleportation at a distance of six kilometers. This was the world record at the time and was seen as a major achievement.

The ultimate goal is to create quantum networks that would use entanglement and superposition to vastly increase computing speed, power, and security, relative to classical computers. For example, the U.S. Department of Energy has an ambitious plan to build a quantum network between its National Laboratories.

Any field that relies on computers would be affected by the realization of this technology, though much of the focus of the future potential of quantum networks revolves around cryptography, search algorithms, financial services, and quantum simulations that could model complex phenomena.

Quantum computing has been on the horizon for years, and this study takes us one step closer to realizing it on a practical scale. But dont expect to surf a quantum internet anytime soon.

People on social media are asking if they should sign up for a quantum internet provider (jokingly of course), Spiropulu said. We need (a lot) more R&D work.

Now that Fermilab, Caltech, and its partners have demonstrated this key step toward these networks, the team plans to further develop quantum information technology by building a metropolitan-scale network, called the Illinois Express Quantum Network, around Chicago.

There are many fronts that we need to push forward, said Spentzouris, both in applications of quantum communication and network technologies and in advancing the engineering of the systems. We are already working hard on developing architecture, processes, and protocols for quantum networks and on optimizing along some metrics including rate of communications and range.

Here is the original post:
Researchers Have Achieved Sustained Long-Distance Quantum ...

Q-CTRL Partners with The Paul Scherrer Institute to Support the Scale-Up of Quantum Computers – HPCwire

SYDNEY, March 30, 2022 Q-CTRL, a global leader in developing useful quantum technologies, today announced a partnership with The Paul Scherrer Institute (PSI), Switzerlands largest research institute for natural and engineering sciences, to pioneer R&D in the scale-up of quantum computers. The strategic partnership will leverage Q-CTRL and PSIs combined expertise to deliver transformational capabilities to the broader research community.

This partnership builds on the collaboration of PSI and ETH Zurich, one of the worlds premier public research universities and a quantum science powerhouse, who formed the ETH Zurich PSI Quantum Computing Hub in May 2021 on PSIs campus in Villigen. Both are working to translate groundbreaking quantum computing research into building systems at scale. Theyve now partnered with Q-CTRL to provide the critical infrastructure software tools for system characterization, AI-based automation, and hardware optimization that are essential for large-scale quantum computing to become reality.

Q-CTRLs focus on solving the automation and performance challenges in large-scale quantum computing align perfectly with the PSI Quantum Computing Hubs mission, said Q-CTRL Founder and CEO Professor Michael J. Biercuk. Were honored to partner with the exceptional engineers and researchers at PSI to combine their system engineering prowess with infrastructure software to truly move the research field forward.

As PSI seeks to scale up quantum hardware, Q-CTRLs unique expertise in quantum control and AI-based automation makes the company a natural fit to help accelerate the pathway to the first useful quantum computers. Both teams have extensive experience in quantum computing based on trapped ions, including specialized approaches in error correction leveraging the unique properties of trapped ions. Together, PSI and Q-CTRL will aim to solve the critical challenges enabling large-scale, quantum-error-corrected quantum computing to become a reality.

Q-CTRLs hardware agnostic, yet hardware-aware tools will be very valuable in finding optimal control solutions that ensure uniform performance across larger qubit arrays, said Dr. Cornelius Hempel, Group head, Ion Trap Quantum Computing, Paul Scherrer Institute. As we go to larger and larger machines and continuous operation of testbeds, efficient and automated tuneup and calibration procedures become an essential aspect of day-to-day operations its just not possible to continue using brute-force approaches at scale. Our team is very excited to leverage the tools the Q-CTRL team has developed in this space.

The computational power of quantum computing is expected to deliver transformational capabilities in applications ranging from drug discovery and enterprise logistics to finance. However, the underlying hardware is extremely unstable and fragile, hampering these machines from reaching their full potential. Q-CTRL is focused on delivering hardware-agnostic and fully automated error-suppressing enterprise software that will enable useful quantum computing for organizations around the world. Its team was recently awarded a US SBIR grant from the Department of Energy focused on quantum computer automation, and this partnership will build on those research developments.

To learn more about Q-CTRL, please visit: q-ctrl.com.

About Q-CTRL

Q-CTRL is building the quantum technology industry by overcoming the fundamental challenge in the field hardware error and instability. Q-CTRLs quantum control infrastructure software for R&D professionals and quantum computing end users delivers the highest performance error-correcting and suppressing techniques globally, and provides a unique capability accelerating the pathway to the first useful quantum computers. This foundational technology also applies to a new generation of quantum sensors, and enables Q-CTRL to shape and underpin every application of quantum technology.

Q-CTRL has assembled the worlds foremost team of expert quantum-control engineers, providing solutions to many of the most advanced quantum computing and sensing teams globally. Q-CTRL has been an inaugural member of the IBM Quantum Startup network since 2018, and recently announced a partnership with Transport for NSW, delivering its enterprise infrastructure software to transport data scientists exploring quantum computing. Q-CTRL is funded by SquarePeg Capital, Sierra Ventures, Sequoia Capital China, Data Collective, Horizons Ventures, Main Sequence Ventures, In-Q-Tel, Airbus Ventures, and Ridgeline Partners. The company has international headquarters in Sydney, Los Angeles, and Berlin.

About PSI

The Paul Scherrer Institute PSI is the largest research institute for natural and engineering sciences in Switzerland, conducting cutting-edge research in three main fields: matter and materials, energy and the environment and human health. PSI develops, builds and operates complex large research facilities such as the synchrotron Swiss Light Source (SLS), the free-electron X-ray laser SwissFEL and the SINQ neutron source. PSI employs 2100 people and is primarily financed by the Swiss Confederation. The institution provides access to its large research facilities via a User Service to researchers from universities, other research centers and industry.

Source: Q-CTRL

View post:
Q-CTRL Partners with The Paul Scherrer Institute to Support the Scale-Up of Quantum Computers - HPCwire

Quantum computing has a hype problem – MIT Technology Review

The qubit systems we have today are a tremendous scientific achievement, but they take us no closer to having a quantum computer that can solve a problem that anybody cares about. It is akin to trying to make todays best smartphones using vacuum tubes from the early 1900s. You can put 100 tubes together and establish the principle that if you could somehow get 10 billion of them to work together in a coherent, seamless manner, you could achieve all kinds of miracles. What, however, is missing is the breakthrough of integrated circuits and CPUs leading to smartphonesit took 60 years of very difficult engineering to go from the invention of transistors to the smartphone with no new physics involved in the process.

There are in fact ideas, and I played some role in developing the theories for these ideas, for bypassing quantum error correction by using far-more-stable qubits, in an approach called topological quantum computing. Microsoft is working on this approach. But it turns out that developing topological quantum-computing hardware is also a huge challenge. It is unclear whether extensive quantum error correction or topological quantum computing (or something else, like a hybrid between the two) will be the eventual winner.

Physicists are smart as we all know (disclosure: I am a physicist), and some physicists are also very good at coming up with substantive-sounding acronyms that stick. The great difficulty in getting rid of decoherence has led to the impressive acronym NISQ for noisy intermediate scale quantum computerfor the idea that small collections of noisy physical qubits could do something useful and better than a classical computer can. I am not sure what this object is: How noisy? How many qubits? Why is this a computer? What worthy problems can such a NISQ machine solve?

A recent laboratory experiment at Google has observed some predicted aspects of quantum dynamics (dubbed time crystals) using 20 noisy superconducting qubits. The experiment was an impressive showcase of electronic control techniques, but it showed no computing advantage over conventional computers, which can readily simulate time crystals with a similar number of virtual qubits. It also did not reveal anything about the fundamental physics of time crystals. Other NISQ triumphs are recent experiments simulating random quantum circuits, again a highly specialized task of no commercial value whatsoever.

Using NISQ is surely an excellent new fundamental research ideait could help physics research in fundamental areas such as quantum dynamics. But despite a constant drumbeat of NISQ hype coming from various quantum computing startups, the commercialization potential is far from clear. I have seen vague claims about how NISQ could be used for fast optimization or even for AI training. I am no expert in optimization or AI, but I have asked the experts, and they are equally mystified. I have asked researchers involved in various startups how NISQ would optimize any hard task involving real-world applications, and I interpret their convoluted answers as basically saying that since we do not quite understand how classical machine learning and AI really work, it is possible that NISQ could do this even faster. Maybe, but this is hoping for the best, not technology.

There are proposals to use small-scale quantum computers for drug design, as a way to quickly calculate molecular structure, which is a baffling application given that quantum chemistry is a minuscule part of the whole process. Equally perplexing are claims that near-term quantum computers will help in finance. No technical papers convincingly demonstrate that small quantum computers, let alone NISQ machines, can lead to significant optimization in algorithmic trading or risk evaluation or arbitrage or hedging or targeting and prediction or asset trading or risk profiling. This however has not prevented several investment banks from jumping on the quantum-computing bandwagon.

A real quantum computer will have applications unimaginable today, just as when the first transistor was made in 1947, nobody could foresee how it would ultimately lead to smartphones and laptops. I am all for hope and am a big believer in quantum computing as a potentially disruptive technology, but to claim that it would start producing millions of dollars of profit for real companies selling services or products in the near future is very perplexing to me. How?

Quantum computing is indeed one of the most important developments not only in physics, but in all of science. But entanglement and superposition are not magic wands that we can shake and expect to transform technology in the near future. Quantum mechanics is indeed weird and counterintuitive, but that by itself does not guarantee revenue and profit.

A decade and more ago, I was often asked when I thought a real quantum computer would be built. (It is interesting that I no longer face this question as quantum-computing hype has apparently convinced people that these systems already exist or are just around the corner). My unequivocal answer was always that I do not know. Predicting the future of technology is impossibleit happens when it happens. One might try to draw an analogy with the past. It took the aviation industry more than 60 years to go from the Wright brothers to jumbo jets carrying hundreds of passengers thousands of miles. The immediate question is where quantum computing development, as it stands today, should be placed on that timeline. Is it with the Wright brothers in 1903? The first jet planes around 1940? Or maybe were still way back in the early 16th century, with Leonardo da Vincis flying machine? I do not know. Neither does anybody else.

Sankar Das Sarma is the director of the Condensed Matter Theory Center at the University of Maryland, College Park.

See more here:
Quantum computing has a hype problem - MIT Technology Review