Your AI can’t tell you it’s lying if it thinks it’s telling the truth. That’s a problem – The Register

Opinion Machine learning's abiding weakness is verification. Is your AI telling the truth? How can you tell?

This problem isn't unique to ML. It plagues chip design, bathroom scales, and prime ministers. Still, with so many new business models depending on AI's promise to bring the holy grail of scale to real-world data analysis, this lack of testability has new economic consequences.

The basic mechanisms of machine learning are sound, or at least statistically reliable. Within the parameters of its training data, an ML process will deliver what the underlying mathematics promise. If you understand the limits, you can trust it.

But what if there's a backdoor, a fraudulent tweak of that training data set which will trigger misbehavior? What if there's a particular quirk in someone's loan request submitted at exactly 00:45 on the 5th and the amount requested checksums to 7 that triggers automatic acceptance, regardless of risk?

Like an innocent assassin unaware they'd had a kill word implanted under hypnosis, your AI would behave impeccably until the bad guys wanted it otherwise.

Intuitively, we know that's a possibility. Now it has been shown mathematically that not only can this happen, researchers say, it's not theoretically detectable. An AI backdoor exploit engineered through training is not only just as much a problem as a traditionally coded backdoor, it's not amenable to inspection or version-on-version comparison or, indeed, anything. As far as the AI's concerned, everything is working perfectly, Harry Palmer could never confess to wanting to shoot JFK, he had no idea he did.

The mitigations suggested by researchers aren't very practical. Complete transparency of training data and process between AI company and client is a nice idea, except that the training data is the company's crown jewels and if they're fraudulent, how does it help?

At this point, we run into another much more general tech industry weakness, the idea that you can always engineer a singular solution to a particular problem. Pay the man, Janet, and let's go home. That doesn't work here; computer says no is one thing, mathematics says no quite another. If we carry on assuming that there'll be a fix akin to a patch, some new function that makes future AIs resistant to this class of fraud, we will be defrauded.

Conversely, the industry does genuinely advance once fundamental flaws are admitted and accepted, and the ecosystem itself changes in recognition.

AI has an ongoing history of not working as well as we thought, and it's not just this or that project. For example, an entire sub-industry has evolved to prove you are not a robot. Using its own trained robots to silently watch you as you move around online. If these machine monitors deem you too robotic, they spring a Voight-Kampff test on you in the guise of a Completely Automated Public Turing test to tell Computers and Humans Apart more widely known, and loathed, as a Captcha. You then have to pass a quiz designed to filter out automata. How undignified.

Do they work? It's still economically viable for the bad guys to carry on producing untold millions of programmatic fraudsters intent on deceiving the advertising industry, so that's a no on the false positives. And it's still common to be bounced from a login because your eyes aren't good enough, or the question too ambiguous, or the feature you relied on has been taken away. Not being able to prove you are not a robot doesn't get you shot by Harrison Ford, at least for now, but you may not be able to get into eBay.

The answer here is not to build a "better" AI and feed it with more and "better" surveillance signals. It's to find a different model to identify humans online, without endangering their privacy. That's not going to be a single solution invented by a company, that's an industry-wide adoption of new standards, new methods.

Likewise, you will never be able to buy a third-party AI that is testably pure of heart. To tell the truth, you'll never be able to build one yourself, at least not if you've got a big enough team or a corporate culture where internal fraud can happen. That's a team of two or more, and any workable corporate culture yet invented.

That's OK, once you stop looking for that particular unicorn. We can't theoretically verify non-trivial computing systems of any kind. When we have to use computers where failure is not an option, like flying aircraft or exploring space, we use multiple independent systems and majority voting.

If it seems that building a grand scheme on the back of the "perfect" black box works as badly as designing a human society on the model of the perfectly rational human, congratulations. Handling the complexities of real world data at real world scale means accepting that any system is fallible in ways that can't be patched or programmed out of. We're not at the point where AI engineering is edging into AI psychology, but it's coming.

Meanwhile, there's no need to give up on your AI-powered financial fraud detection. Buy three AIs from three different companies. Use them to check each other. If one goes wonky, use the other two until you can replace the first.

Can't afford three AIs? You don't have a workable business model. At least AI is very good at proving that.

Link:
Your AI can't tell you it's lying if it thinks it's telling the truth. That's a problem - The Register

America’s AI in Retail Industry Report to 2026 – Machine Learning Technology is Expected to Grow Signific – Benzinga

The "America's AI in the Retail Market - Growth, Trends, COVID-19 Impact, and Forecasts (2022 - 2027)" report has been added to ResearchAndMarkets.com's offering.

America's AI in the retail market is expected to register a CAGR of 30% during the forecast period, 2021 - 2026.

Companies Mentioned

Key Market Trends

Machine Learning Technology is Expected to Grow Significantly

Food and Grocery to Augment Significant Growth

Key Topics Covered:

1 INTRODUCTION

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS

4.1 Market Overview

4.2 Market Drivers

4.2.1 Hardware Advancement Acting as a Key Enabler for AI in Retail

4.2.2 Disruptive Developments in Retail, including AR, VR, IOT, and New Metrics

4.2.3 Rise of AI First Organizations

4.2.4 Need for Efficiency in Supply Chain Optimization

4.3 Market Restraints

4.3.1 Lack of Professionals, as well as In-house Knowledge for Cultural Readiness

4.4 Industry Value Chain Analysis

4.5 Porter's Five Forces Analysis

4.6 Industry Policies

4.7 Assessment of Impact of COVID-19 on the Industry

5 AI Adoption in the Retail Industry

5.1 AI Penetration with Retailers (Historical, Current, and Forecast)

5.2 AI penetration by Retailer Size (Large and Medium)

5.3 AI Use Cases in Operations

5.3.1 Logistics and Distribution

5.3.2 Planning and Procurement

5.3.3 Production

5.3.4 In-store Operations

5.3.5 Sales and Marketing

5.4 AI Retail Startups (Equity Funding vs Equity Deals)

5.5 Road Ahead for AI in Retail

6 MARKET SEGMENTATION

6.1 Channel

6.2 Solution

6.3 Application

6.4 Technology

7 COMPETITIVE LANDSCAPE

7.1 Company Profiles

8 INVESTMENT ANALYSIS

9 MARKET TRENDS AND FUTURE OPPORTUNITIES

For more information about this report visit https://www.researchandmarkets.com/r/kddpm3

View source version on businesswire.com: https://www.businesswire.com/news/home/20220427005894/en/

View original post here:
America's AI in Retail Industry Report to 2026 - Machine Learning Technology is Expected to Grow Signific - Benzinga

Machine learning hiring levels in the ship industry rose in March 2022 – Ship Technology

The proportion of ship equipment supply, product and services companies hiring for machine learning related positions rose in March 2022 compared with the equivalent month last year, with 20.6% of the companies included in our analysis recruiting for at least one such position.

This latest figure was higher than the 16.2% of companies who were hiring for machine learning related jobs a year ago but a decrease compared to the figure of 22.6% in February 2022.

When it came to the rate of all job openings that were linked to machine learning, related job postings dropped in March 2022, with 0.4% of newly posted job advertisements being linked to the topic.

This latest figure was a decrease compared to the 0.5% of newly advertised jobs that were linked to machine learning in the equivalent month a year ago.

Machine learning is one of the topics that GlobalData, from whom our data for this article is taken, have identified as being a key disruptive force facing companies in the coming years. Companies that excel and invest in these areas now are thought to be better prepared for the future business landscape and better equipped to survive unforeseen challenges.

Our analysis of the data shows that ship equipment supply, product and services companies are currently hiring for machine learning jobs at a rate lower than the average for all companies within GlobalData's job analytics database. The average among all companies stood at 1.3% in March 2022.

GlobalData's job analytics database tracks the daily hiring patterns of thousands of companies across the world, drawing in jobs as they're posted and tagging them with additional layers of data on everything from the seniority of each position to whether a job is linked to wider industry trends.

Communication Systems for Maritime Control Centres

Integrated Electric Propulsion Systems for Ships

Read more from the original source:
Machine learning hiring levels in the ship industry rose in March 2022 - Ship Technology

Striveworks and Figure Eight Federal Enter into Strategic Partnership for Enhanced Annotation Capabilities within Machine Learning Operations Platform…

Together Striveworks and Figure Eight Federal Enhance the AI Capabilities for the Department of Defense and Federal Law Enforcement

AUSTIN, Texas and ARLINGTON, Va., April 27, 2022 /PRNewswire/ -- Striveworks and Figure Eight Federal are excited to announce their strategic alliance to jointly support the government's emerging capabilities in AI technologies.

David Poirier, President of Figure Eight Federal, said "Our efforts to assist federal customers parallels that of Striveworks and therefore we are excited to work with Striveworks to achieve our common goals."

Figure Eight Federal has more than 15 years of experience assisting its federal customers with their advanced annotation needs. Data annotation is the process of labeling data to enable a model to make decisions and take action. To take action, a model must be trained to understand specific information. With Figure Eight Federal this is done with training data that is annotated and properly categorized giving you confidence for each specific use case.

Data annotated by Figure Eight can be directly integrated with Striveworks' Chariot MLOps platform for model development, training, and deployment within operational timelines. Striveworks has an extensive record of positive performance in delivering software and data science products and services within DoD operational environments. Earlier this year, Striveworks was awarded a basic ordering agreement for the The Data Readiness for Artificial Intelligence Development (DRAID) by U.S. Contracting Command on behalf of the Joint Artificial Intelligence Center (JAIC).

The strategic alliance of these companies will help customers in Defense and Federal law enforcement to step into using artificial intelligence solutions across their wide data landscapes.

Striveworks Executive Vice President Quay Barnett said, "The Striveworks and Figure Eight partnership brings our customers a scalable impact for accurate and rapid decision advantage from their data. Figure Eight's low code annotation platform integrates with our low code Chariot MLOps platform to accelerate AI solutions for our joint customers."

Story continues

About Striveworks

Striveworks is a pioneer in operational data science for national security and other highly regulated spaces. Striveworks' flagship MLOps platform is Chariot, purpose-built to enable engineers and business professionals to transform their data into actionable insights. Founded in 2018, Striveworks was highlighted as an exemplar in the National Security Commission for AI 2020 Final Report.

About Figure Eight Federal

Figure Eight Federal's AI & data enrichment platform includes multiple toolsets and algorithms that have been used by some of the world's largest tech companies and Government Agencies. Our data scientists and AI/ML experts have deep knowledge and understanding of many types of data and their use cases including Natural Language Process and Computer Vision. We have the skills and technology required to make AI/ML testing and evaluation more systematic and scalable allowing analysts to easily make comparisons, determine accuracy, bias and vulnerability.

Contact: info@F8Federal.com Media Contact: Janet Waring

Website: F8Federal.com

Address: 1735 N Lynn St, #730Arlington, VA 22209

Cision

View original content:https://www.prnewswire.com/news-releases/striveworks-and-figure-eight-federal-enter-into-strategic-partnership-for-enhanced-annotation-capabilities-within-machine-learning-operations-platform-301534526.html

SOURCE Figure Eight Federal

Go here to see the original:
Striveworks and Figure Eight Federal Enter into Strategic Partnership for Enhanced Annotation Capabilities within Machine Learning Operations Platform...

Control Risks Taps Reveal-Brainspace to Bolster its Suite of Analytics, AI and Machine Learning Capabilities – GlobeNewswire

London, Chicago, April 26, 2022 (GLOBE NEWSWIRE) -- Control Risks, the specialist risk consultancy, today announced it is expanding its technology offering with Reveal, the global provider of the leading AI-powered eDiscovery and investigations platform. Reveal uses adaptive AI, behavioral analysis, and pre-trained AI model libraries to help uncover connections and patterns buried in large volumes of unstructured data.

Corporate legal and compliance teams, and their outside counsel, are looking to technology to better understand data, reduce risks and costs, and extract key insights faster across an ever-increasing volume and variety of data. We look forward to leveraging Reveals data visualization, AI and machine learning functionality to drive innovation with our clients, said Brad Kolacinski, Partner, Control Risks.

Control Risks will leverage the platform globally to unlock intelligence that will help clients mitigate risks across a range of areas including litigation, investigations, compliance, ethics, fraud, human resources, privacy and security.

We work with clients and their counsel on large, complex, cross-border forensics and investigations engagements. It is no secret that AI, ML and analytics are now required tools in matters where we need to sift through enormous quantities of data and deliver insights to clients efficiently, says Torsten Duwenhorst, Partner, Control Risks. Offering the full range of Reveals capabilities globally will benefit our clients enormously.

As we continue to expand the depth and breadth of Reveals marketplace offerings, we are excited to partner with Control Risks, a demonstrated leader in security, compliance and organizational resilience offerings that are more critical now than ever, said Wendell Jisa, Reveals CEO. By taking full advantage of Reveals powerful platform, Control Risks now has access to the industrys leading SaaS-based, AI-powered technology stack, helping them and their clients solve their most complex problems with greater intelligence.

For more information about Reveal-Brainspace and its AI platform for legal, enterprise and government organizations, visit http://www.revealdata.com.

###

About Control Risks

Control Risks is a specialist global risk consultancy that helps to create secure, compliant and resilient organizations in an age of ever-changing risk. Working across disciplines, technologies and geographies, everything we do is based on our belief that taking risks is essential to our clients success. We provide our clients with the insight to focus resources and ensure they are prepared to resolve the issues and crises that occur in any ambitious global organization. We go beyond problem-solving and provide the insights and intelligence needed to realize opportunities and grow. Control Risks will initially provide Reveal-Brainspace in the US, Europe and Asia Pacific. Visit us online at http://www.controlrisks.com.

About Reveal

Reveal, with Brainspace technology, is a global provider of the leading AI-powered eDiscovery platform. Fueled by powerful AI technology and backed by the most experienced team of data scientists in the industry, Reveals cloud-based software offers a full suite of eDiscovery solutions all on one seamless platform. Users of Reveal include law firms, Fortune 500 corporations, legal service providers, government agencies and financial institutions in more than 40 countries across five continents. Featuring deployment options in the cloud or on-premise, an intuitive user design and multilingual user interfaces, Reveal is modernizing the practice of law, saving users time and money and offering them a competitive advantage. For more information, visit http://www.revealdata.com.

Follow this link:
Control Risks Taps Reveal-Brainspace to Bolster its Suite of Analytics, AI and Machine Learning Capabilities - GlobeNewswire

How machine learning and AI help find next-generation OLED materials – OLED-Info

In recent years, we have seen accelerated OLED materials development, aided by software tools based on machine learning and Artificial Intelligence. This is an excellent development which contributes to the continued improvement in OLED efficiency, brightness and lifetime.

Kyulux's Kyumatic AI material discover system

The promise of these new technologies is the ability to screen millions of possible molecules and systems quickly and efficiently. Materials scientists can then take the most promising candidates and perform real synthesis and experiments to confirm the operation in actual OLED devices.

The main drive behind the use of AI systems and mass simulations is to save the time that actual synthesis and testing of a single material can take - sometimes even months to complete the whole cycle. It is simply not viable to perform these experiments on a mass scale, even for large materials developers, let alone early stage startups.

In recent years we have seen several companies announcing that they have adopted such materials screening approaches. Cynora, for example, has an AI platform it calls GEM (Generative Exploration Model) which its materials experts use to develop new materials. Another company is US-based Kebotix, which has developed an AI-based molecular screening technology to identify novel blue OLED emitters, and it is now starting to test new emitters.

The first company to apply such an AI platform successfully was, to our knowledge, Japan-based Kyulux. Shortly after its establishment in 2015, the company licensed Harvard University's machine learning "Molecular Space Shuttle" system. The system has been assisting Kyulux's researchers to dramatically speed up their materials discovery process. The company reports that its development cycle has been reduced from many months to only 2 months, with higher process efficiencies as well.

Since 2016, Kyulux has been improving its AI platform, which is now called Kyumatic. Today, Kyumatic is a fully integrated materials informatics system that consists of a cloud-based quantum chemical calculation system, an AI-based prediction system, a device simulation system, and a data management system which includes experimental measurements and intellectual properties.

Kyulux is advancing fast with its TADF/HF material systems, and in October 2021 it announced that its green emitter system is getting close to commercialization and the company is now working closely with OLED makers, preparing for early adoption.

Excerpt from:
How machine learning and AI help find next-generation OLED materials - OLED-Info

IBM And MLCommons Show How Pervasive Machine Learning Has Become – Forbes

AI, Artificial Intelligence concept,3d rendering,conceptual image.

This week IBM announced its latest Z-series mainframe and MLCommons released its latest benchmark series. The two announcements had something in common Machine Learning (ML) acceleration which is becoming pervasive everywhere from financial fraud detection in mainframes to detecting wake words in home appliances.

While these two announcements were not directly related, but they are part of a trend, showing how pervasive ML has become.

MLCommons Brings Standards to ML Benchmarking

ML benchmarking is important because we often hear about ML performance in terms of TOPS trillions of operations per second. Like MIPS (Millions of Instructions per Second or Meaningless Indication of Processor Speed depending on your perspective), TOPS is a theoretical number calculated from the architecture, not a measured rating based on running workloads. As such, TOPS can be a deceiving number because it does not include the impact of the software stack., Software is the most critical aspect of implementing ML and the efficiency varies widely, which Nvidia clearly demonstrated by improving the performance of its A100 platform by 50% in MLCommons benchmarks over the years.

The industry organization MLCommons was created by a consortium of companies to build a standardized set of benchmarks along with a standardized test methodology that allows different machine learning systems to be compared. The MLPerf benchmark suites from MLCommons include different benchmarks that cover many popular ML workloads and scenarios. The MLPerf benchmarks addresses everything from the tiny microcontrollers used in consumer and IoT devices, to mobile devices like smartphones and PCs, to edge servers, to data center-class server configuration. Supporters of MLCommons include Amazon, Arm, Baidu, Dell Technologies, Facebook, Google, Harvard, Intel, Lenovo, Microsoft, Nvidia, Stanford and the University of Toronto.

MLCommons releases benchmark results in batches and has different publishing schedules for inference and for training. The latest announcement was for version 2.0 of the MLPerf Inference suite for data center and edge servers, version 2.0 for MLPerf Mobile, and version 0.7 for MLPerf Tiny for IoT devices.

To date, the company that has had the most consistent set of submissions, producing results every iteration, in every benchmark test, and by multiple partners, has been Nvidia. Nvidia and its partners appear to have invested enormous resources in running and publishing every relevant MLCommons benchmark. No other vendor can match that claim. The recent batch of inference benchmark submissions include Nvidia Jetson Orin SoCs for edge servers and the Ampere-based A100 GPUs for data centers. Nvidias Hopper H100 data center GPU, which was announced at Spring 2022 GTC, arrived too late to be included in the latest MLCommons announcement, but we fully expect to see Nvidia H100 results in the next round.

Recently, Qualcomm and its partners have been posting more data center MLPerf benchmarks for the companys Cloud AI 100 platform and more mobile MLPerf benchmarks for Snapdragon processors. Qualcomms latest silicon has proved to be very power efficient in data center ML tests, which may give it an edge on power-constrained edge server applications.

Many of the submitters are system vendors using processors and accelerators from silicon vendors like AMD, Andes, Ampere, Intel, Nvidia, Qualcomm, and Samsung. But many of the AI startups have been absent. As one consulting company, Krai, put it: Potential submitters, especially ML hardware startups, are understandably wary of committing precious engineering resources to optimizing industry benchmarks instead of actual customer workloads. But then Krai countered their own objection with MLPerf is the Olympics of ML optimization and benchmarking. Still, many startups have not invested in producing MLCommons results for various reasons and that is disappointing. Theres also not enough FPGA vendors participating in this round.

The MLPerf Tiny benchmark is designed for very low power applications such as keyword spotting, visual wake words, image classification, and anomaly detection. In this case we see results from a mix of small companies like Andes, Plumeria, and Syntiant, as well as established companies like Alibaba, Renesas, Silicon Labs, and STMicroeletronics.

IBM z16 Mainframe

IBM Adds AI Acceleration Into Every Transaction

While IBM didnt participate in MLCommons benchmarks, the company takes ML seriously. With its latest Z-Series mainframe computer, the z16, IBM has added accelerators for ML inference and quantum-safe secure boot and cryptography. But mainframe systems have different customer requirements. With roughly 70% of banking transactions (on a value basis) running on IBM mainframes, the company is anticipating the needs of financial institutes for extreme reliable and transaction processing protection. In addition, by adding ML acceleration into its CPU, IBM can offer per-transaction ML intelligence to help detect fraudulent transactions.

In an article I wrote in 2018, I said: In fact, the future hybrid cloud compute model will likely include classic computing, AI processing, and quantum computing. When it comes to understanding all three of those technologies, few companies can match IBMs level of commitment and expertise. And the latest developments in IBMs quantum computing roadmap and the ML acceleration in the z16, show IBM is a leader in both.

Summary

Machine Learning is important from tiny devices up to mainframe computers. Accelerating this workload can be done on CPUs, GPUs, FPGAs, ASICs, and even MCUs and is now a part of all computing going forward. These are two examples of how ML is changing and improving over time.

Tirias Research tracks and consults for companies throughout the electronics ecosystem from semiconductors to systems and sensors to the cloud. Members of the Tirias Research team have consulted for IBM, Nvidia, Qualcomm, and other companies throughout the AI ecosystems.

See the rest here:
IBM And MLCommons Show How Pervasive Machine Learning Has Become - Forbes

Amazon awards grant to UI researchers to decrease discrimination in AI algorithms – UI The Daily Iowan

A team of University of Iowa researchers received $800,000 from Amazon and the National Science Foundation to limit the discriminatory effects of machine learning algorithms.

Larry Phan

University of Iowa researcher Tianbao Yang seats at his desk where he works on AI research on Friday, Aril 8, 2022.

University of Iowa researchers are examining discriminative qualities of artificial intelligence and machine learning models, which are likely to be unfair against ones race, gender, or other characteristics based on patterns of data.

A University of Iowa research team received an $800,000 grant funded jointly by the National Science Foundation and Amazon to decrease the possibility of discrimination through machine learning algorithms.

The three-year grant is split between the UI and Louisiana State University.

According to Microsoft, machine learning models are files trained to recognize specific types of patterns.

Qihang Lin, a UI associate professor in the department of business analytics and grant co-investigator, said his team wants to make machine learning models fairer without sacrificing an algorithms accuracy.

RELATED: UI professor uses machine learning to indicate a body shape-income relationship

People nowadays in [the] academic field ladder, if you want to enforce fairness in your machine learning outcome, you have to sacrifice the accuracy, Lin said. We somehow agree with that, but we want to come up with an approach that [does] trade-off more efficiently.

Lin said discrimination created by machine learning algorithms is seen disproportionately predicting rates of recidivism a convicted criminals tendency to re-offend for different social groups.

For instance, lets say we look at in U.S. courts, they use a software to predict what is the chance of recidivism of a convicted criminal and they realize that that software, that tool they use, is biased because they predicted a higher risk of recidivism of African Americans compared to their actual risk of recidivism, Lin said.

Tianbao Yang, a UI associate professor of computer science and grant principal investigator, said the team proposed a collaboration with Netflix to encourage fairness in the process of recommending shows or films to users.

Here we also want to be fair in terms of, for example, users gender, users race, we want to be fair, Yang said. Were also collaborating with them to use our developed solutions.

Another instance of machine learning algorithm unfairness comes in determining what neighborhoods to allocate medical resources, Lin said.

RELATED: UI College of Engineering uses artificial-intelligence to solve problems across campus

In this process, Lin said the health of a neighborhood is determined by examining household spending on medical expenses. Healthy neighborhoods are allocated more resources, creating a bias against lower income neighborhoods that may spend less on medical resources, Lin said.

Theres a bad cycle that kind of reinforces the knowledge the machines mistakenly have about the relationship between the income, medical expense in the house, and the health, Lin said.

Yao Yao, UI third-year doctoral candidate in the department of mathematics, is conducting various experiments for the research team.

She said the importance of the groups focus is that they are researching more than simply reducing errors in machine learning algorithm predictions.

Previously, people only focus on how to minimize the error but most time we know that the machine learning, the AI will cause some discrimination, Yao said. So, its very important because we focus on fairness.

Continue reading here:
Amazon awards grant to UI researchers to decrease discrimination in AI algorithms - UI The Daily Iowan

Meet the winners of the Machine Learning Hackathon by Swiss Re & MachineHack – Analytics India Magazine

Swiss Re, in collaboration with MachineHack, successfully completed the Machine Learning Hackathon held from March 11th to 28th for data scientists and ML professionals to predict accident risk scores for unique postcodes. The end goal? To build a machine learning model to improve auto insurance pricing.

The hackathon saw over 1100+ registrations and 300+ participants from interested candidates. Out of those, the top five were asked to participate in a solution showcase held on the 6th of April. The top five entries were judged by Amit Kalra, Managing Director, Swiss Re and Jerry Gupta, Senior Vice President, Swiss Re who engaged with the top participants, understood their solutions and presentations and provided their comments and scores. From that emerged the top three winners!

Lets take a look at the winners who impressed the judges with their analytics skills and took home highly coveted cash prizes and goodies.

Pednekar comes with over 19 years of work experience in IT, project management, software development, application support, software system design, and requirement study. He is passionate about new technologies, especially data science, AI and machine learning.

My expertise lies in creating data visualisations to tell my datas story & using feature engineering to add new features to give a human touch in the world of machine learning algorithms, said Pednekar.

Pednekars approach consisted of seven steps:

For EDA, Pednekar has analysed the dataset to find out the relationship between:

Image: Rahul Pednekar

Image: Rahul Pednekar

Here, Pednekar merged Population & Road Network datasets with train using left join. He created Latitude and Longitude columns by extracting data from the WKT columns in Roads_network.

He proceeded to

And added new features:

Pednekar completed the following steps:

Image: Rahul Pednekar

Image: Rahul Pednekar

Pednekar has thoroughly enjoyed participating in this hackathon. He said, MachineHack team and the platform is amazing, and I would like to highly recommend the same to all data science practitioners. I would like to thank Machinehack for providing me with the opportunity to participate in various data science problem-solving challenges.

Check the code here.

Yadavs data science journey started a couple of years back, and since then, he has been an active participant in hackathons conducted on different platforms. Learning from fellow competitors and absorbing their ideas is the best part of any data science competition as it just widens the thinking scope for yourself and makes you better after each and every competition, says Yadav.

MachineHack competitions are unique and have a different business case in each of their hackathons. It gives a field wherein we can practice and learn new skills by applying them to a particular domain case. It builds confidence as to what would work and what would not in certain cases. I appreciate the hard work the team is putting in to host such competitions, adds Yadav.

Check the code here.

Rank 03: Prudhvi Badri

Badri entered the data science field while pursuing a masters in computer science at Utah State University in 2014 and had taken classes related to statistics, Python programming and AI, and wrote a research paper to predict malicious users in online social networks.

After my education, I started to work as a data scientist for a fintech startup company and built models to predict loan default risk for customers. I am currently working as a senior data scientist for a website security company. In my role, I focus on building ML models to predict malicious internet traffic and block attacks on websites. I also mentor data scientists and help them build cool projects in this field, said Badri.

Badri mainly focused on feature engineering to solve this problem. He created aggregated features such as min, max, median, sum, etc., by grouping a few categorical columns such as Day_of_Week, Road_Type, etc. He built features from population data such as sex_ratio, male_ratio, female_ratio, etc.

He adds, I have not used the roads dataset that has been provided as supplemental data. I created a total of 241 features and used ten-fold cross-validation to validate the model. Finally, for modelling, I used a weighted ensemble model of LightGBM and XGBoost.

Badri has been a member of MachineHack since 2020. I am excited to participate in the competitions as they are unique and always help me learn about a new domain and let me try new approaches. I appreciate the transparency of the platform sharing the approaches of the top participants once the hackathon is finished. I learned a lot of new techniques and approaches from other members. I look forward to participating in more hackathons in the future on the MachineHack platform and encourage my friends and colleagues to participate too, concluded Badri.

Check the code here.

The Swiss Re Machine Learning Hackathon, in collaboration with MachineHack, ended with a bang, with participants presenting out-of-the-box solutions to solve the problem in front of them. Such a high display of skills made the hackathon intensely competitive and fun and surely made the challenge a huge success!

See original here:
Meet the winners of the Machine Learning Hackathon by Swiss Re & MachineHack - Analytics India Magazine

Prognostics of unsupported railway sleepers and their severity diagnostics using machine learning | Scientific Reports – Nature.com

Unsupported sleeper detection

From the machine model development for detecting unsupported sleepers, the accuracy of each model is shown in Table 4.

From the table, it can be seen that each model performs well. The accuracy of each model is higher than 90% when the data processing is appropriate. CNN performs the best based on its accuracies. When CNN is applied with FFT and padding, the accuracies are the first and second highest compared to other models. For RNN and ResNet, the accuracies are higher than 90% when specific data processing is used. However, the accuracies become 80% approximately when another data processing technique is used. For FCN, data processing is not needed. The FCN model can achieve an accuracy of 95%. From the table, the models with the highest accuracy are CNN, RNN, FCN, and ResNet respectively. The complicated architecture of ResNet does not guarantee the highest accuracy. Moreover, the training time of ResNet (46s/epoch) is the longest followed by RNN (6s/epoch), FCN (2s/epoch), and CNN (1s/epoch) respectively. It can be concluded that the CNN model is the best model to detect supported sleepers in this study because it provides the highest accuracy or 100% while the training time is the lowest. At the same time, easy data processing likes padding is good enough to provide a good result. It is better than FFT in the CNN model which requires longer data processing. The accuracy of testing data of each model is shown in Fig.8.

Accuracies of testing data on unsupported sleeper detection.

The tuned hyperparameters of the CNN model with padding data are shown in Table 5.

Compared to the previous study, Sysyn et al.1 applied statistical methods and KNN which provided the best detection accuracy of 65%. The accuracy of the CNN model developed in this study is significantly higher. It can be assumed that the machine learning techniques used in this study are more powerful than the ones used in the previous study. Moreover, CNN is proven that it is suitable for pattern recognition.

For the unsupported sleeper severity classification, the performance of each model is shown in Table 6.

From the table, it can be seen that the CNN model still performs the best with an accuracy of 92.89% and provides good results with both data processing. However, the accuracies of RNN and ResNet significantly drop when unsuitable data processing is conducted. For example, the accuracy of the RNN model with padding drops to 33.89%. The best performance that RNN can achieve is 71.56% which is the lowest compared to other models. This is because of the limitation of RNN that vanishing gradient occurs when time-series data is too long. In this study, the number of data points for padding data is 1181 which can result in the issue. Therefore, RNN does not perform well. ResNet performs well with an accuracy of 92.42% close to CNN while the accuracy of FCN is fairly well. For the training time, CNN is the fastest model with the training time of 1s/epoch followed by FCN (2s/epoch), RNN (5s/epoch), and ResNet (32s/epoch) respectively. From these, it can be concluded that the CNN model is the best model for unsupported sleeper severity classification in this study. Moreover, it can be concluded that CNN and ResNet are suitable with padding data while RNN is suitable with FFT data. The accuracy of testing data of each model is shown in Fig.9.

Accuracies of testing data on unsupported sleeper severity classification.

The confusion matrix of the CNN model is shown in Table 7.

To clearly demonstrate the performance of each model, precision and recall are shown in Table 8.

From the table, the precisions and recalls of CNN and ResNet are fairly good with values higher than 80% while RNN is the worst. Some precisions of RNN are lower than 60% which cannot be used in realistic situations. CNN seems to be the better model than ResNet because all precisions are higher than 90%. Although some precisions of ResNet are higher than CNN, the precision of class 2 is about 80%. Therefore, the use of the CNN model is better.

For hyperparameter tuning, the tuned hyperparameters of CNN are shown in Table 9.

The rest is here:
Prognostics of unsupported railway sleepers and their severity diagnostics using machine learning | Scientific Reports - Nature.com