Murphy, G. E. P., Romanuk, T. N. & Worm, B. Cascading effects of climate change on plankton community structure. Ecol. Evol. 10, 21702181. https://doi.org/10.1002/ece3.6055 (2020).
Article PubMed PubMed Central Google Scholar
Woodward, G., Daniel, M., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B 365, 20932106. https://doi.org/10.1098/rstb.2010.0055 (2010).
Article Google Scholar
Lampert, W. Zooplankton research: The contribution of limnology to general ecological paradigms. Aquat. Ecol. 31, 1927. https://doi.org/10.1023/A:1009943402621 (1997).
Article Google Scholar
Gannon, J. E. & Stemberger, R. S. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. Am. Microsc. Soc. 97, 1635. https://doi.org/10.2307/3225681 (1978).
Article Google Scholar
Ferdous, Z. & Muktadir, S. K. M. A review: Potentiality of zooplankton as bioindicator. Am. J. Appl. Sci. 6, 18151819 (2009).
Article Google Scholar
Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer Trophic State Index. Pol. J. Ecol. 60, 339350 (2012).
Google Scholar
Gillooly, J. F. Effect of body size and temperature on generation time in zooplankton. J. Plankton Res. 22(2), 241251 (2000).
Article Google Scholar
Lewandowska, A. M., Hillebrand, H., Lengfellner, K. & Sommer, U. Temperature effects on phytoplankton diversityThe zooplankton link. J. Sea Res. 85, 359364. https://doi.org/10.1016/j.seares.2013.07.003 (2014).
ADS Article Google Scholar
Carter, J. L. & Schindler, D. L. Responses of zooplankton populations to four decades of climate warming in Lakes of Southwestern Alaska. Ecosystems 15, 10101026. https://doi.org/10.1007/s10021-012-9560-0 (2012).
CAS Article Google Scholar
Ejsmont-Karabin, J. & Wgleska, T. Disturbances in zooplankton seasonality in Lake Gosawskie (Poland) affected by permanent heating and heavy fish stocking. Ekol. Pol. 36, 245260 (1988).
Google Scholar
Ejsmont-Karabin, J. et al. Rotifers in Heated Konin LakesA review of long-term observations. Water 12, 1660. https://doi.org/10.3390/w12061660 (2020).
Article Google Scholar
Evans, L. E., Hirst, A. G., Kratina, P. & Beaugrand, G. Temperature-mediated changes in zooplankton body size: Large scale temporal and spatial analysis. Ecography 43, 581590. https://doi.org/10.1111/ecog.04631 (2020).
Article Google Scholar
Wang, L. et al. Is zooplankton body size an indicator of water quality in (sub)tropical reservoirs in China?. Ecosystems 25, 656662. https://doi.org/10.1007/s10021-021-00656-2 (2021).
CAS Article Google Scholar
Williamson, C. E., Saros, J. E., Vincent, W. F. & Smol, J. P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 54(6), 22732282 (2009).
ADS Article Google Scholar
Richardson, A. J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 65, 279295. https://doi.org/10.1093/icesjms/fsn028 (2008).
Article Google Scholar
Visconti, A., Manca, M. & De Bernardi, R. Eutrophication-like response to climate warming: An analysis of Lago Maggiore (N. Italy) zooplankton in contrasting years. J. Limnol. 67(2), 8792 (2008).
Article Google Scholar
Vandysh, O. I. The effect of thermal flow of large power facilities on zooplankton community under subarctic conditions. Water Res. 36(3), 310318. https://doi.org/10.1134/S0097807809030063 (2009).
CAS Article Google Scholar
Alric, B. et al. Local forcings affect lake zooplankton vulnerability and response to climate warming. Ecology 94(12), 27672780 (2013).
Article Google Scholar
Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. PNAS 106(31), 1278812793. https://doi.org/10.1073/pnas.0902080106 (2009).
ADS Article PubMed PubMed Central Google Scholar
Gutierrez, M. F. et al. Is recovery of large-bodied zooplankton after nutrient loading reduction hampered by climate warming? A long-term study of shallow hypertrophic Lake Sbygaard, Denmark. Water 8, 341. https://doi.org/10.3390/w8080341 (2016).
ADS CAS Article Google Scholar
Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881884. https://doi.org/10.1038/nature02808 (2004).
ADS CAS Article PubMed Google Scholar
Thackeray, S. J., Jones, I. D. & Maberly, S. C. Long-term change in the phenology of spring phytoplankton: Species-specific responses to nutrient enrichment and climatic change. J. Ecol. 96, 523535. https://doi.org/10.1111/j.1365-2745.2008.01355.x (2008).
Article Google Scholar
Adrian, A., Wilhelm, S. & Gerten, D. Life-history traits of lake plankton species may govern their phenological response to climate warming. Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob. Change Biol. 12, 652661. https://doi.org/10.1111/j.1365-2486.2006.01125.x (2006).
ADS Article Google Scholar
Costello, J. H., Sullivan, B. K. & Gifford, D. J. A physicalbiological interaction underlying variable phenological responses to climate change by coastal zooplankton. J. Plankton Res. 28(11), 10991105. https://doi.org/10.1093/plankt/fbl042 (2006).
Article Google Scholar
Lewandowska, A. M. et al. Effects of sea surface warming on marine plankton. Ecol. Lett. 17, 614623. https://doi.org/10.1111/ele.12265 (2014).
Article PubMed Google Scholar
Wagner, C. & Adrian, R. Exploring lake ecosystems: Hierarchy responses to long-term change?. Glob. Change Biol. 15, 11041115. https://doi.org/10.1111/j.1365-2486.2008.01833.x (2009).
ADS Article Google Scholar
Hart, R. C. Zooplankton feeding rates in relation to suspended sediment content: Potential influences on community structure in a turbid reservoir. Fresh. Biol. 19, 123139. https://doi.org/10.1111/j.1365-2427.1988.tb00334.x (1988).
Article Google Scholar
Carter, J. L., Schindler, D. E. & Francis, T. B. Effects of climate change on zooplankton community interactions in an Alaskan lake. Climate Change Resp. 4, 3. https://doi.org/10.1186/s40665-017-0031-x (2017).
Article Google Scholar
Calbet, A. The trophic roles of microzooplankton in marine systems. ICES J. Mar. Sci. 65, 325331 (2008).
Article Google Scholar
Wollrab, S. et al. Climate change-driven regime shifts in a planktonic food web. Am. Natur. 197, 281295. https://doi.org/10.1086/712813 (2021).
Article PubMed Google Scholar
Recknagel, F., Adrian, R. & Khler, J. Quantifying phenological asynchrony of phyto- and zooplankton in response to changing temperature and nutrient conditions in Lake Mggelsee (Germany) by means of evolutionary computation. Environ. Model. Softw. 146, 105224. https://doi.org/10.1016/j.envsoft.2021.105224 (2021).
Article Google Scholar
EEA. Projected changes in annual, summer and winter temperature. European Environmental Agency. https://www.eea.europa.eu/data-and-maps/figures/projected-changes-in-annual-summer-1 (2014).
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021).
Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415427. https://doi.org/10.1101/SQB.1957.022.01.039 (1957).
Article Google Scholar
Ferrario, A. & Hmmerli, R. On Boosting: Theory and Applications. SSRN: https://ssrn.com/abstract=3402687 (2019).
Meysman, F. J. R. & Bruers, S. Ecosystem functioning and maximum entropy production: A quantitative test of hypotheses. Philos. Trans. R. Soc. B 365, 14051416. https://doi.org/10.1098/rstb.2009.0300 (2010).
CAS Article Google Scholar
Yu, Q., Ji, W., Prihodko, L., Anchang, J. Y. & Hanan, N. P. Study becomes insight: Ecological learning from machine learning. Methods Ecol. Evol. 12, 2172128. https://doi.org/10.1111/2041-210X.13686 (2021).
Article Google Scholar
Park, J. et al. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. Sci. Total Environ. 832, 155070. https://doi.org/10.1016/j.scitotenv.2022.155070 (2022).
ADS CAS Article PubMed Google Scholar
Grbi, L. et al. Coastal water quality prediction based on machine learning with feature interpretation and spatio-temporal analysis. Environ. Model. Softw. 155, 105458. https://doi.org/10.1016/j.envsoft.2022.105458 (2022).
Article Google Scholar
Kruk, M., Artiemjew, P. & Paturej, E. The application of game theory-based machine learning modelling to assess climate variability effects on the sensitivity of lagoon ecosystem parameters. Ecol. Inf. 66, 101462. https://doi.org/10.1016/j.ecoinf.2021.101462 (2021).
Article Google Scholar
Hebert, P. D. N. Competition in zooplankton communities. Ann. Zool. Fennici 19, 349356 (1982).
Google Scholar
Eigen, M. & Winkler, R. Laws of the Game. How the Principles of Nature Govern Chance (Princeton University Press, 1993).
Google Scholar
Tilman, A. R., Plotkin, J. B. & Akay, E. Evolutionary games with environmental feedbacks. Nat. Commun. 11, 915. https://doi.org/10.1038/s41467-020-14531-6 (2020).
ADS CAS Article PubMed PubMed Central Google Scholar
Shapley, L. S. A Value for n-Person Games. In Contributions to the Theory of Games II (eds Kuhn, H. W. & Tucker, A. W.) 315317 (Princeton University Press, 1953).
Google Scholar
Lundberg, S. M. & Lee, S. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 47654774 (2017).
Google Scholar
trumbelj, E. & Kononenko, I. An efficient explanation of individual classifications using game theory. J. Mach. Learn. Res. 11, 118 http://dl.acm.org/citation.cfm?id=1756006.1756007 (2010).
Gan, G., Ma, C. & Wu, J. Data clustering: Theory, algorithms, and applications. ASA-SIAM Ser. Stat. Appl. Math. https://doi.org/10.1137/1.9780898718348 (2007).
Article MATH Google Scholar
Riechert, S. E. & Hammerstein, P. Game theory in the ecological context. Ann. Rev. Ecol. Syst. 14, 377409. https://doi.org/10.1146/annurev.es.14.110183.002113 (1983).
Article Google Scholar
Maynard-Smith, J. Evolution and the Theory of Games (Cambridge University Press, 1982).
Book Google Scholar
Nowak, M. A. & Sigmund, K. Evolutionary dynamics of biological games. Science 303(5659), 793799. https://doi.org/10.1126/science.1093411 (2004).
ADS CAS Article PubMed Google Scholar
Maloney, K. O., Schmid, M. & Weller, D. E. Applying additive modelling and gradient boosting to assess the effects of watershed and reach characteristics on riverine assemblages. Methods Ecol. Evol. 3, 116128. https://doi.org/10.1111/j.2041-210X.2011.00124.x (2012).
Article Google Scholar
Cao, H., Recknagel, F. & Orr, P. T. Parameter optimization algorithms for evolving rule models applied to freshwater ecosystems. IEEE Trans. Evol. Comput. 18, 793806. https://doi.org/10.1109/TEVC.2013.2286404 (2014).
Article Google Scholar
Visit link:
Predicting the effects of winter water warming in artificial lakes on zooplankton and its environment using combined machine learning models |...