Stronger Keys and Faster Security with ECC

Anyone who has been involved with security knows there is a balance to providing both security and privacy and performance at the same time. Security is often blamed for performance woes, particularly when cryptography is involved.

SSL and TLS have long addressed this balance by leveraging custom-built hardware to enhance the performance of the most taxing components of these protocols: session setup. The "easy" part of securing communications (if one can use easy with respect to cryptography) is bulk encryption. While certainly more taxing on performance than clear text, relative to the more complex and compute intensive process of the handshaking required to set up such sessions, easy is an appropriate term.

Moore's Law is often cited as providing the increases in computer power necessary to offset the performance tax imposed by secure protocols. Unfortunately while this would be true if all other factors remained constant, the reality is that other factors are also changing and impose additional burdens on the protocol that often negate the gains made by Moore's Law. Key lengths, for example, continue to grow to combat the increase in compute power that makes it easier to brute-force crack a cryptographic key and new challenges with respect to privacy are changing the frequency with which those keys are generated.. There are also occasionally leaps in the mathematic realm that find ways to more quickly compute the hard problem that the cryptographic algorithm uses, but those are rare and dont march at the steady pace that compute power increases do.

PFS (Perfect Forward Secrecy), for example, has been offered as a way to combat potential snooping by third-parties (read: governments) by requiring the generation of ephemeral (short lived) keys for each new session. This has the effect of imposing an extra cryptography tax" on communications over and above the already expensive handshaking process required by secure protocols like SSL.

Accompanying the introduction of PFS has been a move to take advantage of ECC (Elliptical Curve Cryptography). One of the primary benefits of ECC is that it can provide comparable security with shorter key lengths to RSA with longer key lengths. When you're generating ephemeral keys on a per-session or per-message basis, the shorter key length helps reduce the burden imposed by the additional cryptographic functions.

Now, the problem is that cryptography is still compute intense and even leveraging ECC for PFS you're still going to incur performance penalties in setting up the session. Certainly custom cryptographic hardware acceleration would be a boon, but in cases where software-only solutions are desired, this is problematic. So the question is, how do you support enhanced security with PFS and ECC while still achieving blazing fast performance and extreme capacity?

Obviously I'm about to tell you, so read on...

Next-Generation Cryptography

LineRate achieves what sounds like the impossible: really fast, really scalable secure communications in a software solution deployed on commodity hardware.

Read more:
Stronger Keys and Faster Security with ECC

Related Posts
This entry was posted in $1$s. Bookmark the permalink.