Website Sections
- Home Page
- Library of Eugenics
- Genetic Revolution News
- Science
- Philosophy
- Politics
- Nationalism
- Cosmic Heaven
- Eugenics
- Transhuman News Blog
- Prometheism Religion of Transhumanism
- Future Art Gallery
- NeoEugenics
- Contact Us
- About the Website
- Site Map
Transhumanism News
Partners
The journal SCIENCE lays out racial differences in medical treatment
As the Human Genome Project
progressed over the last decade, many on the Left felt the heat of renewed
interest in racial differences—they could not be so easily dismissed once we
could look inside the genetic code. As a result they have renewed their efforts
to deny that racial differences exist in any form other than simply the color
of one's skin or the shape of one's lips. However, the denial of racial
differences has been based on the specious premise that race is defined by
distinct boundaries—a premise that no one but a scientific illiterate could
entertain.
As Jon Entine wrote in "Why Race Matters in Sports" on his website: "In
truth, while technically correct, such assertions are scientifically
meaningless and provide absolutely no support for the popular myth that 'race
has no biological reality.' There is zero genetic difference between a wolf and
a cocker spaniel. If one really believes that such genetic similarity means
that there is no hard-wired functional difference between a wolf and a hand-licking
spaniel, then I invite that person to adopt a wolf as a house pet for the
children. Such differences are grounded in gene sequences and proteins and are
activated by obscure environmental triggers. All the training in the world is
not likely to turn an Inuit Eskimo, programmed to be short and stout, into a
NBA center or an American (black or white) into a great marathoner: nature sets
limits." (Also see Entine, 2000)
Anyone familiar with the principles of evolution must recognize that racial
differences come about simply because different people evolved under different
ecologies—both physical and social environments. When this occurs, we must
expect differences in the average number of gene expressions (allele
frequencies) between any two population groups. These differences include
average expressions in behavior, intelligence, and medical responses to
treatment, as well as physical differences.
As Arthur Jensen describes it (Jensen, 1998), when it comes to studying
differences between races there are lumpers and splitters. That is, there are
no clear racial boundaries. Splitters could theoretically divide the human
species into individual races down to identical twins. Lumpers tend to define
races into much larger groups like Blacks, Whites and Asians. Cavalli-Sforza
divides all humans into separate population groups (races) that "were in
the area of study in A.D. 1492" before the great migrations. That is,
wherever he could find a group of people today that could trace their ancestry
to a people who lived in 1492, they are defined as a race for the purposes of
studying genetic differences. He excludes "Samaritans, Jews, Gypsies, and
several others" because they are landless people and need "special
study." (Cavalli-Sforza, 1994)
Still, the Left has held rigidly to the notion that racial differences do not
exist, but now they face a new challenge from medicine. Racial genetic
differences are now being used to better understand how to treat people for
illness, especially giving different medicines to different races—because they
have different genes "on average." This is exactly the same assertion
made to account for differences in wealth and income between races—because they
have different genes "on average" that causes differences in life's
outcomes—like intelligence and conscientiousness. Now, if medical treatment
leads to the ineluctable conclusion that racial differences are real, the
radical egalitarian agenda of the Left no longer has the charge of
"scientific racism" to hurl at genetic studies.
The journal SCIENCE, put out by the
American Association for the Advancement of Science, has summarized the dilemma
quite nicely in an article written by Constance Holden entitled "Race and
Medicine," in the October 24, 2003 issue. The AAAS has been a left leaning
organization; its past presidents included the radical Marxist Stephen J. Gould
and the (duped) cultural anthropologist Margaret Mead. It treads on the racial
difference issues very gently. So it comes with some surprise that they have
begun to address the quandary of facing up to racial differences in the drive
to help heal the sick.
Holden writes, "Mention race and medicine in a group of scientists, and
you are likely to provoke a range of heated opinions on whether it is useful,
or even ethical, to consider how people of different ancestry respond to
disease and treatments. No one disputes that some diseases strike
disproportionately in some racial or ethnic groups—thalassemia in people whose
ancestors came from the Mediterranean area, sickle cell anemia in people of
African origins, for example. Less clear-cut than these single gene disorders
but the subject of increasing research—is the medical significance of a host of
more subtle gene variants that appear in differing frequencies in various
populations and that seem to influence a multitude of conditions. So far, few
candidate genes have been spotted, and the evidence is largely circumstantial.
Some scientists dismiss the data as too preliminary, or the differences as
insignificant. They worry that
emphasizing biological differences in how people of different racial and ethnic
groups respond to disease and treatments could unfairly stigmatize some
patients and lead to inferior health care. Yet many scientists see
exploration of differences among ancestral groups as a way to learn more about
complex diseases and ultimately improve treatment for some groups of patients."
Notice how the Left yet again tries to claim that understanding racial
differences in medical care needs will "lead to inferior health
care." The problem is, they never explain why or how this could come
about. We at least need some prospective scenario as to how being able to
better treat people, will lead to just the reverse! Again, they are attempting
to put the genetic genie back in the bottle so that they can continue to use
racism as a tribal weapon against all Whites and especially White males. We are
the ones who would be responsible of course for making sure that the oppressed
would get "inferior health care." That's right; the same White males
who have invented effective medicines against AIDS, and have also contributed
millions if not billions of dollars to help fight the disease that primarily
inflicts "oppressed peoples."
The article also explains that yes, it would be nice if we could just take an
individual's genes, assess their particular genome, and leave race out of it.
But that procedure will not be available for decades. For now, race serves as a
beneficial proxy for genetic patterns that respond differently to treatments.
Different races have different patterns of gene frequencies, and race serves as
the best first guess how a patient will respond to differing treatments. This
is the same as using age or gender when treating patients—humans vary on
multiple levels and over time.
Holden addresses Richard Lewontin's old canard, "The chief argument
against the notion that biological race can be medically meaningful is that
there are far more genetic differences among individuals than there are between
different ancestral groups. Neil Risch of
"Joel Buxbaum, who studies the molecular basis of disease at Scripps
Research Institute in
"The most definitive evidence is on different levels of certain
drug-metabolizing enzymes found in whites, blacks, and Asians. Some of these
differences are quite dramatic; for example, Genaissance Pharmaceuticals in
If different races can vary so much in response to health due to their
different ecological history, we would expect differences in other areas as well
including intelligence, behavior, ethnocentrism, stature, etc. There are no
constraints on genetic variation in averages between racial groups, and that is
exactly what Jensenists have proposed to explain racial and gender differences
in intelligence and other cognitive characteristics; it is the default
hypothesis because it is biologically the most likely—whether breeds of dogs or
human races—differences are to be expected.
Even the government is getting involved; "Increasing awareness of possible
genetic contributions to ethnic differences is reflected in a recommendation
issued last January by the U.S. Food and Drug Administration (FDA). Calling for
more scrutiny of subpopulations, FDA wants drug testers to use racial divisions
specified by the Census Bureau 'to ensure consistency in evaluating potential
differences in drug response.'"
Note however how naïve the FDA is about "racial divisions." The
Census Bureau does not use race alone in counting heads, they also use
ethnicity/language. Maybe, with a renewed interest in racial differences we can
start to look at races in a more rational way. As it now stands, the Census
Bureau's racial/ethnic classification system is without a scientific
foundation, and will not lend itself to what the FDA is calling for: Hispanics
for example are not a racial category; Semites are now lumped in with
Caucasians; and East Asians and South Asians are lumped together as Asians,
even though they are genetically quite different. To use racial differences,
along with racial mixing, they must for the first time address race
scientifically and not politically as has been done in the past.
Companies are also pursuing teasing apart racial differences for profit. Holden
notes, "Genaissance, set up 6 years ago to develop and market genetic
data. 'Our company was founded on the principle that human genetic variation is
critical to drug response,' says Claiborne Stephens, vice president for
genetics. The obvious way to make a first cut at that variation, he notes, is
to look at how evolution parceled out different versions of various genes
according to the environments in which early human populations evolved."
One thing the article failed to mention is that we can now determine a person's
race, or racial admixture in the cases of mixed race people, to help profile
the best treatment. For example, Blacks in the
-----
Race and Medicine by Constance Holden
SCIENCE
Mention race and medicine in a group of scientists, and you are likely to
provoke a range of heated opinions on whether it is useful, or even ethical, to
consider how people of different ancestry respond to disease and treatments. No
one disputes that some diseases strike disproportionately in some racial or
ethnic groups - thalassemia in people whose ancestors came from the
Mediterranean area, sickle cell anemia in people of African origins, for
example. Less clear-cut than these single gene disorders but the subject of
increasing research - is the medical significance of a host of more subtle gene
variants that appear in differing frequencies in various populations and that
seem to influence a multitude of conditions.
So far, few candidate genes have been spotted, and the evidence is largely
circumstantial. Some scientists dismiss the data as too preliminary, or the
differences as insignificant. They worry that emphasizing biological
differences in how people of different racial and ethnic groups respond to
disease and treatments could unfairly stigmatize some patients and lead to
inferior health care. Yet many scientists see exploration of differences among
ancestral groups as a way to learn more about complex diseases and ultimately
improve treatment for some groups of patients.
Already, drug companies are hunting for genetic reasons behind commonly
observed medical differences between groups. Scientists are doing retrospective
genetic analyses of data from drug trials. And 18 months ago a company called
NitroMed launched a trial of a heart drug directed at compensating for what is
believed to be a nitric oxide (NO) deficiency in many African Americans.
Everyone's ultimate dream is to have evidence on individual genotypes to guide
medicine, a development that would make racial identity biologically
irrelevant. But that is decades away. Meanwhile, some scientists maintain that
race can serve as a useful, if crude, indicator in sorting out why people
experience diseases and their treatments - differently and in finding new
targets for drugs.
The argument
The chief argument against the notion that biological race can be medically
meaningful is that there are far more genetic differences among individuals
than there are between different ancestral groups. Neil Risch of
Joel Buxbaum, who studies the molecular basis of disease at Scripps Research
Institute in
The most definitive evidence is on different levels of certain
drug-metabolizing enzymes found in whites, blacks, and Asians. Some of these
differences are quite dramatic; for example, Genaissance Pharmaceuticals in
Less well documented - and more controversial is emerging evidence on different
patterns of cardiovascular disease among various populations. Researchers are
looking for biological roots not only of the well-known differences between
blacks and whites, but also of another, much less
publicized pattern of heart disease that disproportionately affects Asian
Indians. Although neither of these groups seems more disease prone in its
ancestral environment, modern diets and life styles - particularly increased
consumption of salt and fat, smoking, and inactivity hit them hard. Even when
investigators try to control for environmental factors that could explain group
differences, says cardiologist Clyde Yancy of the University of Texas
Southwestern Medical Center in
African-American risks
Blacks don't have more heart attacks than whites, but in the
Scientists are looking for genes that would explain these patterns, in
particular for genes related to hypertension. Because NO, the chemical
responsible for keeping blood vessels fit and toned, is important in the action
of ACE (angiotensin-converting enzyme) inhibitors, genes for NO synthesis, the
enzyme most important for vascular NO production, are prime candidates. Dennis
McNamara of the University of Pittsburgh Medical Center says the prevalence of certain
versions of these genes is "much different in blacks and whites." The
variant that ACE inhibitors work best with is found in 60% of whites but only
30% of blacks, he says.
Also blood pressure-related is the gene for transforming growth factor - beta
(TGF-beta). A group led by Phyllis August at Weill Medical College of
Cornell University in New York City reported in 2000 that TGF-beta1 is
overexpressed in black patients with end-stage renal disease or severe
hypertension and more so than in white patients with the same diseases. This
looks like a promising genetic candidate for hypertension, the authors say,
because TGF-beta1 regulates substances that act both as vasoconstrictors
and as growth factors for vascular cells.
In addition to genes involved in high blood pressure, researchers have found a
significant difference between blacks and whites in genes that manipulate the
response of the sympathetic nervous system to hormones like adrenaline. Stephen
Liggett and colleagues at the
Drug trials
Clinical trials have not been particularly helpful in illuminating such
differences, says McNamara, because usually at least 80% of participants are white,
and the pooling of data often obscures any racial differences.
That is why many researchers are particularly excited about the first clinical
trial of a heart failure treatment that exclusively targets African Americans.
It was launched in March 2001 by NitroMed, a company in
Researchers are also combing through data from earlier big heart trials. To get
a fix on the nature of the suspected racial difference in response to
beta-blockers, Buxbaum and colleagues are looking at data from BEST (the
Beta-Blocker Evaluation of Survival Trial), which tested a nonselective
beta-blocker called Bucindilol. In 2700 people with congestive heart failure,
black patients as well as sicker ones generally failed to benefit from the
drug. So the scientists are genotyping the 600 black patients to see if they
can spot a genetic marker that will serve as a better indicator than race for
whether the drug is likely to work. The results will be put in a DNA bank
available for other investigators.
Although these studies are important, says Yancy, there is still no substitute
for getting data from really big populations, not only to find vulnerability
genes but to sort out what's "normal" - that is, genetic patterns (in
any race or ancestral group) that do not predispose to heart disease. He has
high hopes for another initiative, called UNITE-HF, led by the
Indian hearts
The other population with a big heart disease problem is South Asian
Indians. "Until 50 years ago it was hardly ever heard that Indians had
high heart attack risk," says cardiologist Prakash Deedwania of the
Some preliminary evidence for a genetic connection is emerging. Michael Miller,
director of the Center for Preventive Cardiology at the University of Maryland
Medical Center, says his group has found a high prevalence of an alteration in
the apolipoprotein C3 gene, which regulates triglyceride metabolism, in Indians
living in the
Investigators in
More clues on how genetic variation could translate into different responses to
medication should come from a new 6-week clinical trial, sponsored by
AstraZeneca. It will compare Crestor (rosuvastatin), a new cholesterol-lowering
drug that won government approval in August, with an older one (atorvastatin)
in South Asian Americans. Deedwania says it will be the largest prospective
trial ever done on Indians, with some 800 subjects from 150 centers around the
country. Miller says Crestor may be better for Indians because it does a little
better job at raising HDL.
Many Indian doctors believe that the Indian vulnerability to heart disease is
striking enough to justify more preventive vigilance. Cardiologist Enas Enas,
director of the Coronary Artery Disease in Indians Foundation in Lisle,
Illinois, has stated that the goals of treatment for high blood pressure and
obesity should be at least 10% lower, and cholesterol 20% lower, for Asian
Indians than the goals recommended for Caucasians.
Era of transition
Increasing awareness of possible genetic contributions to ethnic
differences is reflected in a recommendation issued last January by the U.S.
Food and Drug Administration (FDA). Calling for more scrutiny of
subpopulations, FDA wants drug testers to use racial divisions specified by the
Census Bureau "to ensure consistency in evaluating potential differences
in drug response."
Drug-makers are already on the lookout for genetic subgroups that could divulge
new targets for therapeutic drugs. "I think we all believe there's a lot
of potential there," says Gary Palmer, a Pfizer vice president in
Companies will probably be getting more help from outfits like Genaissance, set
up 6 years ago to develop and market genetic data. "Our company was founded
on the principle that human genetic variation is critical to drug
response," says Claiborne Stephens, vice president for genetics. The
obvious way to make a first cut at that variation, he notes, is to look at how
evolution parceled out different versions of various genes according to the
environments in which early human populations evolved.
One of its projects is a detailed data repository of more than 7000 genes from
93 whites, blacks, and Asians, including information on the origins of their
parents and grandparents, which companies can use as a reference in clinical
trials. This is enough to give "a reasonable idea of what the gene
frequencies are" in those groups, says Stephens (see chart).
Although everyone agrees that data are still preliminary, there's been enough
talk to get people concerned over how these findings could affect medical care.
For example, Richard Cooper, a cardiologist at
Although scientists hope that the advent of genomic medicine will obviate the
need to grapple with race issues, Goldstein warns that the day of individually
tailored treatments may be far away. Even after relevant genes are identified,
it will be a chore to sort out what all the alleles do, he says. And so far,
only a handful of such genes have been identified. "Pharmacogenetic
studies are in their absolute infancy," he says. So "the big question
is the interim strategy: how to use ancestry now.
Transtopia
- Main
- Pierre Teilhard De Chardin
- Introduction
- Principles
- Symbolism
- FAQ
- Transhumanism
- Cryonics
- Island Project
- PC-Free Zone