According to the theory of relativity, time dilation is a difference in the elapsed time measured by two observers, either due to a velocity difference relative to each other, or by being differently situated relative to a gravitational field. As a result of the nature of spacetime,[2] a clock that is moving relative to an observer will be measured to tick slower than a clock that is at rest in the observer's own frame of reference. A clock that is under the influence of a stronger gravitational field than an observer's will also be measured to tick slower than the observer's own clock.
Such time dilation has been repeatedly demonstrated, for instance by small disparities in a pair of atomic clocks after one of them is sent on a space trip, or by clocks on the Space Shuttle running slightly slower than reference clocks on Earth, or clocks on GPS and Galileo satellites running slightly faster.[1][2][3] Time dilation has also been the subject of science fiction works, as it technically provides the means for forward time travel.[4]
Time dilation by the Lorentz factor was predicted by several authors at the turn of the 20th century.[5][6] Joseph Larmor (1897), at least for electrons orbiting a nucleus, wrote "... individual electrons describe corresponding parts of their orbits in times shorter for the [rest] system in the ratio: 1 v 2 c 2 {displaystyle scriptstyle {sqrt {1-{frac {v^{2}}{c^{2}}}}}} ".[7] Emil Cohn (1904) specifically related this formula to the rate of clocks.[8] In the context of special relativity it was shown by Albert Einstein (1905) that this effect concerns the nature of time itself, and he was also the first to point out its reciprocity or symmetry.[9] Subsequently, Hermann Minkowski (1907) introduced the concept of proper time which further clarified the meaning of time dilation.[10]
Special relativity indicates that, for an observer in an inertial frame of reference, a clock that is moving relative to him will be measured to tick slower than a clock that is at rest in his frame of reference. This case is sometimes called special relativistic time dilation. The faster the relative velocity, the greater the time dilation between one another, with the rate of time reaching zero as one approaches the speed of light (299,792,458m/s). This causes massless particles that travel at the speed of light to be unaffected by the passage of time.
Theoretically, time dilation would make it possible for passengers in a fast-moving vehicle to advance further into the future in a short period of their own time. For sufficiently high speeds, the effect is dramatic.[2] For example, one year of travel might correspond to ten years on Earth. Indeed, a constant 1g acceleration would permit humans to travel through the entire known Universe in one human lifetime.[12]. At a constant 1g traveling up to 0.99999999 c it would take 30 years to reach the edge of the universe 13.5 billions lightyears away. [13] Space travelers could then return to Earth billions of years in the future. A scenario based on this idea was presented in the novel Planet of the Apes by Pierre Boulle, and the Orion Project has been an attempt toward this idea.
With current technology severely limiting the velocity of space travel, however, the differences experienced in practice are minuscule: after 6 months on the International Space Station (ISS) (which orbits Earth at a speed of about 7,700m/s[3]) an astronaut would have aged about 0.005 seconds less than those on Earth. The current human time travel record holder is Russian cosmonaut Sergei Krikalev.[14] He gained 22.68 milliseconds of lifetime on his journeys to space and therefore beat the previous record of about 20 milliseconds by cosmonaut Sergei Avdeyev.[15]
Time dilation can be inferred from the observed constancy of the speed of light in all reference frames dictated by the second postulate of special relativity.[16][17][18][19]
This constancy of the speed of light means that, counter to intuition, speeds of material objects and light are not additive. It is not possible to make the speed of light appear greater by moving towards or away from the light source.
Consider then, a simple clock consisting of two mirrors A and B, between which a light pulse is bouncing. The separation of the mirrors is L and the clock ticks once each time the light pulse hits either of the mirrors.
In the frame in which the clock is at rest (diagram on the left), the light pulse traces out a path of length 2L and the period of the clock is 2L divided by the speed of light:
From the frame of reference of a moving observer traveling at the speed v relative to the resting frame of the clock (diagram at right), the light pulse is seen as tracing out a longer, angled path. Keeping the speed of light constant for all inertial observers, requires a lengthening of the period of this clock from the moving observer's perspective. That is to say, in a frame moving relative to the local clock, this clock will appear to be running more slowly. Straightforward application of the Pythagorean theorem leads to the well-known prediction of special relativity:
The total time for the light pulse to trace its path is given by
The length of the half path can be calculated as a function of known quantities as
Elimination of the variables D and L from these three equations results in
which expresses the fact that the moving observer's period of the clock t {displaystyle Delta t'} is longer than the period t {displaystyle Delta t} in the frame of the clock itself.
Given a certain frame of reference, and the "stationary" observer described earlier, if a second observer accompanied the "moving" clock, each of the observers would perceive the other's clock as ticking at a slower rate than their own local clock, due to them both perceiving the other to be the one that's in motion relative to their own stationary frame of reference.
Common sense would dictate that, if the passage of time has slowed for a moving object, said object would observe the external world's time to be correspondingly sped up. Counterintuitively, special relativity predicts the opposite. When two observers are in motion relative to each other, each will measure the other's clock slowing down, in concordance with them being moving relative to the observer's frame of reference.
While this seems self-contradictory, a similar oddity occurs in everyday life. If two persons A and B observe each other from a distance, B will appear small to A, but at the same time A will appear small to B. Being familiar with the effects of perspective, there is no contradiction or paradox in this situation.[20]
The reciprocity of the phenomenon also leads to the so-called twin paradox where the aging of twins, one staying on Earth and the other embarking on a space travel, is compared, and where the reciprocity suggests that both persons should have the same age when they reunite. On the contrary, at the end of the round-trip, the traveling twin will be younger than his brother on Earth. The dilemma posed by the paradox, however, can be explained by the fact that the traveling twin must markedly accelerate in at least three phases of the trip (beginning, direction change, and end), while the other will only experience negligible acceleration, due to rotation and revolution of Earth. During the acceleration phases of the space travel, time dilation is not symmetric.
Minkowski diagram and twin paradox
Clock C in relative motion between two synchronized clocks A and B. C meets A at d, and B at f.
In the Minkowski diagram from the second image on the right, clock C resting in inertial frame S meets clock A at d and clock B at f (both resting in S). All three clocks simultaneously start to tick in S. The worldline of A is the ct-axis, the worldline of B intersecting f is parallel to the ct-axis, and the worldline of C is the ct-axis. All events simultaneous with d in S are on the x-axis, in S on the x-axis.
The proper time between two events is indicated by a clock present at both events.[27] It is invariant, i.e., in all inertial frames it is agreed that this time is indicated by that clock. Interval df is therefore the proper time of clock C, and is shorter with respect to the coordinate times ef=dg of clocks B and A in S. Conversely, also proper time ef of B is shorter with respect to time if in S, because event e was measured in S already at time i due to relativity of simultaneity, long before C started to tick.
From that it can be seen, that the proper time between two events indicated by an unaccelerated clock present at both events, compared with the synchronized coordinate time measured in all other inertial frames, is always the minimal time interval between those events. However, the interval between two events can also correspond to the proper time of accelerated clocks present at both events. Under all possible proper times between two events, the proper time of the unaccelerated clock is maximal, which is the solution to the twin paradox.[27]
In addition to the light clock used above, the formula for time dilation can be more generally derived from the temporal part of the Lorentz transformation.[28] Let there be two events at which the moving clock indicates t a {displaystyle t_{a}} and t b {displaystyle t_{b}} , thus
Since the clock remains at rest in its inertial frame, it follows x a = x b {displaystyle x_{a}=x_{b}} , thus the interval t = t b t a {displaystyle Delta t^{prime }=t_{b}^{prime }-t_{a}^{prime }} is given by
where t is the time interval between two co-local events (i.e. happening at the same place) for an observer in some inertial frame (e.g. ticks on his clock), known as the proper time, t is the time interval between those same events, as measured by another observer, inertially moving with velocity v with respect to the former observer, v is the relative velocity between the observer and the moving clock, c is the speed of light, and the Lorentz factor (conventionally denoted by the Greek letter gamma or ) is
Thus the duration of the clock cycle of a moving clock is found to be increased: it is measured to be "running slow". The range of such variances in ordinary life, where v c, even considering space travel, are not great enough to produce easily detectable time dilation effects and such vanishingly small effects can be safely ignored for most purposes. It is only when an object approaches speeds on the order of 30,000km/s (1/10 the speed of light) that time dilation becomes important.[29]
In special relativity, time dilation is most simply described in circumstances where relative velocity is unchanging. Nevertheless, the Lorentz equations allow one to calculate proper time and movement in space for the simple case of a spaceship which is applied with a force per unit mass, relative to some reference object in uniform (i.e. constant velocity) motion, equal to g throughout the period of measurement.
Let t be the time in an inertial frame subsequently called the rest frame. Let x be a spatial coordinate, and let the direction of the constant acceleration as well as the spaceship's velocity (relative to the rest frame) be parallel to the x-axis. Assuming the spaceship's position at time t = 0 being x = 0 and the velocity being v0 and defining the following abbreviation
the following formulas hold:[30]
Position:
Velocity:
Proper time as function of coordinate time:
In the case where v(0) = v0 = 0 and (0) = 0 = 0 the integral can be expressed as a logarithmic function or, equivalently, as an inverse hyperbolic function:
As functions of the proper time {displaystyle tau } of the ship, the following formulae hold:[31]
Position:
Velocity:
Coordinate time as function of proper time:
The clock hypothesis is the assumption that the rate at which a clock is affected by time dilation does not depend on its acceleration but only on its instantaneous velocity. This is equivalent to stating that a clock moving along a path P {displaystyle P} measures the proper time, defined by:
The clock hypothesis was implicitly (but not explicitly) included in Einstein's original 1905 formulation of special relativity. Since then, it has become a standard assumption and is usually included in the axioms of special relativity, especially in the light of experimental verification up to very high accelerations in particle accelerators.[32][33]
Gravitational time dilation is experienced by an observer that, being under the influence of a gravitational field, will measure his own clock to slow down, compared to another that is under a weaker gravitational field.
Gravitational time dilation is at play e.g. for ISS astronauts. While the astronauts' relative velocity slows down their time, the reduced gravitational influence at their location speeds it up, although at a lesser degree. Also, a climber's time is theoretically passing slightly faster at the top of a mountain compared to people at sea level. It has also been calculated that due to time dilation, the core of the Earth is 2.5 years younger than the crust.[34] "A clock used to time a full rotation of the earth will measure the day to be approximately an extra 10 ns/day longer for every km of altitude above the reference geoid." [35] Travel to regions of space where extreme gravitational time dilation is taking place, such as near a black hole, could yield time-shifting results analogous to those of near-lightspeed space travel.
Contrarily to velocity time dilation, in which both observers measure the other as aging slower (a reciprocal effect), gravitational time dilation is not reciprocal. This means that with gravitational time dilation both observers agree that the clock nearer the center of the gravitational field is slower in rate, and they agree on the ratio of the difference.
High accuracy timekeeping, low earth orbit satellite tracking, and pulsar timing are applications that require the consideration of the combined effects of mass and motion in producing time dilation. Practical examples include the International Atomic Time standard and its relationship with the Barycentric Coordinate Time standard used for interplanetary objects.
Relativistic time dilation effects for the solar system and the earth can be modeled very precisely by the Schwarzschild solution to the Einstein field equations. In the Schwarzschild metric, the interval d t E {displaystyle dt_{text{E}}} is given by[38][39]
where
The coordinate velocity of the clock is given by
The coordinate time t c {displaystyle t_{c}} is the time that would be read on a hypothetical "coordinate clock" situated infinitely far from all gravitational masses ( U = 0 {displaystyle U=0} ), and stationary in the system of coordinates ( v = 0 {displaystyle v=0} ). The exact relation between the rate of proper time and the rate of coordinate time for a clock with a radial component of velocity is
where
The above equation is exact under the assumptions of the Schwarzschild solution. It reduces to velocity time dilation equation in the presence of motion and absence of gravity, i.e. e = 0 {displaystyle beta _{e}=0} . It reduces to gravitational time dilation equation in the absence of motion and presence of gravity, i.e. = 0 = {displaystyle beta =0=beta _{shortparallel }} .
See the rest here:
- A Real Life Hibernation Chamber is Being Made For Deep Space Travel - Futurism [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Humans to be FROZEN IN TIME for space travel as scientists move to COLONISE other planets - Express.co.uk [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Space flight changes astronauts' brains, research reveals - Fox News [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Space travel changes DNA, study finds - STLtoday.com [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Space travel visionaries solve the problem of interstellar slowdown ... - Science Daily [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Quantum Entanglement May Be Key To Long Distance Space Travel Ex Lockheed Exec Said It's Already Happening - Collective Evolution [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Is This Buzz Aldrin-Inspired Locomotive The Future Of Space Travel? - Forbes [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Celestial bodies: The Kelly twins offer a vital sign for space travel ... - Pittsburgh Post-Gazette [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Space travel visionaries solve the problem of interstellar slowdown at Alpha Centauri - Phys.Org [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Newspaper review: Heartthrob and space travel in Wednesday's papers - BBC News [Last Updated On: February 8th, 2017] [Originally Added On: February 8th, 2017]
- Another View: NASA's Twins Study offers vital sign for space travel - Press Herald [Last Updated On: February 8th, 2017] [Originally Added On: February 8th, 2017]
- Piece of tragic shuttle history gets a second chance at space travel - WQAD.com [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Meet Shawn Pandya, The Third Indian-Origin Woman To Space-Travel - Huffington Post India [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Shawna Pandya clears the air on rumours of space travel - Daily News & Analysis [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- The Expanse and Frankie Adams: Meet the Kiwi who's conquered space travel - Stuff.co.nz [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Did a CSU study find that space travel makes you younger? Not so ... - The Denver Post [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Twins study offers valuable data on space travel - Herald-Whig - - Herald-Whig [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- The Expanse and Frankie Adams: Meet the Kiwi who's conquered space travel - Waikato Times [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Kelly twins offer a vital sign for space travel - San Angelo Standard Times [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Lacoste delves into the world of space travel at New York Fashion Week as Baptista honours founder's lesser-known ... - Evening Standard [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- NASA's Irish Twins Study reveals first results of space travel on humans - IrishCentral [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Starbound to revamp space travel in future update - PC Gamer [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- How Does Long-Term Space Travel Affect Humans? - Voice of America [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- A VR Company is Attempting to Make Holographic Videos for Space Travel - Mobile Magazine [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Two-Time Space Traveling Astronaut to Speak at Black History ... - Patriots Point [Last Updated On: February 16th, 2017] [Originally Added On: February 16th, 2017]
- Make space travel great again: NASA, heeding Trump, may add astronauts to a test flight moon mission - National Post [Last Updated On: February 16th, 2017] [Originally Added On: February 16th, 2017]
- In recently unearthed essay, Winston Churchill anticipated space travel and extraterrestrial life - The Providence Journal [Last Updated On: February 16th, 2017] [Originally Added On: February 16th, 2017]
- Twins in space: intergalactic travel could change DNA - The Student [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- An unearthed essay reveals Winston Churchill anticipated space travel and aliens - Stuff.co.nz [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- Focus Friday: The necessity of space travel - The Daily Cougar [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- NASA announces $2m investment on technology advancement for deep space travel - WDSU New Orleans [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- Focus Friday: The necessity of space travel - The Daily Cougar - The Daily Cougar [Last Updated On: February 18th, 2017] [Originally Added On: February 18th, 2017]
- Ask Ethan: How Can I Travel Through Space Without Getting Into Trouble? - Forbes [Last Updated On: February 18th, 2017] [Originally Added On: February 18th, 2017]
- Do You Have The Right Personality For Long-Term Space Travel ... - Seeker [Last Updated On: February 18th, 2017] [Originally Added On: February 18th, 2017]
- In recently unearthed essay, Winston Churchill anticipated space travel and extraterrestrial life - Washington Post [Last Updated On: February 18th, 2017] [Originally Added On: February 18th, 2017]
- UK bids to be world leader in Space travel by 2020 - Daily Star [Last Updated On: February 20th, 2017] [Originally Added On: February 20th, 2017]
- Know before you fly: privatized space travel - Observer Online [Last Updated On: February 21st, 2017] [Originally Added On: February 21st, 2017]
- You could fly to SPACE from the UK within three years as plans are for space port are unveiled - The Sun [Last Updated On: February 21st, 2017] [Originally Added On: February 21st, 2017]
- Cosmic cinema: spurring interest in real-life space travel? - Miami Student [Last Updated On: February 22nd, 2017] [Originally Added On: February 22nd, 2017]
- Commercial space travel could be ready as early as 2020 - New York Post [Last Updated On: February 22nd, 2017] [Originally Added On: February 22nd, 2017]
- This Finnish startup democratizes space travel and it just raised over 3 million to find the next 'Slumdog ... - Business Insider Nordic [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- Commercial space travel WITHIN THREE YEARS on flights to launch from BRITAIN - Express.co.uk [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- Katherine Johnson led African American efforts in space travel - Farm and Dairy [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- Space travel is measured in light years, but what's a light year anyway? - MyStatesman.com [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- TRAPPIST-1: How Long Would It Take to Fly to 7-Planet System? - Space.com [Last Updated On: February 24th, 2017] [Originally Added On: February 24th, 2017]
- NASA Looking for Bright Ideas to Help With Space Travel - Tech.Co [Last Updated On: February 24th, 2017] [Originally Added On: February 24th, 2017]
- The history of space travel encapsulated - Fairfaxtimes.com [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- SpaceX's reusable rockets make space travel much cheaper - The ... - CMU The Tartan Online [Last Updated On: February 27th, 2017] [Originally Added On: February 27th, 2017]
- Stars align for space travel at memorable Oscars ceremony - Siliconrepublic.com [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- FSU researcher to lead US-Russia project on health, space travel - Florida State News [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Crowding the cosmos: space travel turns private - The Student [Last Updated On: March 1st, 2017] [Originally Added On: March 1st, 2017]
- Forget SpaceX: 10 companies that will change space travel in 2017 & 2018 - Geektime [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- Safe space travel: Protecting alien worlds from earthlings - and vice versa - Deutsche Welle [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- Watch: 'Black Holes' A Satirical Comedy About Space Travel From Sundance 2017 - Konbini US [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Doctor Launches Vision Quest To Help Astronauts' Eyeballs - NPR [Last Updated On: March 4th, 2017] [Originally Added On: March 4th, 2017]
- Beyond Earth talking about space travel - Alaska Public Radio Network [Last Updated On: March 4th, 2017] [Originally Added On: March 4th, 2017]
- Would You Book A Flight To The Moon? - The Alternative Daily (blog) [Last Updated On: March 6th, 2017] [Originally Added On: March 6th, 2017]
- Colorado Likely To Benefit From Privatized Space Travel - CBS Local [Last Updated On: March 6th, 2017] [Originally Added On: March 6th, 2017]
- NEC develops reliable FPGAs for space travel - Electronics Weekly - Electronics Weekly [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- 4 Entrepreneurs Changing the Way We Think About Space Travel - Tech.Co [Last Updated On: March 9th, 2017] [Originally Added On: March 9th, 2017]
- Why Space Travel Can Be Absolutely Disgusting - Live Science [Last Updated On: March 9th, 2017] [Originally Added On: March 9th, 2017]
- EDITORIAL: Exploring private space travel - Indiana Daily Student [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Harvard Scientists Theorize That Fast Radio Bursts Come From Alien Space Travel - Popular Mechanics [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Space Exploration: US congress approves $19.5 billion for NASA to get humans to Mars by 2033 - NTA News [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- MIT Conference To Focus On Space Travel For The Public - CBS Boston / WBZ [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Reusing rockets is best way to advance space travel, SpaceX officer tells symposium attendees - Colorado Springs Gazette [Last Updated On: April 8th, 2017] [Originally Added On: April 8th, 2017]
- How space travel leads to cognitive shifts in awareness | Life and ... - The Guardian [Last Updated On: April 8th, 2017] [Originally Added On: April 8th, 2017]
- Cheap space travel, electric cars and a whirlwind love life love life... the billionaire genius inventing our future - Mirror.co.uk [Last Updated On: April 8th, 2017] [Originally Added On: April 8th, 2017]
- Reusable rockets key for space travel industry - Alamogordo Daily News [Last Updated On: April 8th, 2017] [Originally Added On: April 8th, 2017]
- Is this massive airplane the future of space travel? One billionaire thinks so. - SOFREP (press release) (subscription) [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- spotlight - NYCAviation [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- BBC commissions documentary about commercial space travel fronted by Brian Cox - Radio Times [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- The Physics of Interstellar Travel : Explorations in ... [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Mars rover scientist, SpaceX engineer join NASA astronaut corps - Reuters [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- How SpaceX Launched a Chinese Experiment Into Space, Despite US Ban - Foreign Policy (blog) [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- 'Blast Camp' gives students lessons on space travel - Fremont News Messenger [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- IKEA looks to space travel for new micro-living furniture collection - Dezeen [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- HPE's next frontier: Space travel & memory-driven computing - IT Brief Australia [Last Updated On: June 8th, 2017] [Originally Added On: June 8th, 2017]
- 20 Out-Of-This-World Companies Working On Space Travel Technologies - Interesting Engineering [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- Here's how space travel is helping keep you healthy - Eyewitness News [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]