Vaisala and FMI technology heads to Mars onboard NASA’s Perseverance rover – PharmiWeb.com

International collaboration takes Vaisala and the Finnish Meteorological Institute (FMI) to Mars onboard NASAs Mars 2020 Perseverance rover. The rover is scheduled to launch on July 30, 2020. Vaisalas sensor technology combined with FMIs measurement instrumentation will be used to obtain accurate and reliable pressure and humidity data from the surface of the red planet.

The Finnish Meteorological Institute (FMI) is among the scientific partners providing measurement equipment for the new Perseverance rover, expected to launch in July and land on Mars in February 2021.The pressure and humidity measurement devices developed by the FMI are based on Vaisala's world known sensor technologyand are similar but more advanced to the ones sent to Mars on the first Curiosity rover in 2012.

The new mission equipment complements the Curiosity rover. While working on Mars, the Curiosity and Perseveranceroverswillform a small-scale observation network. The network is onlythefirst step, anticipating the extensiveobservationnetwork planned on Marsinthe future.

International and scientific collaboration aims to gather knowledge of the Martian atmosphere and other environmental conditions

The Mars 2020 mission is part of NASAs Mars Exploration Program. In order toobtaindata from the surface from the Red Planet, NASAselected trustedpartnersto provide measurement instrumentsfor installationon the Marsrover.ASpanish-led European consortium provides therover withMars Environmental Dynamics Analyzer (MEDA); a set of sensors that provides measurements of temperature, wind speed and direction, pressure, relative humidity, and the amount and size of dust particles.

As part of the consortium, FMI delivers instrumentation to MEDA for humidity and pressure measurements based onVaisalastop qualitysensors.

Mars, as well as Venus, the other sister planet of Earth, is a particularly important area of atmospheric investigations due to its similarities to Earth. Studying Mars helps us also better understand the behavior of Earths atmosphere, comments Maria Genzer, Head of Planetary Research and Space Technology group at FMI.

The harsh and demanding conditionsof Marsrequire themost reliable sensor technology that provides accurate and reliable data withoutmaintenance or repair.

"We are honored that Vaisalas core sensor technologies have been selected to provide accurate and reliable measurement data on Mars. In line with our mission to enable observations for a better world, we are excited to be part of this collaboration. Hopefully the measurement technology will provide tools for finding answers to the most pressing challenges of our time, such as climate change, saysLiisastrm,Vice President, Products and Systems of Vaisala.Same technology, different planet utilizing Vaisala core technologies for accuracy and long-term stability

Intheextreme conditions of the Martian atmosphere, NASAwill be able to obtainaccurate readings of pressure and humidity levels with VaisalasHUMICAP and BAROCAP sensors.The sensors' long-term stability and accuracy, as well as their ability to tolerate dust, chemicals, and harshenvironmental conditions, makethem suitable for very demandingmeasurement needs, also in space. The same technology is used in numerous industrial and environmental applications such as weather stations, radiosondes, greenhouses and datacenters.

The humidity measurement device MEDA HS, developed by FMI for Perseverance, utilizesstandard Vaisala HUMICAPhumidity sensors. HUMICAP is a capacitive thin-film polymer sensor consisting of a substrate on which a thin film of polymer is deposited between two conductive electrodes.The humidity sensor onboard is a new generation sensor, with superior performance also in the low pressure conditions expected on the red planet.

In addition to humidity measurements, FMI has developed a device for pressure measurement, MEDA PS, which uses customized Vaisala BAROCAP pressure sensors, optimized to operate in the Martian climate.BAROCAP is a silicon-based micromechanical pressure sensor that offers reliable performance in a wide variety of applications, from meteorology to pressure sensitive industrial equipment in semiconductor industry and laboratory pressure standard measurements.Combining two powerful technologies single-crystal silicon material and capacitive measurement BAROCAP sensors feature low hysteresis combined with excellent accuracy and long-term stability, both essential for measurements in space.

Our sensor technologies are used widely in demanding everyday measurement environments here on Earth. And why not if they work on Mars, they will work anywhere," strm concludes.

Is there anybody out there? Yes we are! Join us for the live webcast to hear more! Welcometolearn about space-proof technology, how it works, what it does, whyitsimportant, and whymeasurements play a key role in space research. Youll hear examples and stories by our experts, and by a special guest speaker, who will be sharing his own experiences and insights of space.Date: July 20, 2020Time: 15.30-16.30EEST /14.30-15.30CEST /08.30-09.30EDTPlace: Virtual event sign up:Sign up here

The event is organized by Vaisala and the Finnish Meteorological Institute.It will be held in English and itis free of charge.Live subtitles in Finnish will be available.

Learn more aboutspace-proof technologybefore the event by visitingvaisala.com/spaceand follow the discussion on social mediausing#spacetechFI.

More information for the media:Miia Lahti, Communications Manager, Vaisala+358 50 555 4420, comms@vaisala.com

Kaisa Ryynnen, Communications Specialist, Finnish Meteorological Institute+ 358 29539 2283, viestinta@fmi.fi

Read this article:

Vaisala and FMI technology heads to Mars onboard NASA's Perseverance rover - PharmiWeb.com

Related Posts

Comments are closed.