June 21, 2017• Physics 10, 68
A team of experimentalists and theorists proposes a scalable protocol for quantum computation based on topological superconductors.
Adapted from T. Karzig et al., Phys. Rev. B (2017)
The Herculean thrust to realize a quantum computer by many research groups around the world is, in my opinion, one of the most exciting endeavors in physics in quite some time. Notwithstanding the potential applications that have motivated many companies in this endeavor, a quantum computer represents the most promising avenue to peer into quantum phenomena on a macroscopic scale. As with any such great effort, the race to build a quantum computer has many competitors pursuing a variety of approaches, some of which appear to be on the verge of creating a small machine [1]. However, such small machines are unlikely to uncover truly macroscopic quantum phenomena, which have no classical analogs. This will likely require a scalable approach to quantum computation. A new study by Torsten Karzig from Microsoft Station Q, California, and colleagues [2] brings together the expertise of a large and diverse group of physicists, ranging from experimentalists to topologists, to lay out a roadmap for a scalable architecture based on one of the most popular approaches.
Karzig and colleagues paper represents a vision for the future of a sequence of developments that started with the seminal ideas of topological quantum computation (TQC) as envisioned by Alexei Kitaev [3] and Michael Freedman [4] in the early 2000s. The central idea of TQC is to encode qubits into states of topological phases of matter (see Collection on Topological Phases). Qubits encoded in such states are expected to be topologically protected, or robust, against the prying eyes of the environment, which are believed to be the bane of conventional quantum computation. This is because states of topological phases are locally indistinguishable from each other, so that qubits encoded in such states can evade the destructive coupling to the environment. But experimentally accessible topological phases of matter with the requisite properties for TQC, such as the ability to host quasiparticles known as Majorana zero modes, have been elusive. A milestone in this direction was reached in 2010, when researchers realized [57] that the combination of rather conventional ingredients, such as special semiconductors, superconductors, and magnetic fields, could result in one such phasea topological superconductor. This realization motivated experimentalists to discover signatures of this topological phase just a few years after its prediction [8]. However, the topological superconductors, or Majorana nanowires as they are often called, made in these first experiments were plagued by device imperfections such as impurities [8]. While topological robustness is supposed to protect devices from small imperfections, it is sometimes overlooked that the strength of such imperfections must be below a pretty low threshold for topological robustness to be operative.
A new wave of optimism swept the search for TQC-ready topological superconductors in 2016. Thats when experimental groups from the University of Copenhagen and from the Delft University of Technology, led by Charlie Marcus and Leo Kouwenhoven, respectively, demonstrated high-quality Majorana nanowires that were likely to be in the topological regime [9, 10]. These devices, fabricated through epitaxial growth of superconducting aluminum on indium antimonide semiconductors, showed evidence of a high-quality superconducting gap [10] and also of near energy degeneracy between the topological qubit states [9]; a large energy difference between qubit states is often related to the detrimental decoherence rate of a qubit. However, the rules of the game of designing and fabricating Majorana nanowire devices have proven to be rather different from what had been anticipated. For example, it turns out that it is quite straightforward to drive the newly fabricated devices [9] into the desirable Coulomb blockade regime (where the quantization of electronic charge dominates charge transport) but difficult to fabricate controllable contacts to connect the devices to superconducting circuitry. Interestingly, concurrent theoretical work has clarified that the topological qubit state of a Majorana nanowire can be measured via the phase shift of electron transport through the device when the transport is in the Coulomb blockade regime. This work led to suggestions that the basic operations for TQC could be performed using a procedure that relied on measurements of topological qubits.
Karzig and colleagues study comes at a point in time where there is optimism for the realization of TQC using Majorana nanowires but possibly along a path with several constraints. For example, branched structures of a nanowire could be used to generate a network of wires for TQC, but superconducting contacts are only easy to make at the ends of the wire. This would mean that superconducting contacts must be avoided in making a large network of wires. Also, the qubit lifetime will ultimately likely be limited by quasiparticle poisoning, a phenomenon in which an anomalously large number of unwanted quasiparticles, arising from Cooper electron pairs broken by stray microwaves, exists in the devices. The Karzig study brings together a large number of authors with expertise in device fabrication, in strategies for TQC, and in the solid-state-physics issues involving Majorana nanowires. The researchers propose a protocol for scalable TQC based on the existing Majorana nanowires, assuming that they can be brought into the topological phase.
The protocol involves designing a network from small sets of Majorana wires and performing a sequence of measurements on the sets (Fig. 1). The central idea is to use physical constraints on the network, such as aligning all wires with a global magnetic field, to predict which sets may be measured easily to perform TQC. For example, the researchers considered networks made from sets of four and six wires (tetron and hexon designs) together with the rule that only nearby Majorana zero modes could be measured in each configuration. They then devised a strategy for TQC that optimizes robustness to quantities such as environmental temperature and noise as well the size of the network. The result of the analysis is a few scalable architectures that future experimental groups could pick between, depending on their device-construction capabilities and computational goals. The hexon architectures are likely to be computationally more efficient than the tetron architectures but will probably be more difficult to construct.
While the scope of this work might be limited to these specific devices, detailed analysis of this kind is absolutely key to motivating both experimentalists and theorists to make progress towards a realistic platform for TQC that actually works in practice. The Karzig study likely lays the foundation for analogous work with other topological platforms as they become experimentally viable candidates for TQC. I must also clarify that the significance of this work does depend on whether future experiments meet the outstanding experimental challenges, foremost among which is the reliable generation of Majorana nanowires in a topological phase. That being said, I think Karzig and co-workers paper will serve as a case study to follow, even if the properties of topological superconducting systems turn out to be somewhat different from the ones assumed.
This research is published in Physical Review B.
Jay Sau is an Assistant Professor of Physics at the University of Maryland (UMD), College Park. He holds a B.Tech. in electrical engineering from the Indian Institute of Technology (IIT) in Kanpur, India, and a Ph.D. in physics from the University of California at Berkeley. After postdoctoral positions at UMD and Harvard University, he joined the Physics Department at UMD in 2013. His research group develops theoretical tools in condensed-matter physics to predict and understand topological phases that might one day be used to perform topological quantum computation.
Torsten Karzig, Christina Knapp, Roman M. Lutchyn, Parsa Bonderson, Matthew B. Hastings, Chetan Nayak, Jason Alicea, Karsten Flensberg, Stephan Plugge, Yuval Oreg, Charles M. Marcus, and Michael H. Freedman
Phys. Rev. B 95, 235305 (2017)
Published June 21, 2017
Torsten Karzig, Christina Knapp, Roman M. Lutchyn, Parsa Bonderson, Matthew B. Hastings, Chetan Nayak, Jason Alicea, Karsten Flensberg, Stephan Plugge, Yuval Oreg, Charles M. Marcus, and Michael H. Freedman
Phys. Rev. B 95, 235305 (2017)
Published June 21, 2017
Visit link:
Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- UW Grad Student from Star Valley Earns Quantum Mechanics Fellowship - SweetwaterNOW.com [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Quantum Computing Might Be Here Sooner Than You Think ... - Bloomberg [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Popular Quantum Physics Books - Goodreads [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- A quantum step to a great wall for encryption - The Hindu [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.Org [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- In 1928, One Physicist Accidentally Predicted Antimatter - Popular Mechanics [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DOE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists make quantum leap in understanding life's nanoscale ... - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics - Lawrence Berkeley National Laboratory [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Stephen Colbert Gets a Lesson on Quantum Physics from Brian ... - Patheos (blog) [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- Quantum physics for babies a different bedtime story - CBC.ca [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- How quantum mechanics can change computing - San Francisco ... - San Francisco Chronicle [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Physicists Use Lasers to Set Up First Underwater Quantum Communications Link - Gizmodo [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Notable Quotes on Quantum Physics Quantum Enigma [Last Updated On: February 15th, 2018] [Originally Added On: February 15th, 2018]
- Nothing Is Solid & Everything Is Energy Scientists Explain The World ... [Last Updated On: April 11th, 2018] [Originally Added On: April 11th, 2018]
- The World Of Quantum Physics: EVERYTHING Is Energy - In5D ... [Last Updated On: April 22nd, 2018] [Originally Added On: April 22nd, 2018]
- Nothing Is Solid & Everything Is Energy Scientists ... [Last Updated On: May 1st, 2018] [Originally Added On: May 1st, 2018]
- Black Holes Bolster Case For Quantum Physics' Spooky Action ... [Last Updated On: August 29th, 2018] [Originally Added On: August 29th, 2018]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: September 29th, 2018] [Originally Added On: September 29th, 2018]
- Quantum Theory - Full Documentary HD [Last Updated On: November 6th, 2018] [Originally Added On: November 6th, 2018]
- Quantum mind - Wikipedia [Last Updated On: February 6th, 2019] [Originally Added On: February 6th, 2019]
- What is quantum theory? - Definition from WhatIs.com [Last Updated On: May 5th, 2019] [Originally Added On: May 5th, 2019]
- The Ultimate Mystery? Consciousness May Exist in the Absence of Matter (Weekend Feature) - The Daily Galaxy --Great Discoveries Channel [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Faculty Opening, Quantum Information and Condensed Matter Experiment - Physics [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Become the physicists the world needs with the help of a physics degree - Study International News [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Imec and NUS working on chip-based quantum cryptography - Optics.org [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Strong LightMatter Coupling in Molecular and Material Engineering - Advanced Science News [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- The key to bigger quantum computers could be to build them like Legos - MIT Technology Review [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Australian universities are accused of trading free speech for cash - The Economist [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- APS Physics Career Center - Physics [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Assistant Professor of Physics, Employment - Physics [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- A new approach to quantum gravity - Tech Explorist [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- A Huge Experiment Has 'Weighed' the Tiny Neutrino, a Particle That Passes Right Through Matter - Gizmodo [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Many Worlds, But Too Much Metaphor - Forbes [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Iran to open 1st quantum physics lab in a year: AEOI head - Mehr News Agency - English Version [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Quantum Computing Breakthrough: New Detection Tool Uncovers Noise That Can Kill Qubits - SciTechDaily [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- A quantum computing startup that spun out of a Harvard lab just came out of stealth mode with $2.7 million in seed funding from investors like Samsung... [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Important Quantum Algorithm May Be a Property of Nature - Technology Networks [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- A New Perspective On Grover's Search Algorithm -- Quantum Physics & DNA - Analytics India Magazine [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Iran to open first quantum physics lab in a year: AEOI head - Quantaneo, the Quantum Computing Source [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Sean Carroll: Universe a 'tiny sliver' of all there is - PBS NewsHour [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- IBM cuts ribbon on quantum computing centre wherein a 53-qubit monster lurks - The Register [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- In 'Something Deeply Hidden,' Sean Carroll Argues There Are Infinite Copies Of You - NPR [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Physicists race to develop room-temperature quantum chips - The Next Web [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- This One Experiment Reveals More About Reality Than Any Quantum Interpretation Ever Will - Forbes [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Our world is in need of the Mahatmas teachings: Dalai Lama - Livemint [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Quantum-inspired Beckman Institute celebration will be anything but small - Central Illinois Buzz [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Is It a Wave or a Particle? It's Both, Sort Of. - Space.com [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Princeton announces initiative to propel innovations in quantum science and technology - Quantaneo, the Quantum Computing Source [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Precision physics with 'tabletop' experiments - Stanford University News [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Andrea Young uncovers the strange physics of 2-D materials - Science News [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- A Scientific Explainer of What Terrence Howard Was Talking About at the Emmys - VICE [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]
- New Quantum-Mechanical Dissipation Mechanism Observed for the First Time - SciTechDaily [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]
- Physicists have found quasiparticles that mimic hypothetical dark matter axions - Science News [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]
- The Power of Wrong Answers in Science Education - WIRED [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]