ByDr. Mir FaizalandScott Douglas Jacobsen
Dr. Mir Faizal is an Adjunct Professor in Physics and Astronomy at the University of Lethbridge and aVisiting Professor inIrving K. Barber School of Arts and Sciencesat the University of British Columbia Okanagan.
Here we start the cosmology educational series on the differences between the classical and the quantum worlds.
Scott Douglas Jacobsen: Wehave heard terms like classical physics and quantum physics. What do theseterms mean in simple worlds, and what is the difference between them?
Dr. Mir Faizal:We have evolved at a certain scale, and ourintuitiveunderstandingof world is also limited to that scale. Nowcommon sense is the expression of this intuitive understanding of the world in languageslike English or French. If this intuitiveunderstanding of the world isexpressed in mathematics, we naturally will obtain a mathematical descriptionof common sense. This mathematical descriptionof ourintuitiveunderstanding is called classical physics. However, there is nofundamental reason why such an description will hold at a different scale. Infact, now we known that the classical description does not hold at very smallscales, and the common sense seems also to break at such a scale. It is hard toaccuratelydescribe the world at such a small scaleusing languageslike Englishor French, as these languages have not been evolved todescribe the world at such a scale. However, it is still possibletomathematicallydescribe the world at such a small scale, and thismathematical description of small scale is called quantum physics. Even thoughit is not possible to describe the world at such a small scale in commonlanguage, it is possible to use analogies to understandphysics atsuch small scales.
Jacobsen: We see the worldaround us, and know how it behaves, and this forms a basis for our commonsense. Youmentionedthat our common sense breaks in quantum mechanical. Canyou give some examples of such a breaking of common sense in quantummechanics?
Faizal: Let us start by a simple example, to understandhow the common sense breaks in quantum mechanism. If there are two pathsbetween your home and your office, and you are travelling between them, you cantake any one of these two path at one time. However, you will infer that it isimpossible to take both these paths at the same time. Even if you are reallytiny, you cannot take two paths at the same time. The main reason for this is thatit is impossible for you to be present at two different places at the sametime. This seems to be something that you know from common sense. However, thisdescription of the world does not hold at much smaller scales. In quantummechanics, you go to your office from both those paths. In fact, you will takeall the possible paths between your home and office, and we have tomathematically sum these path to describe your behaviour of going between yourhome and office. This is actually how things are calculated for quantummechanical particles. This description of quantum mechanics (where a particletakes all possible path between two points) is called the Feynman path integralapproach.
Jacobsen: We have seenpeople commute between their home and office. In fact, as more simple system,we have seen a stone fall down, and it does not appear to take many pathsbetween two points. We have also never seen a particle present at two places atthe same time. How does the quantum mechanical fit with these observations?
Faizal:In quantum mechanics, as soon as someone makes ameasurement on some object, it instantaneously collapses to just one of thosepaths. Now it is possible to calculate the chance of an object to be collapseto a certain path in quantum mechanics. For large enough objects, this almostcoincides with the path that the object is expected to take based on classicalmechanics. However, as the objects gets smaller, the deviations between the twopaths becomes significant. It may be noted to calculate the position of anobject at any point in future, you need to know about two things. You need toknow where that object is present at a given time, and you need to know howfast it is travelling in a certain direction. If you know both these things,then you can know where that object will be present in future. However, in quantummechanics, it is impossible to measure both the position of a particle and howfast it is travelling, at the same time. Thus, in quantum mechanics it is notpossible to accurately measure the position of a particle in future. What wecan measure is the chance for a particle to be present at a certain point intime. So, in quantum mechanics causality is also only probabilistically true.As it is impossible to obtain certain knowledge of cause, the effects can beonly probabilistically predicted.
Jacobsen: It is possible toexactly predict the future positionof particle by improving ourtechnology and inventing better devices?
Faizal:Technological development cannot be usedto predict the future position of a particle beyond what is allowed by quantummechanics. This is because for such quantum system certain knowledge isactually not present in nature, and so we can only get probabilistic knowledgeof such system. This is the main difference between the classical and quantumdescription of the world. In classical mechanics, at least in principle, it ispossible to know the behaviour of a particle with certainty. In other world,the world is totally deterministic in classical mechanics. It might bedifficult to exactly calculate such a behaviour, but such a knowledge exists innature. In fact, even in classical mechanics, we usually use probability todescribe the world. This is the basis of statistical mechanics. However, such ause of probability is epistemological as certain knowledge exists atanontological level in classical physics. It is just very difficult forus to obtain such knowledge accurately for many systems. However, in quantummechanics there is anontological use probability as certain knowledge isabsent at anontological level from nature.
Jacobsen: Can you give asimple analogy of this difference to make it easy to understand?
Faizal:Let us again use a simple example tounderstand this difference. Someone is going to a coffee shop, and he usuallylikes to drink coffee but sometime orders tea. As it is a coffee shop they keeprunning out of tea. Now if it is known that he takes tea about twenty times in hundreddays, then you can calculate the chance of him drinking tea of coffee. Youcannot predict accurately what he will take on a given day, as such a knowledgeis not present in this system. However, knowing what he is more likely toorder, you can predict his behaviour over a large number of visits. So, for thenext ten days you can save two tea bag for him. This is an example of anontological absence of knowledge, and this is how probabilities work in quantummechanics. Now consider another example, in a group of ten people, two of themlike tea and the rest like coffee. Also they have a rule that they will notvisit the coffee shop more than once in ten days. Now if you do not bother toask them who like tea and who likes coffee, and just know how they behave in agroup, you can again predict the probability of them drinking tea. However, inthis case, the knowledge exists in form a hidden variable, which you did notbother to measure. This is an example of anepistemological absence ofknowledge, and this is how probabilities work in statistical mechanics.
Jacobsen: I can understandthat certain knowledge of the particle is not present, but where is theparticle actually present.
Faizal:Theparticle is present at every possible point it can occupy, till it is measured.However, when it is measured, it instantaneously collapses to a single point,and we can measure the chance of it collapsing to a certain point. This is animportant feature of quantum mechanics. In classical mechanics, two different contradictionscannotbe simultaneously existing. In quantum mechanics, all possibilitiessimultaneously exist, till they are measured. However, when they are measured,only one of them is instantaneously observed, and the system ceases to exist inthe other possibilities. This principle has been illustrated by the famousthought experiment of Schrodingers cat, in which a cat is killed by a quantummechanical process. There are two possibilities, as the cat can be dead andalive. Now if the system is not observed, then the cat can exist in a statebeing dead and alive at the same time. As soon as an observation is made, thesysteminstantaneously collapses to one of the two possibilities, so thecat is actually observed to be dead or alive. However, if no observation ismade, the cat is in a state of being dead and alive at the same time.
Jacobsen:Can these quantum effects be observed in our daily life?
Faizal: A important requirement of quantum mechanics isthat it should coincide with the classical physics at our scale, for all thesystem that have been described using classical mechanics. This means thesequantum effects become so small at our scale that they can be neglected, andcannot be observed. There are few phenomena like superconductivity andsuperfluiditywhere quantum effects can change the behaviourofcertain system at large scale. However, most quantum mechanical effect, whichbreak common sense, can be neglected at our scale, and the world at our scalecan described by classical mechanics. It is possible that there are somesystems, where other quantum effects become important even at large scale, and theirbehaviouris very different from thebehaviourpredictedfrom classical mechanics.
Jacobsen: Thank you for theopportunity and your time, Dr. Faizal.Faizal:My pleasure.
Photo by Billy HuynhonUnsplash
https://www.in-sightjournal.com
Assistant Editor, News Intervention,Human Rights Activist.
Scott Douglas Jacobsen is the Founder of In-Sight: Independent Interview-Based Journal and In-Sight Publishing. Jacobsen works for science and human rights, especially womens and childrens rights. He considers the modern scientific and technological world the foundation for the provision of the basics of human life throughout the world and advancement of human rights as the universal movement among peoples everywhere. You can contact Scott via email, his website, or Twitter.
Read more from the original source:
Ask Dr. Faizal 1 - The Classical and Quantum Understandings of the World - News Intervention
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- UW Grad Student from Star Valley Earns Quantum Mechanics Fellowship - SweetwaterNOW.com [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Quantum Computing Might Be Here Sooner Than You Think ... - Bloomberg [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Popular Quantum Physics Books - Goodreads [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- A quantum step to a great wall for encryption - The Hindu [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.Org [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- In 1928, One Physicist Accidentally Predicted Antimatter - Popular Mechanics [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DOE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists make quantum leap in understanding life's nanoscale ... - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics - Lawrence Berkeley National Laboratory [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Stephen Colbert Gets a Lesson on Quantum Physics from Brian ... - Patheos (blog) [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- Quantum physics for babies a different bedtime story - CBC.ca [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- How quantum mechanics can change computing - San Francisco ... - San Francisco Chronicle [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Physicists Use Lasers to Set Up First Underwater Quantum Communications Link - Gizmodo [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Notable Quotes on Quantum Physics Quantum Enigma [Last Updated On: February 15th, 2018] [Originally Added On: February 15th, 2018]
- Nothing Is Solid & Everything Is Energy Scientists Explain The World ... [Last Updated On: April 11th, 2018] [Originally Added On: April 11th, 2018]
- The World Of Quantum Physics: EVERYTHING Is Energy - In5D ... [Last Updated On: April 22nd, 2018] [Originally Added On: April 22nd, 2018]
- Nothing Is Solid & Everything Is Energy Scientists ... [Last Updated On: May 1st, 2018] [Originally Added On: May 1st, 2018]
- Black Holes Bolster Case For Quantum Physics' Spooky Action ... [Last Updated On: August 29th, 2018] [Originally Added On: August 29th, 2018]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: September 29th, 2018] [Originally Added On: September 29th, 2018]
- Quantum Theory - Full Documentary HD [Last Updated On: November 6th, 2018] [Originally Added On: November 6th, 2018]
- Quantum mind - Wikipedia [Last Updated On: February 6th, 2019] [Originally Added On: February 6th, 2019]
- What is quantum theory? - Definition from WhatIs.com [Last Updated On: May 5th, 2019] [Originally Added On: May 5th, 2019]
- The Ultimate Mystery? Consciousness May Exist in the Absence of Matter (Weekend Feature) - The Daily Galaxy --Great Discoveries Channel [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Faculty Opening, Quantum Information and Condensed Matter Experiment - Physics [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Become the physicists the world needs with the help of a physics degree - Study International News [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Imec and NUS working on chip-based quantum cryptography - Optics.org [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Strong LightMatter Coupling in Molecular and Material Engineering - Advanced Science News [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- The key to bigger quantum computers could be to build them like Legos - MIT Technology Review [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Australian universities are accused of trading free speech for cash - The Economist [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- APS Physics Career Center - Physics [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Assistant Professor of Physics, Employment - Physics [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- A new approach to quantum gravity - Tech Explorist [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- A Huge Experiment Has 'Weighed' the Tiny Neutrino, a Particle That Passes Right Through Matter - Gizmodo [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Many Worlds, But Too Much Metaphor - Forbes [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Iran to open 1st quantum physics lab in a year: AEOI head - Mehr News Agency - English Version [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Quantum Computing Breakthrough: New Detection Tool Uncovers Noise That Can Kill Qubits - SciTechDaily [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- A quantum computing startup that spun out of a Harvard lab just came out of stealth mode with $2.7 million in seed funding from investors like Samsung... [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Important Quantum Algorithm May Be a Property of Nature - Technology Networks [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- A New Perspective On Grover's Search Algorithm -- Quantum Physics & DNA - Analytics India Magazine [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Iran to open first quantum physics lab in a year: AEOI head - Quantaneo, the Quantum Computing Source [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Sean Carroll: Universe a 'tiny sliver' of all there is - PBS NewsHour [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- IBM cuts ribbon on quantum computing centre wherein a 53-qubit monster lurks - The Register [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- In 'Something Deeply Hidden,' Sean Carroll Argues There Are Infinite Copies Of You - NPR [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Physicists race to develop room-temperature quantum chips - The Next Web [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- This One Experiment Reveals More About Reality Than Any Quantum Interpretation Ever Will - Forbes [Last Updated On: September 19th, 2019] [Originally Added On: September 19th, 2019]
- Our world is in need of the Mahatmas teachings: Dalai Lama - Livemint [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Quantum-inspired Beckman Institute celebration will be anything but small - Central Illinois Buzz [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Is It a Wave or a Particle? It's Both, Sort Of. - Space.com [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Princeton announces initiative to propel innovations in quantum science and technology - Quantaneo, the Quantum Computing Source [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Precision physics with 'tabletop' experiments - Stanford University News [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Andrea Young uncovers the strange physics of 2-D materials - Science News [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- A Scientific Explainer of What Terrence Howard Was Talking About at the Emmys - VICE [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]
- New Quantum-Mechanical Dissipation Mechanism Observed for the First Time - SciTechDaily [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]
- Physicists have found quasiparticles that mimic hypothetical dark matter axions - Science News [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]