When you first stumble across the term quantum computer, you might pass it off as some far-flung science fiction concept rather than a serious current news item.
But with the phrase being thrown around with increasing frequency, its understandable to wonder exactly what quantum computers are, and just as understandable to be at a loss as to where to dive in. Heres the rundown on what quantum computers are, why theres so much buzz around them, and what they might mean for you.
All computing relies on bits, the smallest unit of information that is encoded as an on state or an off state, more commonly referred to as a 1 or a 0, in some physical medium or another.
Most of the time, a bit takes the physical form of an electrical signal traveling over the circuits in the computers motherboard. By stringing multiple bits together, we can represent more complex and useful things like text, music, and more.
The two key differences between quantum bits and classical bits (from the computers we use today) are the physical form the bits take and, correspondingly, the nature of data encoded in them. The electrical bits of a classical computer can only exist in one state at a time, either 1 or 0.
Quantum bits (or qubits) are made of subatomic particles, namely individual photons or electrons. Because these subatomic particles conform more to the rules of quantum mechanics than classical mechanics, they exhibit the bizarre properties of quantum particles. The most salient of these properties for computer scientists is superposition. This is the idea that a particle can exist in multiple states simultaneously, at least until that state is measured and collapses into a single state. By harnessing this superposition property, computer scientists can make qubits encode a 1 and a 0 at the same time.
The other quantum mechanical quirk that makes quantum computers tick is entanglement, a linking of two quantum particles or, in this case, two qubits. When the two particles are entangled, the change in state of one particle will alter the state of its partner in a predictable way, which comes in handy when it comes time to get a quantum computer to calculate the answer to the problem you feed it.
A quantum computers qubits start in their 1-and-0 hybrid state as the computer initially starts crunching through a problem. When the solution is found, the qubits in superposition collapse to the correct orientation of stable 1s and 0s for returning the solution.
Aside from the fact that they are far beyond the reach of all but the most elite research teams (and will likely stay that way for a while), most of us dont have much use for quantum computers. They dont offer any real advantage over classical computers for the kinds of tasks we do most of the time.
However, even the most formidable classical supercomputers have a hard time cracking certain problems due to their inherent computational complexity. This is because some calculations can only be achieved by brute force, guessing until the answer is found. They end up with so many possible solutions that it would take thousands of years for all the worlds supercomputers combined to find the correct one.
The superposition property exhibited by qubits can allow supercomputers to cut this guessing time down precipitously. Classical computings laborious trial-and-error computations can only ever make one guess at a time, while the dual 1-and-0 state of a quantum computers qubits lets it make multiple guesses at the same time.
So, what kind of problems require all this time-consuming guesswork calculation? One example is simulating atomic structures, especially when they interact chemically with those of other atoms. With a quantum computer powering the atomic modeling, researchers in material science could create new compounds for use in engineering and manufacturing. Quantum computers are well suited to simulating similarly intricate systems like economic market forces, astrophysical dynamics, or genetic mutation patterns in organisms, to name only a few.
Amidst all these generally inoffensive applications of this emerging technology, though, there are also some uses of quantum computers that raise serious concerns. By far the most frequently cited harm is the potential for quantum computers to break some of the strongest encryption algorithms currently in use.
In the hands of an aggressive foreign government adversary, quantum computers could compromise a broad swath of otherwise secure internet traffic, leaving sensitive communications susceptible to widespread surveillance. Work is currently being undertaken to mature encryption ciphers based on calculations that are still hard for even quantum computers to do, but they are not all ready for prime-time, or widely adopted at present.
A little over a decade ago, actual fabrication of quantum computers was barely in its incipient stages. Starting in the 2010s, though, development of functioning prototype quantum computers took off. A number of companies have assembled working quantum computers as of a few years ago, with IBM going so far as to allow researchers and hobbyists to run their own programs on it via the cloud.
Despite the strides that companies like IBM have undoubtedly made to build functioning prototypes, quantum computers are still in their infancy. Currently, the quantum computers that research teams have constructed so far require a lot of overhead for executing error correction. For every qubit that actually performs a calculation, there are several dozen whose job it is to compensate for the ones mistake. The aggregate of all these qubits make what is called a logical qubit.
Long story short, industry and academic titans have gotten quantum computers to work, but they do so very inefficiently.
Fierce competition between quantum computer researchers is still raging, between big and small players alike. Among those who have working quantum computers are the traditionally dominant tech companies one would expect: IBM, Intel, Microsoft, and Google.
As exacting and costly of a venture as creating a quantum computer is, there are a surprising number of smaller companies and even startups that are rising to the challenge.
The comparatively lean D-Wave Systems has spurred many advances in the fieldand proved it was not out of contention by answering Googles momentous announcement with news of a huge deal with Los Alamos National Labs. Still, smaller competitors like Rigetti Computing are also in the running for establishing themselves as quantum computing innovators.
Depending on who you ask, youll get a different frontrunner for the most powerful quantum computer. Google certainly made its case recently with its achievement of quantum supremacy, a metric that itself Google more or less devised. Quantum supremacy is the point at which a quantum computer is first able to outperform a classical computer at some computation. Googles Sycamore prototype equipped with 54 qubits was able to break that barrier by zipping through a problem in just under three-and-a-half minutes that would take the mightiest classical supercomputer 10,000 years to churn through.
Not to be outdone, D-Wave boasts that the devices it will soon be supplying to Los Alamos weigh in at 5000 qubits apiece, although it should be noted that the quality of D-Waves qubits has been called into question before. IBM hasnt made the same kind of splash as Google and D-Wave in the last couple of years, but they shouldnt be counted out yet, either, especially considering their track record of slow and steady accomplishments.
Put simply, the race for the worlds most powerful quantum computer is as wide open as it ever was.
The short answer to this is not really, at least for the near-term future. Quantum computers require an immense volume of equipment, and finely tuned environments to operate. The leading architecture requires cooling to mere degrees above absolute zero, meaning they are nowhere near practical for ordinary consumers to ever own.
But as the explosion of cloud computing has proven, you dont need to own a specialized computer to harness its capabilities. As mentioned above, IBM is already offering daring technophiles the chance to run programs on a small subset of its Q System Ones qubits. In time, IBM and its competitors will likely sell compute time on more robust quantum computers for those interested in applying them to otherwise inscrutable problems.
But if you arent researching the kinds of exceptionally tricky problems that quantum computers aim to solve, you probably wont interact with them much. In fact, quantum computers are in some cases worse at the sort of tasks we use computers for every day, purely because quantum computers are so hyper-specialized. Unless you are an academic running the kind of modeling where quantum computing thrives, youll likely never get your hands on one, and never need to.
See the original post here:
What Is Quantum Computing? The Next Era of Computational ...
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- quantum computing - WIRED UK [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Here's How We Can Achieve Mass-Produced Quantum Computers - ScienceAlert [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- HYPRES Expands Efforts in Quantum Computing with Launch of European Subsidiary SeeQC - Business Wire (press release) [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The US and China "Quantum Computing Arms Race" Will Change Long-Held Dynamics in Commerce, Intelligence ... - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Quantum Computing Technologies markets will reach $10.7 billion by 2024 - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Get ahead in quantum computing AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum ... - ZDNet [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Quantum computing, the machines of tomorrow | The Japan Times - The Japan Times [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- Israel Enters Quantum Computer Race, Placing Encryption at Ever-Greater Risk - Sputnik International [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Prototype device enables photon-photon interactions at room ... - Phys.Org [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Dow and 1QBit Announce Collaboration Agreement on Quantum Computing - Business Wire (press release) [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Imperfect crystals may be perfect storage method for quantum computing - Digital Trends [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Dow Chemical, 1QBit Ink Quantum Computing Development Deal - Zacks.com [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- Google on track for quantum computer breakthrough by end of 2017 - New Scientist [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- USC to lead project to build super-speedy quantum computers - USC News [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- The Quantum Computer Factory That's Taking on Google and IBM ... - WIRED [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- The weird science of quantum computing, communications and encryption - C4ISR & Networks [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Multi-coloured photons in 100 dimensions may make quantum ... - Cosmos [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Global Quantum Computing Market Growth at a CAGR of 35.12 ... - PR Newswire (press release) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum - IEEE Spectrum [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum ... - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Quantum computers are about to get real | Science News - Science News Magazine [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Quantum Computing - Scientific American [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Australia's ambitious plan to win the quantum race - ZDNet [Last Updated On: July 3rd, 2017] [Originally Added On: July 3rd, 2017]
- How quantum mechanics can change computing - The Conversation - The Conversation US [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- UNSW joins with government and business to keep quantum computing technology in Australia - The Australian Financial Review [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- UNSW launches Australia's first hardware quantum computing company with investments from federal and NSW ... - OpenGov Asia [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Finns chill out quantum computers with qubit refrigerator to cut out errors - ZDNet [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Hype and cash are muddying public understanding of quantum ... - The Conversation AU [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- IEEE Approves Standards Project for Quantum Computing ... - insideHPC [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Silicon Quantum Computing launched to commercialise UNSW ... - ZDNet [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- The Era of Quantum Computing Is Here. Outlook: Cloudy ... [Last Updated On: January 30th, 2018] [Originally Added On: January 30th, 2018]
- The Era of Quantum Computing Is Here. Outlook: Cloudy | WIRED [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- Quantum computing in the NISQ era and beyond [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- What is quantum computing? - Definition from WhatIs.com [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- Quantum computers - WIRED UK [Last Updated On: February 19th, 2018] [Originally Added On: February 19th, 2018]
- Is Quantum Computing an Existential Threat to Blockchain ... [Last Updated On: February 21st, 2018] [Originally Added On: February 21st, 2018]
- What is Quantum Computing? Webopedia Definition [Last Updated On: March 25th, 2018] [Originally Added On: March 25th, 2018]
- Quantum Computing Explained - WIRED UK [Last Updated On: April 15th, 2018] [Originally Added On: April 15th, 2018]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: June 2nd, 2018] [Originally Added On: June 2nd, 2018]
- What are quantum computers and how do they work? WIRED ... [Last Updated On: June 22nd, 2018] [Originally Added On: June 22nd, 2018]
- How Quantum Computers Work [Last Updated On: July 22nd, 2018] [Originally Added On: July 22nd, 2018]
- The reality of quantum computing could be just three years ... [Last Updated On: September 12th, 2018] [Originally Added On: September 12th, 2018]
- The 3 Types of Quantum Computers and Their Applications [Last Updated On: November 24th, 2018] [Originally Added On: November 24th, 2018]
- Quantum Computing - VLAB [Last Updated On: January 27th, 2019] [Originally Added On: January 27th, 2019]
- Quantum Computing | Centre for Quantum Computation and ... [Last Updated On: January 27th, 2019] [Originally Added On: January 27th, 2019]
- Microsofts quantum computing network takes a giant leap ... [Last Updated On: March 7th, 2019] [Originally Added On: March 7th, 2019]
- IBM hits quantum computing milestone, may see 'Quantum ... [Last Updated On: March 7th, 2019] [Originally Added On: March 7th, 2019]
- Quantum technology - Wikipedia [Last Updated On: March 13th, 2019] [Originally Added On: March 13th, 2019]
- Quantum Computing | D-Wave Systems [Last Updated On: April 18th, 2019] [Originally Added On: April 18th, 2019]
- Microsoft will open-source parts of Q#, the programming ... [Last Updated On: May 7th, 2019] [Originally Added On: May 7th, 2019]
- What Is Quantum Computing? The Complete WIRED Guide | WIRED [Last Updated On: May 8th, 2019] [Originally Added On: May 8th, 2019]
- The five pillars of Edge Computing -- and what is Edge computing anyway? - Information Age [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Moore's Law Is Dying. This Brain-Inspired Analogue Chip Is a Glimpse of What's Next - Singularity Hub [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Experts Gather at Fermilab for International Workshop on Cryogenic Electronics for Quantum Systems - Quantaneo, the Quantum Computing Source [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Princeton announces initiative to propel innovations in quantum science and technology - Princeton University [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Detecting Environmental 'Noise' That Can Damage The Quantum State of Qubits - In Compliance [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Quantum Computing beginning talks with clients on its quantum asset allocation application - Proactive Investors USA & Canada [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is quantum computing? The next era of computational evolution, explained - Digital Trends [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- IT sees the Emergence of Quantum Computing as a Looming Threat to Keeping Valuable Information Confidential - Quantaneo, the Quantum Computing Source [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]
- More wrong answers get quantum computers to find the right one - Futurity: Research News [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]