Big things happen when computers get smaller. Or faster. And quantum computing is about chasing perhaps the biggest performance boost in the history of technology. The basic idea is to smash some barriers that limit the speed of existing computers by harnessing the counterintuitive physics of subatomic scales.
If the tech industry pulls off that, ahem, quantum leap, you wont be getting a quantum computer for your pocket. Dont start saving for an iPhone Q. We could, however, see significant improvements in many areas of science and technology, such as longer-lasting batteries for electric cars or advances in chemistry that reshape industries or enable new medical treatments. Quantum computers wont be able to do everything faster than conventional computers, but on some tricky problems they have advantages that would enable astounding progress.
Its not productive (or polite) to ask people working on quantum computing when exactly those dreamy applications will become real. The only thing for sure is that they are still many years away. Prototype quantum computing hardware is still embryonic. But powerfuland, for tech companies, profit-increasingcomputers powered by quantum physics have recently started to feel less hypothetical.
The cooling and support structure for one of IBM's quantum computing chips (the tiny black square at the bottom of the image).
Amy Lombard
Thats because Google, IBM, and others have decided its time to invest heavily in the technology, which, in turn, has helped quantum computing earn a bullet point on the corporate strategy PowerPoint slides of big companies in areas such as finance, like JPMorgan, and aerospace, like Airbus. In 2017, venture investors plowed $241 million into startups working on quantum computing hardware or software worldwide, according to CB Insights. Thats triple the amount in the previous year.
Like the befuddling math underpinning quantum computing, some of the expectations building around this still-impractical technology can make you lightheaded. If you squint out the window of a flight into SFO right now, you can see a haze of quantum hype drifting over Silicon Valley. But the enormous potential of quantum computing is undeniable, and the hardware needed to harness it is advancing fast. If there were ever a perfect time to bend your brain around quantum computing, its now. Say Schrodingers superposition three times fast, and we can dive in.
The prehistory of quantum computing begins early in the 20th century, when physicists began to sense they had lost their grip on reality.
First, accepted explanations of the subatomic world turned out to be incomplete. Electrons and other particles didnt just neatly carom around like Newtonian billiard balls, for example. Sometimes they acted like waves instead. Quantum mechanics emerged to explain such quirks, but introduced troubling questions of its own. To take just one brow-wrinkling example, this new math implied that physical properties of the subatomic world, like the position of an electron, didnt really exist until they were observed.
Physicist Paul Benioff suggests quantum mechanics could be used for computation.
Nobel-winning physicist Richard Feynman, at Caltech, coins the term quantum computer.
Physicist David Deutsch, at Oxford, maps out how a quantum computer would operate, a blueprint that underpins the nascent industry of today.
Mathematician Peter Shor, at Bell Labs, writes an algorithm that could tap a quantum computers power to break widely used forms of encryption.
D-Wave, a Canadian startup, announces a quantum computing chip it says can solve Sudoku puzzles, triggering years of debate over whether the companys technology really works.
Google teams up with NASA to fund a lab to try out D-Waves hardware.
Google hires the professor behind some of the best quantum computer hardware yet to lead its new quantum hardware lab.
IBM puts some of its prototype quantum processors on the internet for anyone to experiment with, saying programmers need to get ready to write quantum code.
Startup Rigetti opens its own quantum computer fabrication facility to build prototype hardware and compete with Google and IBM.
If you find that baffling, youre in good company. A year before winning a Nobel for his contributions to quantum theory, Caltechs Richard Feynman remarked that nobody understands quantum mechanics. The way we experience the world just isnt compatible. But some people grasped it well enough to redefine our understanding of the universe. And in the 1980s a few of themincluding Feynmanbegan to wonder if quantum phenomena like subatomic particles' dont look and I dont exist trick could be used to process information. The basic theory or blueprint for quantum computers that took shape in the 80s and 90s still guides Google and others working on the technology.
Before we belly flop into the murky shallows of quantum computing 0.101, we should refresh our understanding of regular old computers. As you know, smartwatches, iPhones, and the worlds fastest supercomputer all basically do the same thing: they perform calculations by encoding information as digital bits, aka 0s and 1s. A computer might flip the voltage in a circuit on and off to represent 1s and 0s for example.
Quantum computers do calculations using bits, too. After all, we want them to plug into our existing data and computers. But quantum bits, or qubits, have unique and powerful properties that allow a group of them to do much more than an equivalent number of conventional bits.
Qubits can be built in various ways, but they all represent digital 0s and 1s using the quantum properties of something that can be controlled electronically. Popular examplesat least among a very select slice of humanityinclude superconducting circuits, or individual atoms levitated inside electromagnetic fields. The magic power of quantum computing is that this arrangement lets qubits do more than just flip between 0 and 1. Treat them right and they can flip into a mysterious extra mode called a superposition.
The looped cables connect the chip at the bottom of the structure to its control system.
Amy Lombard
You may have heard that a qubit in superposition is both 0 and 1 at the same time. Thats not quite true and also not quite falsetheres just no equivalent in Homo sapiens humdrum classical reality. If you have a yearning to truly grok it, you must make a mathematical odyssey WIRED cannot equip you for. But in the simplified and dare we say perfect world of this explainer, the important thing to know is that the math of a superposition describes the probability of discovering either a 0 or 1 when a qubit is read outan operation that crashes it out of a quantum superposition into classical reality. A quantum computer can use a collection of qubits in superpositions to play with different possible paths through a calculation. If done correctly, the pointers to incorrect paths cancel out, leaving the correct answer when the qubits are read out as 0s and 1s.
A device that uses quantum mechanical effects to represent 0s and 1s of digital data, similar to the bits in a conventional computer.
It's the trick that makes quantum computers tick, and makes qubits more powerful than ordinary bits. A superposition is in an intuition-defying mathematical combination of both 0 and 1. Quantum algorithms can use a group of qubits in a superposition to shortcut through calculations.
A quantum effect so unintuitive that Einstein dubbed it spooky action at a distance. When two qubits in a superposition are entangled, certain operations on one have instant effects on the other, a process that helps quantum algorithms be more powerful than conventional ones.
The holy grail of quantum computinga measure of how much faster a quantum computer could crack a problem than a conventional computer could. Quantum computers arent well-suited to all kinds of problems, but for some they offer an exponential speedup, meaning their advantage over a conventional computer grows explosively with the size of the input problem.
For some problems that are very time consuming for conventional computers, this allows a quantum computer to find a solution in far fewer steps than a conventional computer would need. Grovers algorithm, a famous quantum search algorithm, could find you in a phone book with 100 million names with just 10,000 operations. If a classical search algorithm just spooled through all the listings to find you, it would require 50 million operations, on average. For Grovers and some other quantum algorithms, the bigger the initial problemor phonebookthe further behind a conventional computer is left in the digital dust.
The reason we dont have useful quantum computers today is that qubits are extremely finicky. The quantum effects they must control are very delicate, and stray heat or noise can flip 0s and 1s, or wipe out a crucial superposition. Qubits have to be carefully shielded, and operated at very cold temperatures, sometimes only fractions of a degree above absolute zero. Most plans for quantum computing depend on using a sizable chunk of a quantum processors power to correct its own errors, caused by misfiring qubits.
Recent excitement about quantum computing stems from progress in making qubits less flaky. Thats giving researchers the confidence to start bundling the devices into larger groups. Startup Rigetti Computing recently announced it has built a processor with 128 qubits made with aluminum circuits that are super-cooled to make them superconducting. Google and IBM have announced their own chips with 72 and 50 qubits, respectively. Thats still far fewer than would be needed to do useful work with a quantum computerit would probably require at least thousandsbut as recently as 2016 those companies best chips had qubits only in the single digits. After tantalizing computer scientists for 30 years, practical quantum computing may not exactly be close, but it has begun to feel a lot closer.
Some large companies and governments have started treating quantum computing research like a raceperhaps fittingly its one where both the distance to the finish line and the prize for getting there are unknown.
Google, IBM, Intel, and Microsoft have all expanded their teams working on the technology, with a growing swarm of startups such as Rigetti in hot pursuit. China and the European Union have each launched new programs measured in the billions of dollars to stimulate quantum R&D. And in the US, the Trump White House has created a new committee to coordinate government work on quantum information science. Several bills were introduced to Congress in 2018 proposing new funding for quantum research, totalling upwards of $1.3 billion. Its not quite clear what the first killer apps of quantum computing will be, or when they will appear. But theres a sense that whoever is first make these machines useful will gain big economic and national security advantages.
Copper structures conduct heat well and connect the apparatus to its cooling system.
Amy Lombard
Back in the world of right now, though, quantum processors are too simple to do practical work. Google is working to stage a demonstration known as quantum supremacy, in which a quantum processor would solve a carefully designed math problem beyond existing supercomputers. But that would be an historic scientific milestone, not proof quantum computing is ready to do real work.
As quantum computer prototypes get larger, the first practical use for them will probably be for chemistry simulations. Computer models of molecules and atoms are vital to the hunt for new drugs or materials. Yet conventional computers cant accurately simulate the behavior of atoms and electrons during chemical reactions. Why? Because that behavior is driven by quantum mechanics, the full complexity of which is too great for conventional machines. Daimler and Volkswagen have both started investigating quantum computing as a way to improve battery chemistry for electric vehicles. Microsoft says other uses could include designing new catalysts to make industrial processes less energy intensive, or even to pull carbon dioxide out of the atmosphere to mitigate climate change.
Quantum computers would also be a natural fit for code-breaking. Weve known since the 90s that they could zip through the math underpinning the encryption that secures online banking, flirting, and shopping. Quantum processors would need to be much more advanced to do this, but governments and companies are taking the threat seriously. The National Institute of Standards and Technology is in the process of evaluating new encryption systems that could be rolled out to quantum-proof the internet.
When cooled to operating temperature, the whole assembly is hidden inside this white insulated casing.
Amy Lombard
Tech companies such as Google are also betting that quantum computers can make artificial intelligence more powerful. Thats further in the future and less well mapped out than chemistry or code-breaking applications, but researchers argue they can figure out the details down the line as they play around with larger and larger quantum processors. One hope is that quantum computers could help machine-learning algorithms pick up complex tasks using many fewer than the millions of examples typically used to train AI systems today.
Despite all the superposition-like uncertainty about when the quantum computing era will really begin, big tech companies argue that programmers need to get ready now. Google, IBM, and Microsoft have all released open source tools to help coders familiarize themselves with writing programs for quantum hardware. IBM has even begun to offer online access to some of its quantum processors, so anyone can experiment with them. Long term, the big computing companies see themselves making money by charging corporations to access data centers packed with supercooled quantum processors.
Whats in it for the rest of us? Despite some definite drawbacks, the age of conventional computers has helped make life safer, richer, and more convenientmany of us are never more than five seconds away from a kitten video. The era of quantum computers should have similarly broad reaching, beneficial, and impossible to predict consequences. Bring on the qubits.
The Quantum Computing Factory Thats Taking on Google and IBMPeek inside the ultra-clean workshop of Rigetti Computing, a startup packed with PhDs wearing what look like space suits and gleaming steampunk-style machines studded with bolts. In a facility across the San Francisco Bay from Silicon Valley, Rigetti is building its own quantum processors, using similar technology to that used by IBM and Google.
Why JP Morgan, Daimler Are Testing Quantum Computers That Arent Useful YetWall Street has plenty of quantsmath wizards who hunt profits using equations. Now JP Morgan has quantum quants, a small team collaborating with IBM to figure out how to use the power of quantum algorithms to more accurately model financial risk. Useful quantum computers are still years away, but the bank and other big corporations say that the potential payoffs are so large that they need to seriously investigate quantum computing today.
The Era of Quantum Computing is Here. Outlook: CloudyCompanies working on quantum computer hardware like to say that the field has transitioned from the exploration and uncertainty of science into the more predictable realm of engineering. Yet while hardware has improved markedly in recent years, and investment is surging, there are still open scientific questions about the physics underlying quantum computing.
Quantum Computing Will Create Jobs. But Which Ones?You cant create a new industry without people to staff the jobs it creates. A Congressional bill called the National Quantum Initiative seeks to have the US government invest in training the next generation of quantum computer technicians, designers, and entrepreneurs.
Job One For Quantum Computers: Boost Artificial IntelligenceArtificial intelligence and quantum computing are two of Silicon Valleys favorite buzzwords. If they can be successfully combined, machines will get a lot smarter.
Loopholes and the Anti-Realism Of the Quantum WorldEven people who can follow the math of quantum mechanics find its implications for reality perplexing. This book excerpt explains why quantum physics undermines our understanding of reality with nary an equation in sight.
Quantum Computing is the Next Security Big Security RiskIn 1994, mathematician Peter Shor wrote an algorithm that would allow a quantum computer to pierce the encryption that today underpins online shopping and other digital. As quantum computers get closer to reality, congressman Will Hurd (R-Texas) argues the US needs to lead a global effort to deploy new forms of quantum-resistant encryption.
This guide was last updated on August 24, 2018.
Enjoyed this deep dive? Check out more WIRED Guides.
See the original post here:
What Is Quantum Computing? The Complete WIRED Guide | WIRED
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- quantum computing - WIRED UK [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Here's How We Can Achieve Mass-Produced Quantum Computers - ScienceAlert [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- HYPRES Expands Efforts in Quantum Computing with Launch of European Subsidiary SeeQC - Business Wire (press release) [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The US and China "Quantum Computing Arms Race" Will Change Long-Held Dynamics in Commerce, Intelligence ... - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Quantum Computing Technologies markets will reach $10.7 billion by 2024 - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Get ahead in quantum computing AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum ... - ZDNet [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Quantum computing, the machines of tomorrow | The Japan Times - The Japan Times [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- Israel Enters Quantum Computer Race, Placing Encryption at Ever-Greater Risk - Sputnik International [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Prototype device enables photon-photon interactions at room ... - Phys.Org [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Dow and 1QBit Announce Collaboration Agreement on Quantum Computing - Business Wire (press release) [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Imperfect crystals may be perfect storage method for quantum computing - Digital Trends [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Dow Chemical, 1QBit Ink Quantum Computing Development Deal - Zacks.com [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- Google on track for quantum computer breakthrough by end of 2017 - New Scientist [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- USC to lead project to build super-speedy quantum computers - USC News [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- The Quantum Computer Factory That's Taking on Google and IBM ... - WIRED [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- The weird science of quantum computing, communications and encryption - C4ISR & Networks [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Multi-coloured photons in 100 dimensions may make quantum ... - Cosmos [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Global Quantum Computing Market Growth at a CAGR of 35.12 ... - PR Newswire (press release) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum - IEEE Spectrum [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum ... - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Quantum computers are about to get real | Science News - Science News Magazine [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Quantum Computing - Scientific American [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Australia's ambitious plan to win the quantum race - ZDNet [Last Updated On: July 3rd, 2017] [Originally Added On: July 3rd, 2017]
- How quantum mechanics can change computing - The Conversation - The Conversation US [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- UNSW joins with government and business to keep quantum computing technology in Australia - The Australian Financial Review [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- UNSW launches Australia's first hardware quantum computing company with investments from federal and NSW ... - OpenGov Asia [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Finns chill out quantum computers with qubit refrigerator to cut out errors - ZDNet [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Hype and cash are muddying public understanding of quantum ... - The Conversation AU [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- IEEE Approves Standards Project for Quantum Computing ... - insideHPC [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Silicon Quantum Computing launched to commercialise UNSW ... - ZDNet [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- The Era of Quantum Computing Is Here. Outlook: Cloudy ... [Last Updated On: January 30th, 2018] [Originally Added On: January 30th, 2018]
- The Era of Quantum Computing Is Here. Outlook: Cloudy | WIRED [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- Quantum computing in the NISQ era and beyond [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- What is quantum computing? - Definition from WhatIs.com [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- Quantum computers - WIRED UK [Last Updated On: February 19th, 2018] [Originally Added On: February 19th, 2018]
- Is Quantum Computing an Existential Threat to Blockchain ... [Last Updated On: February 21st, 2018] [Originally Added On: February 21st, 2018]
- What is Quantum Computing? Webopedia Definition [Last Updated On: March 25th, 2018] [Originally Added On: March 25th, 2018]
- Quantum Computing Explained - WIRED UK [Last Updated On: April 15th, 2018] [Originally Added On: April 15th, 2018]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: June 2nd, 2018] [Originally Added On: June 2nd, 2018]
- What are quantum computers and how do they work? WIRED ... [Last Updated On: June 22nd, 2018] [Originally Added On: June 22nd, 2018]
- How Quantum Computers Work [Last Updated On: July 22nd, 2018] [Originally Added On: July 22nd, 2018]
- The reality of quantum computing could be just three years ... [Last Updated On: September 12th, 2018] [Originally Added On: September 12th, 2018]
- The 3 Types of Quantum Computers and Their Applications [Last Updated On: November 24th, 2018] [Originally Added On: November 24th, 2018]
- Quantum Computing - VLAB [Last Updated On: January 27th, 2019] [Originally Added On: January 27th, 2019]
- Quantum Computing | Centre for Quantum Computation and ... [Last Updated On: January 27th, 2019] [Originally Added On: January 27th, 2019]
- Microsofts quantum computing network takes a giant leap ... [Last Updated On: March 7th, 2019] [Originally Added On: March 7th, 2019]
- IBM hits quantum computing milestone, may see 'Quantum ... [Last Updated On: March 7th, 2019] [Originally Added On: March 7th, 2019]
- Quantum technology - Wikipedia [Last Updated On: March 13th, 2019] [Originally Added On: March 13th, 2019]
- Quantum Computing | D-Wave Systems [Last Updated On: April 18th, 2019] [Originally Added On: April 18th, 2019]
- Microsoft will open-source parts of Q#, the programming ... [Last Updated On: May 7th, 2019] [Originally Added On: May 7th, 2019]
- The five pillars of Edge Computing -- and what is Edge computing anyway? - Information Age [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Moore's Law Is Dying. This Brain-Inspired Analogue Chip Is a Glimpse of What's Next - Singularity Hub [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Experts Gather at Fermilab for International Workshop on Cryogenic Electronics for Quantum Systems - Quantaneo, the Quantum Computing Source [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Princeton announces initiative to propel innovations in quantum science and technology - Princeton University [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Detecting Environmental 'Noise' That Can Damage The Quantum State of Qubits - In Compliance [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Quantum Computing beginning talks with clients on its quantum asset allocation application - Proactive Investors USA & Canada [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is quantum computing? The next era of computational evolution, explained - Digital Trends [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- IT sees the Emergence of Quantum Computing as a Looming Threat to Keeping Valuable Information Confidential - Quantaneo, the Quantum Computing Source [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]
- More wrong answers get quantum computers to find the right one - Futurity: Research News [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]
- Airbus announces the names of the jury members for its Quantum Computing Challenge - Quantaneo, the Quantum Computing Source [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]