Of all the reasons for wanting to time-travelsaving someone from a fatal mistake, exploring ancient civilizations, gathering evidence about unsolved crimesrecovering lost information isnt the most exciting. But even if a quest to recover the file that didnt auto-save doesn't sound like a Hollywood movie plot, weve all had moments when weve longed to go back in time for exactly that reason.
Theories of time and time-travel have highlighted an apparent stumbling block: time travel requires changing the past, even simply by adding in the time traveller. The problem, according to chaos theory, is that the smallest of changes can cause radical consequences in the future. In this conception of time travel, it wouldnt be advisable to recover your unsaved document since this act would have huge knock-on effects on everything else.
New research in quantum physics from Los Alamos National Laboratory has shown that the so-called butterfly effect can be overcome in the quantum realm in order to unscramble lost information by essentially reversing time.
In a paper published in July, researchers Bin Yan and Nikolai Sinitsyn write that a thought experiment in unscrambling information with time-reversing operations would be expected to lead to the same butterfly effect as the one in the famous Ray Bradburys story A Sound of Thunder In that short story, a time traveler steps on an insect in the deep past and returns to find the modern world completely altered, giving rise to the idea we refer to as the butterfly effect.
In contrast," they wrote, "our result shows that by the end of a similar protocol the local information is essentially restored.
"The primary focus of this work is not 'time travel'physicists do not have an answer yet to tell whether it is possible and how to do time travel in the real world, Yan clarified.
[But] since our protocol involves a 'forward' and a 'backward' evolution of the qubits, achieved by changing the orders of quantum gates in the circuit, it has a nice interpretation in terms of Ray Bradbury's story for the butterfly effect. So, it is an accurate and useful way to understand our results."
What is the butterfly effect?
The world does not behave in a neat, ordered way. If it did, identical events would always produce the same patterns of knock-on effects, and the future would be entirely predictable, or deterministic. Chaos theory claims that the opposite: total randomness is not our situation either. We exist somewhere in the middle, in a world that often appears random but in fact obeys rules and patterns.
Patterns within chaos are hidden because they are highly sensitive to tiny changes, which means similar but not identical situations can produce wildly different outcomes. Another way of putting it is that in a chaotic world, effects can be totally out of proportion to their causes, like the metaphor of a flap of butterfly wings causing a tornado on the other side of the world. On the tornado side of the world, the storm would seem random, because the connection between the butterfly-flap and the tornado is too complex to be apparent. While this butterfly effect is the classic poetic metaphor illustrating chaos theory, chaotic dynamics also play out in real-world contexts, including population growth in the Canadian lynx species and the rotation of Plutos moons.
Another feature of chaos is that, even though the rules are deterministic, the future is not predictable in the long-term. Since chaos is so sensitive to small variations, there are near-infinite ways the rules could play out and we would need to know an impossible amount of detail about the present and past to map out exactly how the world will evolve.
Similarly, you cant reverse-engineer some piece of information about the past simply by knowing the current and even future situations; time-travel doesnt help retrieve past information, because even moving backwards in time, the chaotic system is still in play and will produce unpredictable effects.
Information scrambling
Unscrambling information which has previously been scrambled is not straightforward in a chaotic system. Yan and Sinitsyns key discovery is that it is nonetheless possible in quantum computing to get enough information via time-reversal which will then enable information unscrambling.
According to Yan, the fact that the butterfly effect does not occur in quantum realms is not a surprising result, but demonstrating information unscrambling is both novel and important.
In quantum information theory, scrambling occurs when the information encoded in each quantum particle is split up and redistributed across multiple quantum particles in the same quantum system. The scrambling is not random, since information redistribution relies on quantum entanglement, which means that the states of some quantum particles are dependent on each other. Although the scrambled result is seemingly chaotic, the information can be put back together, at least in principle, using the entangled relationships.
Importantly, information scrambling is not the same as information loss. To continue the earlier analogy: information loss occurs when a document is permanently deleted from your computer. For information scrambling, imagine cutting and pasting tiny bits of one computer file into every other file on your machine. Each file now contains a mess of information snippets. You could reconstruct the original files, if you remembered exactly which bits were cut and pasted, and did the entire process in reverse.
Physicists are interested in information scrambling for two main reasons. On the theoretical side, its been proposed as a way to explain what happens to information sucked into a black hole. On the more applied side, it could be an important mechanism for quantum computers to store and hide information, and could produce fast and efficient quantum simulators, which are used already to perform complex experiments including new drug discovery.
Yan and Sinitsyn fall into the second camp, and construct what they call a practically accessible scenario to test unscrambling by time-travel. This scenario is still hypothetical, but explores the mathematics of the actual quantum processor used by Google to demonstrate quantum supremacy in 2019.
Yan says: Another potential application is to use this effect to protect information. A random evolution on a quantum circuit can make the qubit robust to perturbations. One may further exploit the discovered effect to design protocols in quantum cryptography.
The set-up
In Yan and Sinitsyn's quantum thought experiment, Alice and Bob are the protagonists. Alice is using a simplified version of Googles quantum processor to hide just one part of the information stored on the computer (called the central qubit) by scrambling this qubits state across all the other qubits (called the qubit bath). Bob is cast as the intruder, much like a malicious computer hacker. He wants the important information originally stored on the central qubit, now distributed across entangled quantum particles in the bath.
Unfortunately, Bobs hack, while successful in getting the information he wanted, leaves a trail of destruction.
If her processor has already scrambled the information, Alice is sure that Bob cannot get anything useful, the authors write. However, Bobs measurement changes the state of the central qubit and also destroys all quantum correlations between this qubit and the rest of the system.
Bob's method of information theft has altered the computer state so that Alice can also no longer access the hidden information. In this case, the damage occurs because quantum states contain all possible values they could have, with assigned probabilities of each value, but these possibilities (represented by the wave function) collapse down to just one value when a measurement is taken. Quantum computing relies on unmeasured quantum systems to store even more information in multiple possible states, and Bobs intrusion has totally altered the computer system.
Reversing time
Theoretically, the behaviour of a quantum system moving backwards in time can be demonstrated mathematically using whats called a time-reversed evolution operator, which is exactly what Alice uses to de-scramble the information.
Her time-reversal is not actually time travel the way we understand it from science fiction, it is literally a reversal of times direction; the system evolves backwards following whatever dynamics are in play, rather than Alice herself revisiting an earlier time. If the butterfly effect held in the quantum world, then this backwards evolution would actually increase the damage Bob had caused, and Alice would only be able to retrieve the hidden information if she knew exactly what that damage was and could correct her calculations accordingly.
Luckily for Alice, quantum systems behave totally differently to non-quantum (classical or semiclassical) chaotic systems. What Yan and Sinitsyn found is that she can apply her time-reversal operation and end up at an "earlier" state which will not be identical with the initial system she set up, but it will also not have increased the damage which occurred later. Alice can then reconstruct her initial system using a method of quantum unscrambling called quantum state tomography.
What this means is that a quantum system can effectively heal and even recover information that was scrambled in the past, without the chaos of the butterfly effect.
Classical chaotic evolution magnifies any state damage exponentially quickly, which is known as the butterfly effect, explain Yan and Sinitsyn. The quantum evolution, however, is
linear. This explains why, in our case, the uncontrolled damage to the state is not magnified by the subsequent complex evolution. Moreover, the fact that Bobs measurement does not damage the useful information follows from the property of entanglement correlations in the scrambled state.
Hypothetical though this scenario may be, the result already has a practical use: verifying whether a quantum system has achieved quantum supremacy. Quantum processors can simulate time-reversal in a way that classical computers cannot, which could provide the next important test for the quantum race between Google and IBM.
So, while time travel is still not in the cards, the quantum world continues to mess with our classical conception of how the world evolves in time, and pushes the limits of computing information.
See more here:
Scientists Have Shown There's No 'Butterfly Effect' in the Quantum World - VICE
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- quantum computing - WIRED UK [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Here's How We Can Achieve Mass-Produced Quantum Computers - ScienceAlert [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- HYPRES Expands Efforts in Quantum Computing with Launch of European Subsidiary SeeQC - Business Wire (press release) [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The US and China "Quantum Computing Arms Race" Will Change Long-Held Dynamics in Commerce, Intelligence ... - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Quantum Computing Technologies markets will reach $10.7 billion by 2024 - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Get ahead in quantum computing AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum ... - ZDNet [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Quantum computing, the machines of tomorrow | The Japan Times - The Japan Times [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- Israel Enters Quantum Computer Race, Placing Encryption at Ever-Greater Risk - Sputnik International [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Prototype device enables photon-photon interactions at room ... - Phys.Org [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Dow and 1QBit Announce Collaboration Agreement on Quantum Computing - Business Wire (press release) [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Imperfect crystals may be perfect storage method for quantum computing - Digital Trends [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Dow Chemical, 1QBit Ink Quantum Computing Development Deal - Zacks.com [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- Google on track for quantum computer breakthrough by end of 2017 - New Scientist [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- USC to lead project to build super-speedy quantum computers - USC News [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- The Quantum Computer Factory That's Taking on Google and IBM ... - WIRED [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- The weird science of quantum computing, communications and encryption - C4ISR & Networks [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Multi-coloured photons in 100 dimensions may make quantum ... - Cosmos [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Global Quantum Computing Market Growth at a CAGR of 35.12 ... - PR Newswire (press release) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum - IEEE Spectrum [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum ... - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Quantum computers are about to get real | Science News - Science News Magazine [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Quantum Computing - Scientific American [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Australia's ambitious plan to win the quantum race - ZDNet [Last Updated On: July 3rd, 2017] [Originally Added On: July 3rd, 2017]
- How quantum mechanics can change computing - The Conversation - The Conversation US [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- UNSW joins with government and business to keep quantum computing technology in Australia - The Australian Financial Review [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- UNSW launches Australia's first hardware quantum computing company with investments from federal and NSW ... - OpenGov Asia [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Finns chill out quantum computers with qubit refrigerator to cut out errors - ZDNet [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Hype and cash are muddying public understanding of quantum ... - The Conversation AU [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- IEEE Approves Standards Project for Quantum Computing ... - insideHPC [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Silicon Quantum Computing launched to commercialise UNSW ... - ZDNet [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- The Era of Quantum Computing Is Here. Outlook: Cloudy ... [Last Updated On: January 30th, 2018] [Originally Added On: January 30th, 2018]
- The Era of Quantum Computing Is Here. Outlook: Cloudy | WIRED [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- Quantum computing in the NISQ era and beyond [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- What is quantum computing? - Definition from WhatIs.com [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- Quantum computers - WIRED UK [Last Updated On: February 19th, 2018] [Originally Added On: February 19th, 2018]
- Is Quantum Computing an Existential Threat to Blockchain ... [Last Updated On: February 21st, 2018] [Originally Added On: February 21st, 2018]
- What is Quantum Computing? Webopedia Definition [Last Updated On: March 25th, 2018] [Originally Added On: March 25th, 2018]
- Quantum Computing Explained - WIRED UK [Last Updated On: April 15th, 2018] [Originally Added On: April 15th, 2018]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: June 2nd, 2018] [Originally Added On: June 2nd, 2018]
- What are quantum computers and how do they work? WIRED ... [Last Updated On: June 22nd, 2018] [Originally Added On: June 22nd, 2018]
- How Quantum Computers Work [Last Updated On: July 22nd, 2018] [Originally Added On: July 22nd, 2018]
- The reality of quantum computing could be just three years ... [Last Updated On: September 12th, 2018] [Originally Added On: September 12th, 2018]
- The 3 Types of Quantum Computers and Their Applications [Last Updated On: November 24th, 2018] [Originally Added On: November 24th, 2018]
- Quantum Computing - VLAB [Last Updated On: January 27th, 2019] [Originally Added On: January 27th, 2019]
- Quantum Computing | Centre for Quantum Computation and ... [Last Updated On: January 27th, 2019] [Originally Added On: January 27th, 2019]
- Microsofts quantum computing network takes a giant leap ... [Last Updated On: March 7th, 2019] [Originally Added On: March 7th, 2019]
- IBM hits quantum computing milestone, may see 'Quantum ... [Last Updated On: March 7th, 2019] [Originally Added On: March 7th, 2019]
- Quantum technology - Wikipedia [Last Updated On: March 13th, 2019] [Originally Added On: March 13th, 2019]
- Quantum Computing | D-Wave Systems [Last Updated On: April 18th, 2019] [Originally Added On: April 18th, 2019]
- Microsoft will open-source parts of Q#, the programming ... [Last Updated On: May 7th, 2019] [Originally Added On: May 7th, 2019]
- What Is Quantum Computing? The Complete WIRED Guide | WIRED [Last Updated On: May 8th, 2019] [Originally Added On: May 8th, 2019]
- The five pillars of Edge Computing -- and what is Edge computing anyway? - Information Age [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Moore's Law Is Dying. This Brain-Inspired Analogue Chip Is a Glimpse of What's Next - Singularity Hub [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Experts Gather at Fermilab for International Workshop on Cryogenic Electronics for Quantum Systems - Quantaneo, the Quantum Computing Source [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Princeton announces initiative to propel innovations in quantum science and technology - Princeton University [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Detecting Environmental 'Noise' That Can Damage The Quantum State of Qubits - In Compliance [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Quantum Computing beginning talks with clients on its quantum asset allocation application - Proactive Investors USA & Canada [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is quantum computing? The next era of computational evolution, explained - Digital Trends [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- IT sees the Emergence of Quantum Computing as a Looming Threat to Keeping Valuable Information Confidential - Quantaneo, the Quantum Computing Source [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]
- More wrong answers get quantum computers to find the right one - Futurity: Research News [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]