NEW YORK It is a sunny Tuesday morning in late March at IBMs Thomas J. Watson Research Center. The corridor from the reception area follows the long, curving glass curtain-wall that looks out over the visitors parking lot to leafless trees covering a distant hill in Yorktown Heights, New York, an hour north of Manhattan. Walk past the podium from the Jeopardy! episodes at which IBMs Watson smote the human champion of the TV quiz show, turn right into a hallway, and you will enter a windowless lab where a quantum computer is chirping away.
Actually, chirp isnt quite the right word. It is a somewhat metallic sound, chush chush chush, that is made by the equipment that lowers the temperature inside a so-called dilution refrigerator to within hailing distance of absolute zero. Encapsulated in a white canister suspended from a frame, the dilution refrigerator cools a superconducting chip studded with a handful of quantum bits, or qubits.
Quantum computing has been around, in theory if not in practice, for several decades. But these new types of machines, designed to harness quantum mechanics and potentially process unimaginable amounts of data, are certifiably a big deal. I would argue that a working quantum computer is perhaps the most sophisticated technology that humans have ever built, said Chad Rigetti, founder and chief executive officer of Rigetti Computing, a startup in Berkeley, Calif. Quantum computers, he says, harness nature at a level we became aware of only about 100 years ago one that isnt apparent to us in everyday life.
What is more, the potential of quantum computing is enormous. Tapping into the weird way nature works could potentially speed up computing so some problems that are now intractable to classical computers could finally yield solutions. And maybe not just for chemistry and materials science. With practical breakthroughs in speed on the horizon, Wall Streets antennae are twitching.
The second investment that CME Group Inc.s venture arm ever made was in 1QB Information Technologies Inc., a quantum-computing software company in Vancouver. From the start at CME Ventures, weve been looking further ahead at transformational innovations and technologies that we think could have an impact on the financial-services industry in the future, said Rumi Morales, head of CME Ventures LLC.
That 1QBit financing round, in 2015, was led by Royal Bank of Scotland. Kevin Hanley, RBSs director of innovation, says quantum computing is likely to have the biggest impact on industries that are data-rich and time-sensitive. We think financial services is kind of in the cross hairs of that profile, he said.
Goldman Sachs Group Inc. is an investor in D-Wave Systems Inc., another quantum player, as is In-Q-Tel, the CIA-backed venture capital company, says Vern Brownell, CEO of D-Wave. The British Columbia-based company makes machines that do something called quantum annealing. Quantum annealing is basically using the quantum computer to solve optimization problems at the lowest level, Brownell said. Weve taken a slightly different approach where were actually trying to engage with customers, make our computers more and more powerful, and provide this advantage to them in the form of a programmable, usable computer.
Marcos Lopez de Prado, a senior managing director at Guggenheim Partners LLC who is also a scientific adviser at 1QBit and a research fellow at the U.S. Department of Energys Lawrence Berkeley National Laboratory, says it is all about context. The reason quantum computing is so exciting is its perfect marriage with machine learning, he said. I would go as far as to say that currently this is the main application for quantum computing.
Part of that simply derives from the idea of a quantum computer; harnessing a physical device to find an answer, Lopez de Prado says. He sometimes explains it by pointing to the video game Angry Birds. When you play it on your iPad, the central processing units use some mathematical equations that have been programmed into a library to simulate the effects of gravity and the interaction of objects bouncing and colliding. This is how digital computers work, he said.
By contrast, quantum computers turn that approach on its head, Lopez de Prado says. The paradigm for quantum computers is to throw some birds and see what happens. Encode into the quantum microchip this problem; these are your birds and where you throw them from, so whats the optimal trajectory? Then you let the computer check all possible solutions essentially or a very large combination of them and come back with an answer, he said. In a quantum computer, there is no mathematician cracking the problem, he said. The laws of physics crack the problem for you.
The fundamental building blocks of our world are quantum mechanical. If you look at a molecule, said Dario Gil, vice president for science and solutions at IBM Research, the reason molecules form and are stable is because of the interactions of these electron orbitals. Each calculation in there each orbital is a quantum mechanical calculation. The number of those calculations, in turn, increases exponentially with the number of electrons youre trying to model. By the time you have 50 electrons, you have 2 to the 50th power calculations, Gil said. Thats a phenomenally large number, so we cant compute it today, he said. (For the record, it is 1.125 quadrillion. So if you fired up your laptop and started cranking through several calculations a second, it would take a few million years to run through them all.) Connecting information theory to physics could provide a path to solving such problems, Gil says. A 50-qubit quantum computer might begin to be able to do it.
Landon Downs, president and co-founder of 1QBit, says it is now becoming possible to unlock the computational power of the quantum world. This has huge implications for producing new materials or creating new drugs, because we can actually move from a paradigm of discovery to a new era of quantum design, he said in an email. Rigetti, whose company is building hybrid quantum-classical machines, says one moonshot use of quantum computing could be to model catalysts that remove carbon and nitrogen from the atmosphere and thereby help fix global warming.
The quantum-computing community hums with activity and excitement these days. Teams around the world at startups, corporations, universities, and government labs are racing to build machines using a welter of different approaches to process quantum information. Superconducting qubit chips too elementary for you? How about trapped ions, which have brought together researchers from the University of Maryland and the National Institute of Standards and Technology? Or maybe the topological approach that Microsoft Corp. is developing through an international effort called Station Q? The aim is to harness a particle called a non-abelian anyon which has not yet been definitively proven to exist.
These are early days, to be sure. As of late May, the number of quantum computers in the world that clearly, unequivocally do something faster or better than a classical computer remains zero, according to Scott Aaronson, a professor of computer science and director of the Quantum Information Center at the University of Texas at Austin. Such a signal event would establish quantum supremacy. In Aaronsons words, That we dont have yet.
Yet someone may accomplish the feat as soon as this year. Most insiders say one clear favorite is a group at Google Inc. led by John Martinis, a physics professor at the University of California at Santa Barbara. According to Martinis, the groups goal is to achieve supremacy with a 49-qubit chip. As of late May, he says, the team was testing a 22-qubit processor as an intermediate step toward a showdown with a classical supercomputer. We are optimistic about this, since prior chips have worked well, he said in an email.
The idea of using quantum mechanics to process information dates back decades. One key event happened in 1981, when International Business Machines Corp. and MIT co-sponsored a conference on the physics of computation at the universitys Endicott House in Dedham, Massachusetts. At the conference, Richard Feynman, the famed physicist, proposed building a quantum computer. Nature isnt classical, damn it, and if you want to make a simulation of nature, youd better make it quantum mechanical, he said in his talk. And by golly, its a wonderful problem, because it doesnt look so easy.
He got that part right. The basic idea is to take advantage of a couple of the weird properties of the atomic realm superposition and entanglement. Superposition is the mind-bending observation that a particle can be in two states at the same time. Bring out your ruler to get a measurement, however, and the particle will collapse into one state or the other. And you wont know which until you try, except in terms of probabilities. This effect is what underlies Schrodingers cat, the thought-experiment animal that is both alive and dead in a box until you sneak a peek.
Sure, bending your brain around that one doesnt come especially easy; nothing in everyday life works that way, of course. Yet about 1 million experiments since the early 20th century show that superposition is a thing. And if superposition happens to be your thing, the next step is figuring out how to strap such a crazy concept into a harness.
Enter qubits. Classical bits can be a 0 or a 1; run a string of them together through logic gates (AND, OR, NOT, etc.), and you will multiply numbers, draw an image, and whatnot. A qubit, by contrast, can be a 0, a 1, or both at the same time.
Ready for entanglement? (You are in good company if you balk; Albert Einstein famously rebelled against the idea, calling it spooky action at a distance.) Well, lets say two qubits were to get entangled. Gil says that would make them perfectly correlated. A quantum computer could then utilize a menagerie of distinctive logic gates. The so-called Hadamard gate, for example, puts a qubit into a state of perfect superposition. (There may be something called a square root of NOT gate, but lets take a pass on that one.) If you tap the superposition and entanglement in clever arrangements of the weird quantum gates, you start to get at the potential power of quantum computing.
If you have two qubits, you can explore four states; 00, 01, 10, and 11. (Note that thats 4:2 raised to the power of 2.) When I perform a logical operation on my quantum computer, I can operate on all of this at once, Gil said. And the number of states you can look at is 2 raised to the power of the number of qubits. So if you could make a 50-qubit universal quantum computer, you could in theory explore all of those 1.125 quadrillion states at the same time.
What gives quantum computing its special advantage, says Aaronson, of the University of Texas, is that quantum mechanics is based on things called amplitudes. Amplitudes are sort of like probabilities, but they can also be negative in fact, they can also be complex numbers, he said. So if you want to know the probability that something will happen, you add up the amplitudes for all the different ways that it can happen, he says.
The idea with a quantum computation is that you try to choreograph a pattern of interference so that for each wrong answer to your problem, some paths leading there have positive amplitudes and some have negative amplitudes, so they cancel each other out, Aaronson said. Whereas the paths leading to the right answer all have amplitudes that are in phase with each other. The tricky part is that you have to arrange everything not knowing in advance which answer is the right one. So I would say its the exponentiality of quantum states combined with this potential for interference between positive and negative amplitudes thats really the source of the power of quantum computing, he said.
Did we mention that there are problems that a classical computer cant solve? You probably harness one such difficulty every day when you use encryption on the internet. The problem is that it is not easy to find the prime factors of a large number. To review, the prime factors of 15 are 5 and 3. That is easy. If the number you are trying to factor has, say, 200 digits, it is very hard. Even with your laptop running an excellent algorithm, you might have to wait years to find the prime factors.
That brings us to another milestone in quantum computing Shors algorithm. Published in 1994 by Peter Shor, now a math professor at MIT, the algorithm demonstrated an approach that you could use to find the factors of a big number if you had a quantum computer, which didnt exist at the time. Essentially, Shors algorithm would perform some operations that would point to the regions of numbers in which the answer was most likely to be found.
The following year, Shor also discovered a way to perform quantum error correction. Then people really got the idea that, wow, this is a different way of computing things and is more powerful in certain test cases, said Robert Schoelkopf, director of the Yale Quantum Institute and Sterling professor of applied physics and physics. Then there was a big upswell of interest from the physics community to figure out how you could make quantum bits and logic gates between quantum bits and all of those things.
Two decades later, those things are here.
See the article here:
Quantum computing, the machines of tomorrow | The Japan Times - The Japan Times
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- quantum computing - WIRED UK [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Here's How We Can Achieve Mass-Produced Quantum Computers - ScienceAlert [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- HYPRES Expands Efforts in Quantum Computing with Launch of European Subsidiary SeeQC - Business Wire (press release) [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The US and China "Quantum Computing Arms Race" Will Change Long-Held Dynamics in Commerce, Intelligence ... - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Quantum Computing Technologies markets will reach $10.7 billion by 2024 - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Get ahead in quantum computing AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum ... - ZDNet [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- Israel Enters Quantum Computer Race, Placing Encryption at Ever-Greater Risk - Sputnik International [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Prototype device enables photon-photon interactions at room ... - Phys.Org [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Dow and 1QBit Announce Collaboration Agreement on Quantum Computing - Business Wire (press release) [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Imperfect crystals may be perfect storage method for quantum computing - Digital Trends [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Dow Chemical, 1QBit Ink Quantum Computing Development Deal - Zacks.com [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- Google on track for quantum computer breakthrough by end of 2017 - New Scientist [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- USC to lead project to build super-speedy quantum computers - USC News [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- The Quantum Computer Factory That's Taking on Google and IBM ... - WIRED [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- The weird science of quantum computing, communications and encryption - C4ISR & Networks [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Multi-coloured photons in 100 dimensions may make quantum ... - Cosmos [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Global Quantum Computing Market Growth at a CAGR of 35.12 ... - PR Newswire (press release) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum - IEEE Spectrum [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum ... - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Quantum computers are about to get real | Science News - Science News Magazine [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Quantum Computing - Scientific American [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Australia's ambitious plan to win the quantum race - ZDNet [Last Updated On: July 3rd, 2017] [Originally Added On: July 3rd, 2017]
- How quantum mechanics can change computing - The Conversation - The Conversation US [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- UNSW joins with government and business to keep quantum computing technology in Australia - The Australian Financial Review [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- UNSW launches Australia's first hardware quantum computing company with investments from federal and NSW ... - OpenGov Asia [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Finns chill out quantum computers with qubit refrigerator to cut out errors - ZDNet [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Hype and cash are muddying public understanding of quantum ... - The Conversation AU [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- IEEE Approves Standards Project for Quantum Computing ... - insideHPC [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Silicon Quantum Computing launched to commercialise UNSW ... - ZDNet [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- The Era of Quantum Computing Is Here. Outlook: Cloudy ... [Last Updated On: January 30th, 2018] [Originally Added On: January 30th, 2018]
- The Era of Quantum Computing Is Here. Outlook: Cloudy | WIRED [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- Quantum computing in the NISQ era and beyond [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- What is quantum computing? - Definition from WhatIs.com [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- Quantum computers - WIRED UK [Last Updated On: February 19th, 2018] [Originally Added On: February 19th, 2018]
- Is Quantum Computing an Existential Threat to Blockchain ... [Last Updated On: February 21st, 2018] [Originally Added On: February 21st, 2018]
- What is Quantum Computing? Webopedia Definition [Last Updated On: March 25th, 2018] [Originally Added On: March 25th, 2018]
- Quantum Computing Explained - WIRED UK [Last Updated On: April 15th, 2018] [Originally Added On: April 15th, 2018]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: June 2nd, 2018] [Originally Added On: June 2nd, 2018]
- What are quantum computers and how do they work? WIRED ... [Last Updated On: June 22nd, 2018] [Originally Added On: June 22nd, 2018]
- How Quantum Computers Work [Last Updated On: July 22nd, 2018] [Originally Added On: July 22nd, 2018]
- The reality of quantum computing could be just three years ... [Last Updated On: September 12th, 2018] [Originally Added On: September 12th, 2018]
- The 3 Types of Quantum Computers and Their Applications [Last Updated On: November 24th, 2018] [Originally Added On: November 24th, 2018]
- Quantum Computing - VLAB [Last Updated On: January 27th, 2019] [Originally Added On: January 27th, 2019]
- Quantum Computing | Centre for Quantum Computation and ... [Last Updated On: January 27th, 2019] [Originally Added On: January 27th, 2019]
- Microsofts quantum computing network takes a giant leap ... [Last Updated On: March 7th, 2019] [Originally Added On: March 7th, 2019]
- IBM hits quantum computing milestone, may see 'Quantum ... [Last Updated On: March 7th, 2019] [Originally Added On: March 7th, 2019]
- Quantum technology - Wikipedia [Last Updated On: March 13th, 2019] [Originally Added On: March 13th, 2019]
- Quantum Computing | D-Wave Systems [Last Updated On: April 18th, 2019] [Originally Added On: April 18th, 2019]
- Microsoft will open-source parts of Q#, the programming ... [Last Updated On: May 7th, 2019] [Originally Added On: May 7th, 2019]
- What Is Quantum Computing? The Complete WIRED Guide | WIRED [Last Updated On: May 8th, 2019] [Originally Added On: May 8th, 2019]
- The five pillars of Edge Computing -- and what is Edge computing anyway? - Information Age [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Moore's Law Is Dying. This Brain-Inspired Analogue Chip Is a Glimpse of What's Next - Singularity Hub [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Experts Gather at Fermilab for International Workshop on Cryogenic Electronics for Quantum Systems - Quantaneo, the Quantum Computing Source [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Princeton announces initiative to propel innovations in quantum science and technology - Princeton University [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Detecting Environmental 'Noise' That Can Damage The Quantum State of Qubits - In Compliance [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Quantum Computing beginning talks with clients on its quantum asset allocation application - Proactive Investors USA & Canada [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is quantum computing? The next era of computational evolution, explained - Digital Trends [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- IT sees the Emergence of Quantum Computing as a Looming Threat to Keeping Valuable Information Confidential - Quantaneo, the Quantum Computing Source [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]
- More wrong answers get quantum computers to find the right one - Futurity: Research News [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]
- Airbus announces the names of the jury members for its Quantum Computing Challenge - Quantaneo, the Quantum Computing Source [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]