Replete with tunneling particles, electron wells, charmed quarks and zombie cats, quantum mechanics takes everything Sir Isaac Newton taught about physics and throws it out the window.
Every day, researchers discover new details about the laws that govern the tiniest building blocks of the universe. These details not only increase scientific understanding of quantum physics, but they also hold the potential to unlock a host of technologies, from quantum computers to lasers to next-generation solar cells.
But theres one area that remains a mystery even in this most mysterious of sciences: the quantum mechanics of nuclear fuels.
Until now, most fundamental scientific research of quantum mechanics has focused on elements such as silicon because these materials are relatively inexpensive, easy to obtain and easy to work with.
Now, Idaho National Laboratory researchers are planning to explore the frontiers of quantum mechanics with a new synthesis laboratory that can work with radioactive elements such as uranium and thorium.
An announcement about the new laboratory appears online in the journalNature Communications.
Uranium and thorium, which are part of a larger group of elements called actinides, are used as fuels in nuclear power reactors because they can undergo nuclear fission under certain conditions.
However, the unique properties of these elements, especially the arrangement of their electrons, also means they could exhibit interesting quantum mechanical properties.
In particular, the behavior of particles in special, extremely thin materials made from actinides could increase our understanding of phenomena such as quantum wells and quantum tunneling (see sidebar).
To study these properties, a team of researchers has built a laboratory around molecular beam epitaxy (MBE), a process that creates ultra-thin layers of materials with a high degree of purity and control.
The MBE technique itself is not new, said Krzysztof Gofryk, a scientist at INL. Its widely used. Whats new is that were applying this method to actinide materials uranium and thorium. Right now, this capability doesnt exist anywhere else in the world that we know of.
The INL team is conducting fundamental research science for the sake of knowledge but the practical applications of these materials could make for some important technological breakthroughs.
At this point, we are not interested in building a new qubit [the basis of quantum computing], but we are thinking about which materials might be useful for that, Gofryk said. Some of these materials could be potentially interesting for new memory banks and spin-based transistors, for instance.
Memory banks and transistors are both important components of computers.
To understand how researchers make these very thin materials, imagine an empty ball pit at a fast-food restaurant. Blue and red balls are thrown in the pit one at a time until they make a single layer on the floor. But that layer isnt a random assortment of balls. Instead, they arrange themselves into a pattern.
During the MBE process, the empty ball pit is a vacuum chamber, and the balls are highly pure elements, such as nitrogen and uranium, that are heated until individual atoms can escape into the chamber.
The floor of our imaginary ball pit is, in reality, a charged substrate that attracts the individual atoms. On the substrate, atoms order themselves to create a wafer of very thin material in this case, uranium nitride.
Back in the ball pit, weve created layer of blue and red balls arranged in a pattern. Now we make another layer of green and orange balls on top of the first layer.
To study the quantum properties of these materials, Gofryk and his team will join two dissimilar wafers of material into a sandwich called a heterostructure. For instance, the thin layer of uranium nitride might be joined to a thin layer of another material such as gallium arsenide, a semiconductor. At the junction between the two different materials, interesting quantum mechanical properties can be observed.
We can make sandwiches of these materials from a variety of elements, Gofryk said. We have lots of flexibility. We are trying to think about the novel structures we can create with maybe some predicted quantum properties.
We want to look at electronic properties, structural properties, thermal properties and how electrons are transported through the layers, he continued. What will happen if you lower the temperature and apply a magnetic field? Will it cause electrons to behave in certain way?
INL is one of the few places where researchers can work with uranium and thorium for this type of science. The amounts of the radioactive materials and the consequent safety concerns will be comparable to the radioactivity found in an everyday smoke alarm.
INL is the perfect place for this research because were interested in this kind of physics and chemistry, Gofryk said.
In the end, Gofryk hopes the laboratory will result in breakthroughs that help attract attention from potential collaborators as well as recruit new employees to the laboratory.
These actinides have such special properties, he said. Were hoping we can discover some new phenomena or new physics that hasnt been found before.
In 1900, German physicist Max Planck first described how light emitted from heated objects, such as the filament in a light bulb, behaved like particles.
Since then, numerous scientists including Albert Einstein and Niels Bohr have explored and expanded upon Plancks discovery to develop the field of physics known as quantum mechanics. In short, quantum mechanics describes the behavior of atoms and subatomic particles.
Quantum mechanics is different than regular physics, in part, because subatomic particles simultaneously have characteristics of both particles and waves, and their energy and movement occur in discrete amounts called quanta.
More than 120 years later, quantum mechanics plays a key role in numerous practical applications, especially lasers and transistors a key component of modern electronic devices. Quantum mechanics also promises to serve as the basis for the next generation of computers, known as quantum computers, which will be much more powerful at solving certain types of calculations.
Uranium, thorium and the other actinides have something in common that makes them interesting for quantum mechanics: the arrangement of their electrons.
Electrons do not orbit around the nucleus the way the earth orbits the sun. Rather, they zip around somewhat randomly. But we can define areas where there is a high probability of finding electrons. These clouds of probability are called orbitals.
For the smallest atoms, these orbitals are simple spheres surrounding the nucleus. However, as the atoms get larger and contain more electrons, orbitals begin to take on strange and complex shapes.
In very large atoms like uranium and thorium (92 and 90 electrons respectively), the outermost orbitals are a complex assortment of party balloon, jelly bean, dumbbell and hula hoop shapes. The electrons in these orbitals are high energy. While scientists can guess at their quantum properties, nobody knows for sure how they will behave in the real world.
Quantum tunneling is a key part of any number of phenomena, including nuclear fusion in stars, mutations in DNA and diodes in electronic devices.
To understand quantum tunneling, imagine a toddler rolling a ball at a mountain. In this analogy, the ball is a particle. The mountain is a barrier, most likely a semiconductor material. In classical physics, theres no chance the ball has enough energy to pass over the mountain.
But in the quantum realm, subatomic particles have properties of both particles and waves. The waves peak represents the highest probability of finding the particle. Thanks to a quirk of quantum mechanics, while most of the wave bounces off the barrier, a small part of that wave travels through if the barrier is thin enough.
For a single particle, the small amplitude of this wave means there is a very small chance of the particle making it to the other side of the barrier.
However, when large numbers of waves are travelling at a barrier, the probability increases, and sometimes a particle makes it through. This is quantum tunneling.
Quantum wells are also important, especially for devices such as light emitting diodes (LEDs) and lasers.
Like quantum tunneling, to build quantum wells, you need alternating layers of very thin (10 nanometers) material where one layer is a barrier.
While electrons normally travel in three dimensions, quantum wells trap electrons in two dimensions within a barrier that is, for practical purposes, impossible to overcome. These electrons exist at specific energies say the precise energies needed to generate specific wavelengths of light.
About Idaho National LaboratoryBattelle Energy Alliance manages INL for the U.S. Department of Energys Office of Nuclear Energy. INL is the nations center for nuclear energy research and development,and alsoperforms research in each of DOEs strategic goal areas: energy, national security, science and the environment. For more information, visitwww.inl.gov.Follow us on social media:Twitter,Facebook,InstagramandLinkedIn.
Here is the original post:
New laboratory to explore the quantum mysteries of nuclear materials - EurekAlert
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- quantum computing - WIRED UK [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Here's How We Can Achieve Mass-Produced Quantum Computers - ScienceAlert [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- HYPRES Expands Efforts in Quantum Computing with Launch of European Subsidiary SeeQC - Business Wire (press release) [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The US and China "Quantum Computing Arms Race" Will Change Long-Held Dynamics in Commerce, Intelligence ... - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Quantum Computing Technologies markets will reach $10.7 billion by 2024 - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Get ahead in quantum computing AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum ... - ZDNet [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Quantum computing, the machines of tomorrow | The Japan Times - The Japan Times [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- Israel Enters Quantum Computer Race, Placing Encryption at Ever-Greater Risk - Sputnik International [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Prototype device enables photon-photon interactions at room ... - Phys.Org [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Dow and 1QBit Announce Collaboration Agreement on Quantum Computing - Business Wire (press release) [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Imperfect crystals may be perfect storage method for quantum computing - Digital Trends [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Dow Chemical, 1QBit Ink Quantum Computing Development Deal - Zacks.com [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- Google on track for quantum computer breakthrough by end of 2017 - New Scientist [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- USC to lead project to build super-speedy quantum computers - USC News [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- The Quantum Computer Factory That's Taking on Google and IBM ... - WIRED [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- The weird science of quantum computing, communications and encryption - C4ISR & Networks [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Multi-coloured photons in 100 dimensions may make quantum ... - Cosmos [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Global Quantum Computing Market Growth at a CAGR of 35.12 ... - PR Newswire (press release) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum - IEEE Spectrum [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum ... - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Quantum computers are about to get real | Science News - Science News Magazine [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Quantum Computing - Scientific American [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Australia's ambitious plan to win the quantum race - ZDNet [Last Updated On: July 3rd, 2017] [Originally Added On: July 3rd, 2017]
- How quantum mechanics can change computing - The Conversation - The Conversation US [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- UNSW joins with government and business to keep quantum computing technology in Australia - The Australian Financial Review [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- UNSW launches Australia's first hardware quantum computing company with investments from federal and NSW ... - OpenGov Asia [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Finns chill out quantum computers with qubit refrigerator to cut out errors - ZDNet [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Hype and cash are muddying public understanding of quantum ... - The Conversation AU [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- IEEE Approves Standards Project for Quantum Computing ... - insideHPC [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Silicon Quantum Computing launched to commercialise UNSW ... - ZDNet [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- The Era of Quantum Computing Is Here. Outlook: Cloudy ... [Last Updated On: January 30th, 2018] [Originally Added On: January 30th, 2018]
- The Era of Quantum Computing Is Here. Outlook: Cloudy | WIRED [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- Quantum computing in the NISQ era and beyond [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- What is quantum computing? - Definition from WhatIs.com [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- Quantum computers - WIRED UK [Last Updated On: February 19th, 2018] [Originally Added On: February 19th, 2018]
- Is Quantum Computing an Existential Threat to Blockchain ... [Last Updated On: February 21st, 2018] [Originally Added On: February 21st, 2018]
- What is Quantum Computing? Webopedia Definition [Last Updated On: March 25th, 2018] [Originally Added On: March 25th, 2018]
- Quantum Computing Explained - WIRED UK [Last Updated On: April 15th, 2018] [Originally Added On: April 15th, 2018]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: June 2nd, 2018] [Originally Added On: June 2nd, 2018]
- What are quantum computers and how do they work? WIRED ... [Last Updated On: June 22nd, 2018] [Originally Added On: June 22nd, 2018]
- How Quantum Computers Work [Last Updated On: July 22nd, 2018] [Originally Added On: July 22nd, 2018]
- The reality of quantum computing could be just three years ... [Last Updated On: September 12th, 2018] [Originally Added On: September 12th, 2018]
- The 3 Types of Quantum Computers and Their Applications [Last Updated On: November 24th, 2018] [Originally Added On: November 24th, 2018]
- Quantum Computing - VLAB [Last Updated On: January 27th, 2019] [Originally Added On: January 27th, 2019]
- Quantum Computing | Centre for Quantum Computation and ... [Last Updated On: January 27th, 2019] [Originally Added On: January 27th, 2019]
- Microsofts quantum computing network takes a giant leap ... [Last Updated On: March 7th, 2019] [Originally Added On: March 7th, 2019]
- IBM hits quantum computing milestone, may see 'Quantum ... [Last Updated On: March 7th, 2019] [Originally Added On: March 7th, 2019]
- Quantum technology - Wikipedia [Last Updated On: March 13th, 2019] [Originally Added On: March 13th, 2019]
- Quantum Computing | D-Wave Systems [Last Updated On: April 18th, 2019] [Originally Added On: April 18th, 2019]
- Microsoft will open-source parts of Q#, the programming ... [Last Updated On: May 7th, 2019] [Originally Added On: May 7th, 2019]
- What Is Quantum Computing? The Complete WIRED Guide | WIRED [Last Updated On: May 8th, 2019] [Originally Added On: May 8th, 2019]
- The five pillars of Edge Computing -- and what is Edge computing anyway? - Information Age [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Moore's Law Is Dying. This Brain-Inspired Analogue Chip Is a Glimpse of What's Next - Singularity Hub [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Experts Gather at Fermilab for International Workshop on Cryogenic Electronics for Quantum Systems - Quantaneo, the Quantum Computing Source [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Princeton announces initiative to propel innovations in quantum science and technology - Princeton University [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Detecting Environmental 'Noise' That Can Damage The Quantum State of Qubits - In Compliance [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Quantum Computing beginning talks with clients on its quantum asset allocation application - Proactive Investors USA & Canada [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is quantum computing? The next era of computational evolution, explained - Digital Trends [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- IT sees the Emergence of Quantum Computing as a Looming Threat to Keeping Valuable Information Confidential - Quantaneo, the Quantum Computing Source [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]
- More wrong answers get quantum computers to find the right one - Futurity: Research News [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]